
Functional Programming
and

Erratic Non-Determinism

Corin Steven Pitcher

Trinity College

June 3, 2001

Submitted in partial fulfilment of the requirements for the
Doctor of Philosophy in Computation

Oxford University Computing Laboratory

Programming Research Group

crest.eps

Abstract

Non-deterministic programs can represent specifications, and non-determinism arises naturally
in concurrent programming languages. In this dissertation, λ-calculi exhibiting erratic non-
determinism are studied in order to identify definitions and techniques that may be applicable to
higher-order programming languages for specification or concurrency.

The non-deterministic λ-calculi arise as fragments of an infinitary, non-deterministic λ-calculus
L with countably indexed erratic choice. The operational semantics for L induces a uniform
operational semantics upon each fragment, facilitating arguments that apply to different non-
deterministic λ-calculi.

The behaviour of programs in each fragment is abstracted to a form of labelled transition system
with divergence called a typed transition system. Several applicative similarity and bisimilarity
relations are defined upon the states of each typed transition system, including the fragments.
Examples that distinguish the relations are constructed in a simple typed transition system S
and are later shown to have analogues in non-deterministic λ-calculi. Maps that preserve and
reflect the structure of typed transition systems are investigated because they reflect the finest
relation, convex bisimilarity, and it is proven that there is a map to S from every typed transition
system satisfying a mild condition.

Using operational techniques, the lower, upper, and convex variants of similarity are shown
to be compatible and to satisfy the Scott induction principle for every fragment. In addition,
the other relations are compatible for a useful collection of fragments. Relative definability of
non-deterministic programs is considered with respect to convex bisimilarity, and a chain of
fragments is presented for which the corresponding chain of convex bisimilarity relations are
related by strict inclusions, i.e., more expressive forms of erratic non-determinism distinguish
terms that cannot be distinguished by less expressive forms of erratic non-determinism.

Contents

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Outline of Dissertation . 17

1.4 Contributions . 22

2 Preliminaries 23

2.1 Ordinals and Trees . 23

2.2 Transition Systems . 30

2.3 Induction and Coinduction . 33

2.4 Similarity and Bisimilarity . 39

2.5 Recursive Ordinals and Recursive Trees . 45

2.6 Binary Choice Operators . 50

3 The Non-Deterministic λ-Calculus L 55

3.1 Types . 55

3.2 Language . 56

3.3 Type Assignment . 59

3.4 Reduction Semantics . 64

3.5 Evaluation Semantics . 72

3.6 Normalisation . 75

3.7 Fragments of L . 76

3.8 Rank of Must Convergence . 80

i

ii CONTENTS

4 Typed Transition Systems 85

4.1 Typed Transition Systems . 85

4.2 Similarity and Bisimilarity . 89

4.3 The TTS S and Bisimilarity . 99

4.4 The TTS S and Similarity . 100

4.5 A Category of TTSs . 108

5 Programming Language TTSs 119

5.1 L0 and L0(E) . 119

5.2 Similarity and Bisimilarity . 122

5.3 Relations on Open Terms . 125

5.4 Compatibility . 133

5.5 Relative Definability . 152

5.6 Theory of the Language . 160

5.7 Fixed-Points . 169

6 Discussion 179

6.1 Summary . 179

6.2 Further Work . 181

Bibliography 185

Glossary of Symbols 199

Index 203

List of Figures

2.1 ∈-trees of ordinals from 0 to 4 . 27

2.2 A well-founded tree with rank ω . 29

2.3 ∈-transition system and ∈-tree for {{/0,{ /0}},{{ /0}}} 31

2.4 The unlabelled transition system associated with a non-well-founded set 32

2.5 LTSs related by similarity . 42

2.6 Orders on recursive trees . 47

2.7 Action of binary choice operators . 51

2.8 Monotonicity of choice operators . 53

3.1 Terms and canonical terms . 57

3.2 Free variables . 58

3.3 Type assignment . 61

3.4 Abbreviated terms . 63

3.5 Type assignment for abbreviated terms . 64

3.6 Reduction constructors . 65

3.7 Reduction relation . 66

3.8 Derived reduction rules . 67

3.9 May convergence . 72

3.10 May divergence . 73

3.11 Must convergence . 75

3.12 Fragment closure (part 1) . 78

3.13 Fragment closure (part 2) . 79

3.14 Must convergence rank . 80

4.1 Unfoldings of similarity and bisimilarity for a TTS at P⊥(σ) 94

iii

iv LIST OF FIGURES

4.2 Inclusions between similarities and bisimilarities 95

4.3 Equivalence classes of S (P⊥(unit)) and S (P⊥(P⊥(unit))) w.r.t. �S
CS 102

4.4 Equivalence classes of S (P⊥(unit)) and S (P⊥(P⊥(unit))) w.r.t. �S
RS 102

4.5 Equivalence classes of S (P⊥(bool)) w.r.t. �S
LS, �S

US, �S
CS, and �S

RS 103

4.6 Equivalence classes of S (P⊥(P⊥(bool))) w.r.t. �S
LS and �S

US 104

4.7 Equivalence classes of S (P⊥(P⊥(bool))) w.r.t. �S
CS 105

4.8 Incomparable relations . 108

5.1 Unfoldings of similarity and bisimilarity for L0(E) at value types 123

5.2 Unfoldings of similarity and bisimilarity for L0(E) at P⊥(σ) 124

5.3 Equivalence classes in S and L0 at P⊥(P⊥(unit)) w.r.t. �S
CS and �L0

CS 126

5.4 Compatible refinement . 130

5.5 Reduction, η, and sequential composition rules 162

5.6 Erratic choice rules . 163

Acknowledgements

Firstly, I would like to thank my supervisor Luke Ong for his advice and encouragement through-
out the course of my studies. His advice has proven invaluable. I am also grateful to my second
supervisor Lincoln Wallen.

I have had profitable discussions on the topic of non-deterministic λ-calculi with Søren Lassen,
Andrew Moran, and Russell Harmer. I have had enjoyable discussions on other topics with
Corina Cı̂rstea, Thomas Hildebrandt, Dominic Hughes, Ranko Lazić, Ralph Loader, Michael
Marz, Guy McCusker, Richard McPhee, Julian Rathke, Charles Stewart, and James Ben Worrell.

Andrew Gordon arranged an internship at Microsoft Research, Cambridge that I enjoyed a great
deal.

The faculty at CTI, DePaul University have been very supportive during the final stages of writ-
ing this dissertation, and, in particular, I thank Alan Jeffrey and Marcus Schaefer for their com-
ments.

My parents, sister, and grandparents have unfailingly provided, sometimes undeserved, love,
support, and understanding.

Finally, I would like to thank Jessalynn. Her love and support make life worthwhile.

vi

Chapter 1

Introduction

1.1 Motivation

Non-determinism is frequently encountered, or introduced deliberately, when reasoning about
specifications or concurrent systems. For example, some program development formalisms
identify specifications with non-deterministic systems; and concurrent systems can exhibit non-
determinism when timing or scheduling information is unavailable or difficult to calculate. A
non-deterministic system is generally easier to work with than a collection of systems that im-
plement a specification, or a collection of outcomes of a concurrent system under all possible
timing or scheduling behaviours.

We now examine several representative scenarios involving a non-deterministic system and rea-
sonable implementations. Suppose that M and N denote state-less, deterministic systems that
accept a natural number and return another natural number or fail to terminate. The time and
space properties of M and N are left unspecified. When they exist, we write M(x) and N(x) for
the results of passing the natural number x as an argument to the systems M and N respectively.

Consider a non-deterministic system M ∪ N that accepts a natural number and then behaves
either as M(x) or as N(x). The system M ∪N could be implemented or refined by any of the
following systems:

System A is M.

System B is N.

System C reads one digit from an unbounded tape of binary digits, winds the tape on, and then
behaves as M if the digit is 0 and as N if the digit is 1. Nothing further is assumed about
the tape.

System D behaves as M with probability 0.75 and as N otherwise.

System E accepts a natural number x, forwards x to systems A and B, and returns the first result
that it receives. Nothing is assumed about the relative performance of the systems A and
B or the connections to them.

1

2 CHAPTER 1. INTRODUCTION

System F accepts a natural number x, runs M and N on a sequential, multi-tasking system, and
returns the first result that it finds. Nothing is assumed about the scheduling algorithm in
use.

The relationship between M and systems A and B is typical of program development formalisms,
but M ∪N is an atypical specification because of its simplicity. More often, the specification
(a non-deterministic system) is a term of an expressive language, and it is challenging to find
implementations.

Systems C, D, E, and F are non-deterministic because of incomplete information, but each one
can be refined to different deterministic systems when additional information is available. For
example, the behaviour of system C is determined by the contents of the tape, and system D
may be found to base its decision upon an internal counter that chooses N when the counter is
divisible by 4. In both cases, a state-less, non-deterministic system M∪N is refined by stateful,
deterministic systems.

Pursuing system C leads to a strategy for modelling non-determinism using oracles, where the
tape is an oracle that can be called upon to resolve non-deterministic choices. The probabilities
associated with the behaviours of system D can be useful, in particular for showing that the
probability of an undesirable behaviour is small. Neither oracles nor probabilistic systems are
considered in this dissertation.

System E executes M(x) and N(x) concurrently. In general, the outcome depends upon the
relative performance of the component systems and connections. Without this information, we
must consider all possible performance characteristics. However, it is possible to describe the
non-deterministic behaviour of system E without reference to performance characteristics, and
this facilitates reasoning about such concurrent systems.

There is a subtlety in system E and its permissible implementations. Suppose that x is passed to
the systems A and B, but that only system A terminates, with result M(x). In this case, system
E will always terminate with result M(x), thus avoiding the non-termination of system B. In
contrast, system C may read 1 from the tape and then fail to terminate because it is committed
to behaving as N.

System F is similar to system E. The description of the system is incomplete without the schedul-
ing algorithm. In particular, it is not known whether the scheduling algorithm is fair: are the
computations of M and N interleaved, or dove-tailed, so that a non-zero, finite number of steps
are carried out before the scheduler switches to the other computation? For example, a schedul-
ing algorithm that never schedules N is not fair. If the scheduling algorithm is known to be fair,
then system F also has the property that it can avoid non-termination of one of the computations,
and so cannot be distinguished from system E.

The non-termination avoidance property of systems E and F is relevant to many real systems
because multi-tasking operating systems with fair scheduling algorithms are the norm for current
desktop and server computers (and are becoming more common in embedded systems). When
termination properties are important, it is useful to identify different ways of combining systems
as a single non-deterministic system. For example, the erratic choice M∪N does not have the
non-termination avoidance property because it can be implemented by system C. On the other
hand, the ambiguous choice of M and N is effectively the same as system E, or system F with

1.2. RELATED WORK 3

a fair scheduling algorithm, and thus does have the non-termination avoidance property. The
ambiguous choice of M and N is a valid implementation or refinement of the erratic choice
M∪N.

In summary, non-determinism is used to package a family of systems as a single system to
provide an abstraction from implementation details, and hence facilitate reasoning.

1.2 Related Work

There is a considerable body of research involving non-determinism. This section describes
some of the relevant literature according to the categories: non-deterministic imperative pro-
gramming languages, process calculi, and non-deterministic and concurrent functional program-
ming languages.

1.2.1 Non-Deterministic Imperative Programming Languages

Hoare’s seminal paper [Hoa69] introduces a formal method for proving the correctness of pro-
grams of a simple deterministic imperative programming language (see [Gri81] for a historical
account). The programs of the language are composed of: assignment statements (to integer-
valued variables), sequential composition, conditionals, and while loops. The expressions of
the language are expressions of the underlying logic. Programs are annotated with predicates
about the state of the machine. A program is correct if the annotations are consistent with the
behaviour of the statements.

A Hoare triple {P}S{Q} consists of a statement S, a predicate P called the precondition, and a
predicate Q called the postcondition. The Hoare triple {P}S{Q} asserts that, when started in a
state that satisfies the predicate P, the statement S will either fail to terminate or will terminate
in a state that satisfies the predicate Q. The judgements of the proof system are Hoare triples.
For example, the axiom for assigning the value of the formula E to the variable x is:

{P[E/x]}x := E {P}

Compound statements also have proof rules. For example, the proof rule for the sequential
composition of statements S1 and S2 is (where P, Q, and R are predicates):

{P}S1 {Q} {Q}S2 {R}
{P}S1;S2 {R}

The while loop is written as doP → Sod where the predicate P, called a guard, is the condition
that is tested before each loop iteration and S is the body of the loop. The corresponding proof
rule is (where I is a predicate):

{I ∧P}S{I}
{I}doP → Sod{I ∧¬P}

4 CHAPTER 1. INTRODUCTION

The proof rule for while loops depends upon the idea of an invariant predicate I that always
holds before the condition is tested, i.e., it holds before the while loop starts and after each
iteration. The proof system establishes properties of the final state of a program but does not
address termination. This can be seen in the proof rule for the while loop which allows a proof
of the following statement even though no program can terminate in a state that satisfies false:

{true}do true → x := xod{false}

Hoare’s original system can be used for program verification, checking that an existing program
satisfies a specification. This raises the question of how the program and the verification are
obtained. For example, a developer may write a program, and pass it to an expert that verifies it.
If the expert finds an error, then the program may have to be returned to the developer and the
cycle repeated.

Dijkstra [Dij76] pioneers an approach to program synthesis where the program and the proof
of correctness are developed hand in hand. The developer starts from a formal specification
and applies transformations to it until a program is reached. The transformations are chosen so
that the resulting program must be a valid implementation of the specification. The sequence of
transformations documents the design and the proof of correctness of the program.

In Dijkstra’s framework, specifications and programs are elements of the same space. Dijkstra
uses the space of predicate transformers, but other spaces have been considered in the literature
because the choice affects the style and ease of program development. Accounts of the spaces
and the relationships between them can be found in [dB80, Gru93]. In contrast to Hoare’s proof
system, the predicate transformer framework does take account of termination and so there is an
additional proof requirement for iteration or recursion.

Not all predicate transformers are programs. Dijkstra introduces a language of guarded com-
mands (often called the guarded command language), and gives a denotational semantics for
guarded command language programs as predicate transformers. A predicate transformer can
be implemented if it is the image of a guarded command language program and the predicates
used as guards are computable.

It is straightforward to define a non-deterministic operational semantics for the guarded com-
mand language. The non-determinism arises from the general constructs for alternation:

if P1 → S1 �P2 → S2 � . . . �Pn → Sn fi

and iteration:

doP1 → S1 �P2 → S2 � . . . �Pn → Sn od

The guards P1,P2, . . . ,Pn are predicates. Informally, if the thread of execution reaches an al-
ternation or iteration statement and one of the guards is found to be true in that state, then the
corresponding branch is executed. If none of the guards are true, then the behaviour of the alter-
nation statement is undefined (often identified with non-termination). If none of the guards are
true for an iteration statement, then control passes to the following statement. Alternation and
iteration statements are non-deterministic when two or more guards are true, because the order

1.2. RELATED WORK 5

in which guards are tested is not specified. For example, b may contain either 0 or 1 after the
following program is executed:

if true → b := 0
� true → b := 1
fi

The standard semantics of the alternation and iteration statements is not fair. For example,
consider the following non-deterministic program:

b := 0;
n := 0;
do b = 0 → n := n+ 1
� b = 0 → b := 1
od

The while loop terminates when the second branch is chosen and b is assigned 1. If it terminates,
we know that b contains 1 and that n contains a natural number. However, the while loop will
not terminate if the first branch is always chosen. In the standard semantics, any of the following
programs would be valid implementations or refinements of the above program:

• b := 1;n := 0

• b := 1;n := 0;don < 10 → n := n+ 1od

• do true → n := nod

The standard operational semantics for the guarded command language is not fair because a
branch may not ever be chosen for execution even though its associated guard is true infinitely
often. In the example above, the second guard is true whenever the first guard is true. Thus,
in a fair setting, the second branch must be chosen eventually, and so the while loop always
terminates and n may contain any natural number. Dijkstra rejects the requirement that imple-
mentations of the alternation and iteration statements be fair because fairness greatly complicates
the semantics but is rarely required to prove a program correct. Francez [Fra86] and Apt and
Olderog [AO91] consider fairness in the context of the guarded command language.

Assuming the standard (unfair) semantics, if a guarded command language program may assign
any natural number to a variable, then it may fail to terminate (see also lemma3.4.8(2)). More
generally, suppose that we have a non-deterministic guarded command language program. For
each initial state, if the program always terminates when started from that state, consider the
cardinality of the set of final states that are reachable from that state. If all of the cardinalities
are finite, then the program exhibits finite non-determinism (or bounded non-determinism). If
any of the cardinalities are ω, then the program exhibits countable non-determinism. We may
then state: with the standard operational semantics, no guarded command language program
exhibits countable non-determinism.

The definitions of finite non-determinism and countable non-determinism have analogues for
predicate transformers. Dijkstra proposes that predicate transformers reflect the behaviour of
guarded command language programs and places a restriction upon predicate transformers that
prohibits countable non-determinism (p77 of [Dij76]):

6 CHAPTER 1. INTRODUCTION

The second reason for reassurance is of a rather different nature. A mechanism
of unbounded nondeterminacy yet guaranteed to terminate would be able to make
within a finite time a choice out of infinitely many possibilities: if such a mechanism
could be formulated in our programming language, that very fact would present an
insurmountable barrier to the possibility of the implementation of that programming
language.

However, it is sometimes convenient to work with specifications that exhibit countable non-
determinism and are subsequently refined to programs. In addition, if countable non-determinism
is banned then every specification must be checked for compliance. For these reasons, much of
the subsequent research [Bac80, Gri81, Bac88, Kal90, Mor90] allows predicate transformers to
exhibit countable non-determinism. Researchers in other areas have also rejected the restriction
to finite non-determinism [Par79, Par81, MW95].

This creates an occasionally awkward mismatch between the expressiveness of predicate trans-
formers that can exhibit countable non-determinism and guarded command language programs
that cannot. The mismatch can be resolved by extending the guarded command language and
operational semantics with new statements that exhibit countable non-determinism. It is straight-
forward to do this without fair alternation or iteration. For example, the guarded command
language can be extended with a statement that always terminates and may assign any natural
number to the variable x:

x :∈ ω

This program has the same behaviour as the program above with a fair semantics.

Similar imperative programming languages that exhibit countable non-determinism are studied
in [Bac80, Plo82, AP86, AO91, dGHLP94]. Countable non-determinism turns out to be useful
for studying fair operational semantics, because it is possible to define a fair scheduler in terms
of countable non-determinism. Using fair schedulers, a syntactic translation can be defined from
the guarded command language to the guarded command language extended with x :∈ ω. The
important property is that the translation of a program with the unfair operational semantics has
the same behaviour as the original program with the fair operational semantics. For example,
consider execution of the following program with the fair operational semantics:

do P → S1

� P → S2

od

If we choose variables b and n that do not appear in the above program, then it can be rewritten
using a scheduler that enforces fairness:

b :∈ ω;
n :∈ ω;
do P∧b = 0∧n
= 0 → S1;n := n−1
� P∧b
= 0∧n
= 0 → S2;n := n−1
� P∧b = 0∧n = 0 → b := 1;n :∈ ω
� P∧b
= 0∧n = 0 → b := 0;n :∈ ω
od

1.2. RELATED WORK 7

The variables b and n store the state of the scheduler. The variable b indicates whether the first
or second branch is being executed and n contains the number of iterations of that branch that
will be taken before the scheduler switches to the other branch. The third and fourth branches
of the iteration are taken when the counter n reaches 0 and switch the scheduler from the first
branch to the second branch or vice-versa. The rewritten program cannot exclude the first or the
second branch infinitely often, even when executed with the unfair operational semantics. Thus
fairness of iteration is reduced to countable non-determinism by a syntactic translation in the
same way that parallel-or can be implemented upon a sequential, multi-tasking system.

1.2.2 Process Calculi

This section highlights some of the common operational techniques used to define and reason
about process calculi such as CSP [Hoa85, Ros98], CCS [Mil89], and the π-calculus [Mil91,
MPW92]. Non-determinism plays an important role in these calculi because they are typi-
cally given an interleaving semantics (see [WN95]), i.e., concurrency is modelled using non-
determinism.

CSP, CCS, and the π-calculus can describe erratic non-deterministic choice between two pro-
cesses P and Q using the notation P�Q (CSP) or τ.P + τ.Q (CCS and the π-calculus). These
processes evolve silently into either P or Q. In addition, CSP and CCS permit the erratic non-
deterministic choice of an infinite family of processes. If I is a set and, for each i ∈ I, Pi is a
process, then:

�
i∈I

Pi and ∑
i∈I

τ.Pi

denote erratic non-deterministic choice between the processes of the {Pi | i ∈ I} in CSP and CCS
respectively.

The process calculi are each given an operational semantics in the form of a labelled transition
relation between processes represented as terms. The labelled transition relation is defined by
induction upon the structure of terms following Plotkin [Plo81]. A transition, labelled with α,
between processes P and Q indicates that P may evolve to Q and is written P

α−→ Q. The labels
vary according to the calculus, but, in general, record an (atomic) interaction of the left-hand
process with its environment. A distinguished label τ is used to record an internal interaction
that cannot be seen or influenced by an external party. For example, the operational semantics
determines that the behaviour of the non-deterministic choice processes given above is:

• For CSP: P�Q
τ−→ P and P�Q

τ−→ Q

• For CCS and the π-calculus: τ.P+ τ.Q τ−→ P and τ.P+ τ.Q τ−→ P

The labelled transition relation is the basis for reasoning about a process. The branching be-
haviour of a process is an important component of the behaviour of a process, and is readily
apparent from the labelled transition relation. A process P branches when there is more than one
pair consisting of a label α and a process Q such that P

α−→ Q. The non-determinism in the exam-
ples above demonstrates branching. Branching also occurs in the guarded command language

8 CHAPTER 1. INTRODUCTION

when there is more than one terminal state for a program with a fixed initial state because of non-
deterministic alternation or iteration statements. For example, running the following program
results in one of two states, in one b contains 0, and in the other b contains 1:

if true → b := 0
� true → b := 1
fi

The intermediate states of such a program’s execution are nearly always ignored, and so guarded
command language programs have a simple branching structure: they branch immediately to
their final states. In contrast, it is often important to know whether a process branches before or
after an interaction with the environment, and this is captured by the labelled transition relation.
For example, consider the CCS processes:

a.b.0+ a.c.0 and a.(b.0+ c.0)

The first process performs an a-labelled transition to one of the non-branching, deterministic
processes b.0 or c.0. The second process performs an a-labelled transition to the branching pro-
cess b.0+ c.0, which can in turn perform either a b-labelled transition or a c-labelled transition
to the nil process 0. The decision as to whether b or c will occur is fixed once a has occurred
in the first process, but is not fixed in the second process. Of course, the branching structure
may or may not be required depending upon the application, but it is nonetheless available in the
transition relation (see [Van94] for a good discussion).

The terms and labelled transition relation of each process calculus form a labelled transition
system (LTS). An LTS consists of a set of states (the processes or terms), a set of labels, and a
labelled transition relation. A process is a term, which is in turn a state of the LTS.

Definitions of semantic equivalence processes are often phrased as equivalences upon the states

of LTSs. The best known equivalence is strong bisimilarity � (see [Par79, Par81, MT88, Mil89,

Abr91, Ros98]). If states s and t are related by �, then every transition from s must be matched
by a transition from t and the two target states must also be related, and vice-versa:

s� t =⇒ (∀α,s′.s α−→ s′ =⇒∃t ′. t α−→ t ′ ∧ s′� t ′)∧
(∀α, t ′. t α−→ t ′ =⇒∃s′.s α−→ s′ ∧ s′� t ′)

However, this property is not sufficient to define strong bisimilarity, and so � is defined to the
greatest relation satisfying the above. This is a coinductive definition. It is necessary to use
coinduction rather than induction to define � because processes may have infinite sequences of
transitions due to cyclic definitions. Strong bisimilarity ensures that states (processes) have pre-
cisely the same pattern of interaction with their environments, as given by the labelled transition
relation. Many variants of strong bisimilarity have been proposed for different applications, see
[Van90, Van93].

It is easier to reason about a system built from components if some of the properties of the
composite system can be inferred from known properties of the components. The compatibility
property of strong bisimilarity allows us to infer that two processes built using the same term

1.2. RELATED WORK 9

constructor are related by strong bisimilarity whenever the immediate sub-terms of the processes
are related by strong bisimilarity. A compatible equivalence relation is known as a congruence.
Not all variants of strong bisimilarity are compatible, e.g., weak bisimilarity (see [Mil89]).

In related work, Aczel and others [Acz88, Acz94, FHL94, BM96] use a similar definition to
construct models of non-well-founded set theory by quotienting the class of unlabelled transi-
tion systems with a variant of strong bisimilarity, thus establishing a connection between cyclic
processes and non-well-founded sets. In addition, the connection between the coinductive def-
initions of the variants of bisimilarity and certain kinds of games with winning strategies (see
[Acz77]) is applied to model-checking by Stirling [Sti97]. However, such games are not directly
comparable with the games used to give semantics to programs in [AJM94, HO00] because they
represent the proofs of bisimilarity as opposed to the processes.

1.2.3 Functional Programming, Non-Determinism, and Concurrency

Deterministic λ-Calculi

λ-calculi (see [Bar84]) provide a clean basis for reasoning about functional programming lan-
guages. Contextual equivalence is an appealing behavioural equality relation that can be de-
fined upon the programs of the pure untyped λ-calculus with a reduction strategy [Abr90], PCF
[Sco93, Plo75, Plo77, Plo81, Kah87, Pit97], or FPC [Plo85, Gun92]. A program M is related
by contextual equivalence to another program N with the same type as M if, for all (suitable)
contexts C [−], C [M] terminates if and only if C [N] terminates. The definition of contextual
equivalence captures the intuition that two programs should be considered the same if they are
interchangeable (with respect to observing termination using tests written in the same program-
ming language). For PCF and FPC, there is some leeway in the definition because the contexts
may be restricted to ground contexts, where C[M] and C[N] must have a ground or base type
such as the type of booleans or natural numbers. This determines whether or not the divergent
program Ω is identified with the function λx.Ω that accepts an argument and then diverges.

Unfortunately, it is hard to work directly with contextual equivalence because of the quantifica-
tion over contexts. In the case of PCF, it is possible to exploit the simple type structure to find a
more convenient characterisation of contextual equivalence. An equivalence � is defined upon
programs as a logical relation (see [Mit96]) by induction on the structure of types. For programs
M and N of the same type ρ:

• If ρ is the natural number type, M�N if and only if, for all natural numbers n, M evaluates
to n if and only if N evaluates to n. The term n represents the natural number n.

• If ρ is the function type σ → τ, then M�N if and only if, for all programs M′ and N′ of

type σ, M′�N ′ implies M M′ �N N ′ .

It can be shown that � coincides with contextual equivalence for PCF. This is useful because �
uses a more restrictive quantification than the definition of contextual equivalence, and thus is

10 CHAPTER 1. INTRODUCTION

easier to prove. Essentially, applicative contexts suffice for testing terms of function type, and
contexts of the following form suffice for testing terms of natural number type:

if eq (−,n)then0 elseΩ

A similar definition and result can be established for the contextual preorder, where a program
M is related by the contextual preorder to another program N with the same type as M if, for all
(suitable) contexts C [−], C [M] terminates implies that C [N] terminates.

In order for � to coincide with contextual equivalence when non-ground contexts are permitted,
it is necessary to add an additional clause to the second case stating that M terminates if and
only if N terminates.

Abramsky [Abr90, AO93] proposes a study of pure untyped λ-calculus with the call-by-name
reduction strategy. However, the strategy outlined above for PCF defines � at a function type

σ→ τ in terms of � at the types σ and τ, and the use of � at σ is contravariant. It is not possible
to make a similar definition for the untyped λ-calculus or FPC because an inductive definition
fails at recursive types, and the contravariance prevents a fixed-point definition via a monotone
function.

Abramsky’s solution is to define an applicative similarity1 relation, also using applicative con-
texts, and then show that it coincides with the contextual preorder using a domain-theoretic
technique. If programs M and N are related by applicative similarity �, then for every term M′

such that M evaluates to λx.M′, there must be a term N′ such that N evaluates to λx.N′ and for
every program L, the terms M′[L/x] and N′[L/x] are related by applicative similarity, i.e.:

M� N =⇒∀M′.M ⇓ λx.M′ =⇒∃N ′.N ⇓ λx.N ′ ∧∀L.M′[L/x]� N ′[L/x]

As with strong bisimilarity for processes, there are many relations that satisfy this property
(including the empty relation). Applicative similarity is the greatest relation that satisfies this
property. Intuitively, applicative similarity is defined by coinduction upon the implicit recursive
type structure of the untyped λ-calculus (as demonstrated by a translation of the untyped λ-
calculus into FPC, see [Gun92]).

Applicative similarity also uses applicative contexts as tests, although it does so using a substi-
tution rather than a real application. In addition, there is a convergence test before substitution.
The convergence and application tests can be incorporated into an LTS with programs as states.

There is a transition M
L−→ M′[L/x] between programs M and M′[L/x], labelled with the program

L, if and only M evaluates to λx.M′. Using this LTS, applicative similarity can be seen as a
preorder variant of strong bisimilarity. Conceptually, it is also useful to consider the LTS un-
folded into an infinite tree that describes the behaviour of a term (cf. Böhm trees for the classical
λ-calculus, see [Bar84, JR97, AC98]).

There is an important difference between the applicative contexts used for the alternative char-
acterisation of contextual equivalence for PCF and those used for applicative similarity. The

1Abramsky uses applicative bisimilarity and not applicative similarity. We use the latter, for consistency with
definitions in the sequel.

1.2. RELATED WORK 11

former are pairs of contexts (−M′) (−N ′) such that M′ and N′ are programs related by �,
whereas the latter uses a single context (−L) twice, where L is a program. This modification
makes the coinductive definition of applicative similarity possible, but makes it considerably
harder to establish that it is a compatible relation. In particular, we need to know that for all
programs M, M′, N, N ′:

(M� N ∧M′� N ′) =⇒ M M′ � N N ′

Abramsky [Abr90] establishes that applicative similarity is a compatible preorder (precongru-
ence) using domain-theoretic techniques, and deduces that it coincides with the contextual pre-
order.

Howe [How89, How96] establishes the same result in an operational setting without recourse to
a denotational semantics. Howe’s method turns out to be remarkably robust for variations of the
λ-calculus. Gordon [Gor94, Gor95a, Gor95b] defines applicative similarity and bisimilarity for
FPC via labelled transition systems, and uses Howe’s method to show that they are compatible
and hence coincide with the contextual preorder and equivalence respectively. Bernstein [Ber98]
proves a general compatibility result for applicative bisimilarity upon higher-order languages
defined by a rule format.

Non-Deterministic λ-Calculi

We now turn to non-deterministic variants of the λ-calculus. As discussed earlier, there are at
least two motivations for adding non-determinism to a programming language such as the λ-
calculus: for specification and refinement, and as a prelude to studying concurrency in a higher-
order setting. Nearly all research is directed towards the latter, and can be classified by the
operational semantics of the extensions made to the λ-calculus:

• “Pure” non-deterministic operators, e.g. erratic choice.

• Parallel operators, e.g., ambiguous choice.

• Parallel operators with message-passing primitives.

The “pure” non-deterministic extensions are usually based upon a binary erratic choice operator.
We write M ∪N for the binary erratic choice of M and N, but there is little consensus in the
literature where M⊕N, M + N, M | N, and M�N can be found2. Less often, the extension is a
construct ?ω that can evaluate to any natural number.

The operational semantics of M ∪N and ?ω3 can be specified via a reduction semantics or an
evaluation semantics (see [Plo81, Gun92]):

2The notations M⊕N and M +N are avoided here because of a potential overlap with categorical notation used
for describing models, and M | N and M�N are not used because they often have a different meaning in process
calculi.

3The operational semantics given for ?ω in chapter 3 is slightly different because of a lifting construct.

12 CHAPTER 1. INTRODUCTION

M∪N � M M∪N � N ?ω� n (n ∈ ω)

M ⇓may K
M∪N ⇓may K

N ⇓may K
M∪N ⇓may K

?ω⇓may n (n ∈ ω)

The may convergence relation ⇓may has a “may” annotation to emphasise that there can be more
than one result. Note the similarity between the reduction semantics (the top row) for M∪N and
the CSP and CCS labelled transitions for P�Q and τ.P+ τ.Q.

In a deterministic setting, a λ-calculus program diverges (has a non-terminating sequence of
reductions) if and only if it does not converge (terminate) to a canonical program. In a non-
deterministic setting, this is no longer true because a non-deterministic program M that cannot
diverge has precisely the same convergence behaviour as the program M ∪Ω that either run M
or the always divergent program Ω. The divergence behaviour can be captured by introducing a
may divergence predicate ⇑may.

The definitions of contextual preorder and applicative similarity can be replayed with ⇓may, but
it turns out that applicative similarity is a strictly finer relation than the contextual preorder in a
non-deterministic setting because applicative similarity is sensitive to more branching behaviour
than the contextual preorder (for an example, see p88 of [Las98b]). In fact, the situation is
considerably more complicated than this. The obvious contextual preorder, henceforth called
the may contextual preorder, relates M and N if:

∀C [−].C [M] ⇓may=⇒ C [N] ⇓may

The may convergence predicate is defined using the may convergence relation by saying that
M ⇓may if and only if there exists a term K such that M ⇓may K. Now define a must convergence
predicate ⇓must as the complement, amongst programs, of the may divergence predicate ⇑may,
so that M ⇓must if and only if M always terminates. Then the must contextual preorder (see
[Ong93, Sie93, Mor94, HM95, Las97, Las98b, Mor98, KSS99]) can be defined as:

∀C [−].C [M] ⇓must=⇒ C [N] ⇓must

This relation is not comparable with the may contextual preorder or applicative similarity.

There are different varieties of applicative similarity also. The relation obtained by substitut-
ing ⇓may for ⇓ in the previous definition of applicative similarity is called lower similarity.
Three other preorders, upper similarity, convex similarity, and refinement similarity, can be de-
fined using combinations of ⇓may and ⇓must. In addition, three equivalence relations, lower
bisimilarity, upper bisimilarity, and convex bisimilarity, can be defined. The bisimilarity rela-
tions are strictly finer than the largest symmetric relations contained in the similarity relation
of the same name. These relations are considered for λ-calculi with erratic choice operators in
[HA80, Ong93, Mor94, Las97, Las98b, LP98, Mor98].

As for deterministic λ-calculi, it is non-trivial to show that the similarity and bisimilarity re-
lations are compatible. Lower similarity is the straightforward case because Howe’s technique
[How89] works without modification, and we find that lower similarity is compatible if one or
both of the non-deterministic operators are present. Howe [How96] extends the technique in two
ways. He gives a technique for deducing compatibility of a bisimilarity relation from a proof
of compatibility of the corresponding similarity relation, and proves that upper similarity and

1.2. RELATED WORK 13

convex similarity are compatible in the presence of a binary erratic choice operator but not ?ω,
i.e., the λ-calculus can exhibit finite but not countable non-determinism. Ong [Ong92a, Ong92b]
independently uses the same method to obtain compatibility of convex similarity. Lassen and
the author [Las97, LP98] independently establish that Howe and Ong’s method and result can
be extended to a λ-calculus that exhibits countable non-determinism. The remaining relation,
refinement similarity, is shown to be compatible in the presence of the binary erratic choice
operator or ?ω in theorem 5.4.14.

Concurrent λ-Calculi

Milner [Mil90] defines a translation from the pure untyped λ-calculus to the π-calculus, and
proves that the equivalence induced on λ-terms by the equivalence on π-terms is strictly finer
than contextual equivalence on λ-terms. This demonstrates that the π-calculus is more expres-
sive for discriminating between (translations of) λ-terms. Sangiorgi [San94], Boudol [Bou93,
Bou94a, BL95], and Lavatelli [Lav93] consider non-deterministic extensions of the λ-calculus
with translations to the π-calculus. The increase in expressive power due to the extensions means
that more λ-terms are distinguished by the variants of contextual equivalence and bisimilarity.

Boudol [Bou94b] extends the pure untyped λ-calculus with a parallel composition operator M‖N
in order to prove an expressivity result with respect to domain-theoretic models, i.e., the finite
elements of the models are in the range of the denotation functions. The parallel composition
operator interleaves reductions of its operands. Formally, K‖N and M‖K are canonical whenever
K is canonical, and the following reduction rules apply to the parallel composition operator
(where K is canonical):

M � M′

M‖N � M′‖N

N � N ′

M‖N � M‖N ′

(K‖N)L � K L‖N L (M‖K)L � M L‖K L

The convergence behaviour of the erratic choice operator and the parallel composition opera-
tor are closely related (see [Lav93]), because whenever M ∪N can be reduced to a canonical
program there is a corresponding reduction sequence to a canonical program for M‖N and vice-
versa. The two operators differ in when they commit to one of their branches: erratic choice
commits immediately to either the left or the right branch, whereas parallel composition never
commits to a branch. The commitment avoidance of the parallel composition allows it to be
interpreted as the join of its operands in the domain model, and so more elements of the domain
are definable via terms of the programming language.

Jeffrey [Jef99] considers an operator with behaviour in between the two extremes of commit-
ting immediately and never committing. The operator M �N can be defined with the following
reduction rules (where K is canonical):

M � M′

M �N � M′ �N

N � N ′

M �N � M �N ′

K �N � K M �K � K

The terms K �N and M �K are not canonical even when K is. The operands of this parallel op-

14 CHAPTER 1. INTRODUCTION

erator are evaluated concurrently, and, when one of the operands is canonical, that operand is
chosen and the other is discarded. Note that once operands M and N are placed in parallel with
�, it is not possible to extract both. If the results of both operands are required, the best that can
be done is to run M �N twice and hope that the value of M is returned on one run and the value
of N on the other.

There is a mismatch between the parallel construct M �N and the description of McCarthy’s
ambiguous choice operator [McC63] because the latter “avoids” divergence in one operand if the
other operand cannot diverge. From the reduction rules give above it can be shown that Ω �λx.x
can diverge because the left-hand operand may always be chosen for reduction, i.e., the right-
hand operand is ignored infinitely often. The reduction rules are too permissive because they
allow unfair sequences of decisions between the left-hand and right-hand operands. Hence, they
cannot be used to reason about the divergence properties of terms that use ambiguous choice,
and the operator cannot be distinguished from erratic choice.

For some applications, it is important that operands are executed in parallel and that the diver-
gence properties of ambiguous choice are considered. This necessitates a modified operational
semantics that prevents unfair sequences of decisions. Plotkin [Plo82] defines a reduction se-
mantics for a parallel operator that only allows fair sequences of decisions in a non-deterministic
imperative programming language. Hughes and Moran [Mor94, HM95, Mor98] define reduc-
tion and evaluation semantics for McCarthy’s ambiguous choice. Both approaches use resource
annotations to limit the number of reductions that can take place on one operand without the
other operand being chosen. In effect, the reduction semantics incorporate a fair scheduler.

To compare the two approaches, Plotkin’s strategy can be modified for ambiguous choice in
a λ-calculus setting. The language is extended with two variations of the ambiguous choice
operator M m�N and M �m N, where m is a natural number, and the reduction rules given above
are replaced with:

M �N � M m�N (m > 0) M �N � M �m N (m > 0)

M 0�N � M �m N (m > 0) M �0 N � M m�N (m > 0)

M � M′

M m+1�N � M′ m�N

N � N ′

M �m+1 N � M �m N ′

K m+1�N � K M �m+1 K � K

The scheduler makes an initial decision to reduce either the left-hand or the right-hand operand,
and chooses a strictly positive number of reductions to carry out on that side. When that number
of reductions have taken place, the scheduler switches to reducing the other side. This process
repeats until the enabled operand is canonical.

Hughes and Moran use a different scheduling mechanism. The language is extended with one
operator that has two natural numbers m and n as resource annotations Mm�n N. The term M �N

can be identified with M 0�0 N, and then the reduction rules are:

1.2. RELATED WORK 15

M 0�0 N � M m�n N (m,n > 0)

M � M′

M m+1�n N � M′ m�n N

N � N ′

M m�n+1 N � M m�n N ′

K m+1�n N � K M m�n+1 K � K

This scheduler can defer part of the decision about which operand to evaluate because initially
both operands are assigned resources and the scheduler can choose any interleaving of reduc-
tions that fits with those resources. Unfair sequences are avoided because the scheduler will only
assign new resources when both operands have none.

Hughes and Moran define an evaluation semantics consisting of a may convergence relation and
a may divergence predicate (see also [CC92]), and show that it captures precisely the conver-
gence and divergence properties of the reduction relation. The rules for the may convergence
relation have the same form as those for erratic choice:

M ⇓may K
M �N ⇓may K

N ⇓may K
M �N ⇓may K

The may divergence predicate is defined by coinduction. The may divergence rules for erratic
choice and ambiguous choice are:

M ⇑may

M∪N ⇑may

N ⇑may K
M∪N ⇑may

M ⇑may N ⇑may

M �N ⇑may

These rules state that M∪N may diverge if either M or N does, whereas M �N may diverge only
if both M and N may diverge. This evaluation semantics also agrees with Plotkin’s reduction
semantics. Consequently, the differences in the decision-making behaviour between the two re-
duction semantics are not visible in any of the contextual preorders or equivalences nor in the
variants of similarity and bisimilarity because they are all defined in terms of the evaluation se-
mantics. In addition, the operators with resource annotations are only added to the language in
order to define the reduction relation, which is in turn used to define the may convergence rela-
tion and may divergence predicate. The operators Mm�N, M �n N, and M m�n N are not needed
with the alternative characterisation via the evaluation semantics, and so can be removed from
the language. This is important because the variants of applicative similarity and bisimilarity
cannot be compatible when they are present. For example, the terms λxy.x and (λx.x)(λxy.x)
are always equivalent, but the terms λxy.x1�1 λxy.y and (λx.x)(λxy.x) 1�1 λxy.y are not related4

because the only possible reduction sequences are:

λxy.x 1�1 λxy.y� λxy.x

λxy.x 1�1 λxy.y� λxy.y

(λx.x)(λxy.x) 1�1 λxy.y � λxy.x 0�1 λxy.y � λxy.y

(λx.x)(λxy.x) 1�1 λxy.y � λxy.y

4They are related by lower similarity, but only in one direction.

16 CHAPTER 1. INTRODUCTION

The resource allocation prevents the second term from evaluating to λxy.x. The problem is that
the annotated operators are sensitive to the number of reduction steps that a computation takes,
but the variants of applicative similarity and bisimilarity are not.

The compatibility of variants of applicative similarity and bisimilarity for a language with (unan-
notated) ambiguous choice is more complex than for erratic choice. Lower similarity and lower
bisimilarity are compatible because the convergence behaviour of ambiguous choice is identi-
cal to that of erratic choice, and so Howe’s technique applies. However, upper similarity and
convex similarity fail to be compatible because ambiguous choice is not monotone for either
relation (see [Mor98]). Upper bisimilarity also fails to be compatible for a language with am-
biguous choice5. Compatibility of convex bisimilarity and refinement similarity for ambiguous
choice is an open problem. The proof techniques used to establish their compatibility for erratic
choice fail because they require convex similarity to be compatible.

The divergence avoidance property of ambiguous choice is useful for constructing certain kinds
of systems (see [McC63, Bur88]). An example that recurs in the literature is the definition of a
merge operator in terms of ambiguous choice. Several different merge operators are identified
in the setting of non-deterministic dataflow (see [Kah74, BA81, Fau82, Den84, Bro86, Sta87,
Bro88, Abr89, BPR90, Sta90, Mos91, Whi94, Mos95, Mos98]) by Moitra, Panangaden, Russell,
Shanbhogue, and Stark [MP86, PS87, PS88b, PS88a, Rus90, Sha90]. The ideal merge is the fair
merge that continually polls two input streams to see whether data is available. The infinity-fair
merge can be defined using ?ω (which can in turn be defined from ambiguous choice), and will
behave perfectly if the input streams do not ever run out of data, but may block if one of the
streams does6. Intuitively, once the infinity-fair merge examines one input stream it will not
change to the other until it has received some input. The angelic merge examines both input
streams in parallel (using ambiguous choice), and then accepts an input if any is available. If
both inputs streams always have data available, then the angelic merge may always choose the
same input stream and ignore the other. Infinity-fair merge can be defined from angelic merge,
which can be defined from fair merge, but neither of these relative definability results can be
reversed. In addition, angelic merge and ambiguous choice can each be defined in terms of the
other. Shanbhogue [Sha90] argues convincingly that these relative definability results preclude
the reduction of fairness (such as ambiguous choice) to countable non-determinism.

Dataflow computation can be modelled in a functional programming setting using streams (lazy
lists) that connect deterministic components (normal functional programs). Merge operators
are often required, e.g., for merging streams carrying input events in functional programming
language implementations of operating systems (see [Hen82, HO89, Tur90a]). Moran [Mor98]
defines infinity-fair merge and angelic merge in a call-by-name λ-calculus. These merges have
the same trace behaviour as the dataflow operators of the same name, but because the usual
relations considered on non-deterministic λ-terms are finer than trace equivalence (on terms of
stream type) there are likely to be inequivalent terms that could be called infinity-fair merge or
angelic merge, and the relative definability results from the dataflow setting are not immedi-
ately applicable. It is not clear that it is possible to define a fair merge operator using resource
annotations as with the reduction semantics for ambiguous choice, because the naive approach

5Pointed out to the author by Lassen (personal communication, 1997).
6This description does not distinguish infinity-fair merge from Shanbhogue’s infinity-fair2 merge [Sha90].

1.3. OUTLINE OF DISSERTATION 17

leaves resource annotations within canonical terms and causes problems with compatibility as
described above.

Modelling non-deterministic dataflow requires careful control over sharing of terms and when
the non-determinism in merged streams is resolved. Hughes and Moran [HM95, Mor98] develop
a theory for ambiguous choice using a call-by-need reduction strategy, based upon Launchbury’s
evaluation semantics [Lau93], to ensure that sharing occurs. This results in singular choice (see
[Cli82, SS92, KSS99]).

Concurrent λ-Calculi with Communication

There is a considerable body of research on higher-order concurrent programming languages
with message-passing. The design space is large, but the majority of proposals follow one of
two related approaches. The first is to extend a λ-calculus with a mechanism for starting new
threads of execution to evaluate expressions, together with primitives for passing messages be-
tween threads, e.g., Reppy’s Concurrent ML (CML) [Rep92, FHJ95, Jef95, Rep99] and Facile
[PGM90, Ama94, ALT95]. Another approach is to extend a process calculus such as CCS or
the π-calculus with the ability to transmit and receive processes, not just values, e.g., Thomsen’s
Calculus of Higher-Order Communicating Systems (CHOCS) [Tho89, Ama93, Tho93, AD95,
Tho95] and Sangiorgi’s higher-order π-calculus [San93], amongst others [Hen94]. Boudol’s
blue calculus [Bou97a, Bou97b] lies in between these two approaches. Various contextual pre-
orders or equivalences and variants of similarity and bisimilarity are considered for these calculi.
For similarity and bisimilarity, the challenge is to ensure that the terms passed on channels are
considered up to the semantic relation being defined, not syntactic identity. Fairness is not ad-
dressed in the above research, except by Reppy [Rep92] who considers fairness for CML.

1.3 Outline of Dissertation

There are many possible non-deterministic λ-calculi and semantic relations. For example, the
following axes can be considered:

• Which non-deterministic operator(s), e.g., binary erratic choice M ∪N, countable erratic
choice ?ω, indexed erratic choice as in CSP, binary ambiguous choice M �N, or fair
merge?

• Which reduction strategy, e.g., call-by-name, call-by-value, or call-by-need?

• Which semantic relation(s), e.g., contextual preorders and equivalences or variants of ap-
plicative similarity and bisimilarity?

The goal of this dissertation is to define and study non-deterministic λ-calculi that can be used as
a stepping stone to higher-order specification and refinement formalisms or to higher-order pro-
gramming languages with communication primitives such as CML. The definitions and results
of interest include:

18 CHAPTER 1. INTRODUCTION

• Definitions of similarity and bisimilarity with compatibility results and additional reason-
ing principles, e.g., Scott induction for the similarity relations. How are these relations
related?

• Relative definability results between different forms of non-determinism. Results are spe-
cific to a precise language and semantic relation, but can still help to guide the design
of new languages (as happens with the dataflow relative definability results discussed in
section 1.2.3).

• How do the semantic relations vary as the form of non-determinism present in the lan-
guage changes? For example, if a language with binary erratic choice is extended with the
countable non-determinism operator ?ω, do the semantic relations change?

In this dissertation we fill in some of the previously unknown results for a collection of non-
deterministic λ-calculi that exhibit erratic non-determinism. The languages are obtained as frag-
ments of a λ-calculus L that contains all of the non-deterministic terms that we consider. The
definitions and results take a fragment of L as a parameter, so that we obtain, e.g., compatibility
of convex similarity for the language fragment containing ?ω as an instance of the more general
compatibility result.

The non-deterministic extensions have the form ?〈Mn | n < κ〉, where κ is a natural number or
ω, and {Mn | n < κ} is a set of terms with the same type. With this general form of erratic non-
determinism we can define ?ω as ?〈n | n < ω〉, and M∪N using ?〈false,true〉 with a conditional.
It is also possible to define non-deterministic terms that serve as specifications, e.g., a program
that chooses any prime number. The language is expressive because the set of terms {Mn | n < κ}
need not be recursive or even recursively enumerable.

These non-deterministic extensions provide a wide range of non-equivalent non-deterministic
terms, perhaps suitable for program specification, whilst retaining a simple, uniform operational
semantics: ?〈Mn | n < κ〉 reduces in one step to (the lift of) one of the component terms. Am-
biguous choice is avoided because some compatibility properties are open problems or known
to be false. The lack of a reasonable operational semantics prevents the use of fair merge.

The relative definability properties of the non-deterministic extensions are studied in the lan-
guage L . Relative definability can be considered with respect to any of the operationally-
defined equivalences such as convex bisimilarity. This differs somewhat from the usual ap-
proach, as used for Turing degrees (see [Rog67, Sho71, Odi89]) or Sazonov’s degrees of par-
allelism (see [Saz75, Lic96, Buc97]), where relative definability of the non-definable elements
of a denotational model is investigated with respect to equality in the model. The operational
approach is possible here because the non-deterministic extensions admit a straightforward op-
erational semantics, and is appropriate because there is no known denotational model for the
most interesting relation, convex bisimilarity.

The choice of reduction strategy is important because of the need to control resolution of non-
determinism. A purely call-by-name λ-calculus does not offer sufficient control. There are
several alternatives:

• Use a call-by-value λ-calculus (see [Ong93, How96, Las98b]). The strictness of function
application can be used to resolve non-determinism at specific points in a program, and
non-deterministic terms can be duplicated if necessary by using a thunk.

1.3. OUTLINE OF DISSERTATION 19

• Use a call-by-need λ-calculus (see [HM95, Mor98]). Non-deterministic terms can be
duplicated if necessary by using a thunk (assuming that the operational semantics is non-
optimal).

• Use the syntax of Moggi’s computational λ-calculus (see [Mog89b, Mog89a, Mog91,
Pit91, CP92]) with a call-by-name reduction strategy. Call-by-value can be simulated
using the construct for sequencing computations letx ⇐ M inN.

The last option is used here, following Jeffrey [Jef99] for a non-deterministic λ-calculus and
Crole, Gordon, and Wadler [Wad92, Gor94, CG95] for deterministic λ-calculi. Non-determinism
and non-termination can be restricted to computation types P⊥(σ) and this proves useful for
some results concerning the collapse of the variants of applicative similarity and bisimilarity at
types where the occurrences of the computation type constructor are restricted. Intuitively, the
semantics of P⊥(σ) is Pne(�σ�⊥), where Pne(X) is the set of non-empty subsets of a set X .

Controlling the resolution of non-determinism is more convenient in the computational λ-calculus
than in a call-by-value λ-calculus. For example, the following two terms can be applied to the
non-deterministic term �?〈0,1〉 : P⊥(nat), but only the second can choose to add 0 and 1:

� λx:P⊥(nat). lety ⇐ x in [plus(y,y)] : P⊥(nat) → P⊥(nat)
� λx:P⊥(nat). lety ⇐ x in letz ⇐ x in [plus(y,z)] : P⊥(nat) → P⊥(nat)

Call-by-need is not used because there is no straightforward treatment of applicative similar-
ity or bisimilarity for a call-by-need λ-calculus. The problem is demonstrated by the fact that
projections are insufficient for testing terms of product type. For example, the first and second
projections of the following term do not give any information about the sharing of ?〈0,1〉 that
occurs with a call-by-need reduction strategy:

(λx.tuple 〈x,x〉)(?〈0,1〉)

In addition to function type and computation type constructors, the language L permits the
formation of indexed sum (coproduct) types. The indexing set can be any ordinal less than or
equal to ω, and so the sum of a countable set of types can be formed. If unit is the singleton
type, then the natural number type can be defined by:

nat
def= sum〈unit | n < ω〉

An indexed case construct is used to decompose terms of an indexed sum type. For any (set-
theoretic) function f ∈ ω→ω, we have the corresponding infinite term:

� λx:nat.casexof 〈xi.f (i) | i < ω〉 : nat → nat

As with the indexed erratic choice constructor, there is no requirement that the case construct be
recursive. This unusual addition to the language is adopted to facilitate writing non-deterministic
programs that act as specifications. For example, the following program takes a natural number
as an argument and then returns any number between 0 and its argument:

� λx:nat.casexof 〈xi.?〈n | 0 ≤ n ≤ i〉 | i < ω〉 : nat → P⊥(nat)

20 CHAPTER 1. INTRODUCTION

The type system for the language L does not include recursive or coinductive types because
some of the definitions and results in chapter4 are established via induction on the type structure.

Variants of applicative similarity and bisimilarity are considered instead of contextual preorders
or equivalences because they can also be defined upon the abstract structures, typed transition
systems, defined in chapter 4, in the same way that applicative similarity or bisimilarity can
be defined upon applicative transition systems (see [Abr90, AO93]). Although the type system
does not include recursive or coinductive types and it would be possible to define preorders and
equivalences as logical relations, we use the coinductively-defined variants of applicative simi-
larity and bisimilarity where possible so that the same techniques can be reused if the language
is subsequently extended with recursive types.

Preliminaries

Chapter 2 covers background material about trees, transition systems, coinduction, similarity
and bisimilarity, recursive ordinals, and some of the choice operators that appear in the litera-
ture. We discuss various kinds of transition systems (labelled and unlabelled, with and without
divergence), and consider examples generated by sets using the membership relation to define
the transition relation. In subsequent chapters, the examples are modified for more complex
transition systems that are suitable for studying a non-deterministic λ-calculus. Similarity and
bisimilarity are defined for transition systems with and without divergence. For transition sys-
tems with divergence, we consider the possible variants of similarity and bisimilarity that cor-
respond to variants of applicative similarity and bisimilarity that appear in the sequel. The
relationship between recursive trees and recursive ordinals is proven in detail, in preparation for
a later result concerning the language fragment containing the countable choice operator ?ω.
Finally, we define the actions of global angelic choice, ambiguous choice, erratic choice, local
demonic choice, and global demonic choice in a naive model, and show when their behaviour
cannot be distinguished by common semantic relations.

The Non-Deterministic λ-Calculus L

In chapter 3 we define the non-deterministic λ-calculus L , its type system, and reduction and
evaluation semantics. Reduction is permitted on open terms to facilitate the proof of Scott
induction in chapter 5. The evaluation semantics is presented as an inductively-defined may
convergence relation ⇓may and a coinductively-defined may divergence predicate ⇑may. The may
divergence predicate is the complement of an inductively-defined must convergence predicate
⇓must. The usual properties are established such as subject reduction, normalisation of terms of
value type (as opposed to computation type), and the relationship between the two operational
semantics.

The fragments of the language that are used in subsequent proofs are defined with a closure
operator on sets of terms. The fragments must be closed under PCF-like operations, substitution,
and taking sub-terms. Fragments are shown to be closed under reduction, and thus we obtain a
collection of non-deterministic λ-calculi with a uniform operational semantics. Ordinal bounds
are proven for the heights of must convergence derivations, following similar results in [AP86].

1.3. OUTLINE OF DISSERTATION 21

For example, the must convergence derivations for the smallest fragment containing ?ω are
bounded by the least non-recursive ordinal ωCK

1 .

Typed Transition Systems

Chapter 4 defines the class of typed transition systems (TTS) as a subclass of the class of la-
belled transition systems with divergence. Each state has a unique type, and the labels on tran-
sitions from a state are restricted according to its type, e.g., transitions from a state of function
type σ → τ are labelled with states of type σ. This builds upon previous definitions of quasi-
applicative transition systems [Abr90, AO93], applicative structures [Mit96], non-deterministic
applicative transition systems [Ong92a], and σ-transition systems [OP93]. Four variants of ap-
plicative similarity and bisimilarity (lower, upper, convex, and refinement) are defined upon the
states of each TTS. We identify sets of states for which the relations always coincide. To show
that the relations are different in general, we define a simple TTS S by induction on the type
structure: the states of sum, product, and function type are interpreted by the set-theoretic co-
product, product, and function spaces respectively, and the states of a computation type P⊥(σ)
are the non-empty subsets of the lift of the states with type σ. Finally, we investigate maps be-
tween TTSs that respect transitions. In particular, we consider a restriction operation on TTSs
that discards some states, and induces a map from the restricted TTS to the original. We show
that convex bisimilarity on the restricted TTS is coarser than convex bisimilarity on the original,
and that every sufficiently well-behaved TTS is the restriction of the TTS S . This is pertinent
because each fragment of the language determines a well-behaved TTS that is also a restriction
of the TTS for the full language L .

Programming Language TTSs

We study the typed transition systems determined by the fragments of the programming language
defined in chapter 3. The open extensions of the variants of applicative similarity are shown to
be compatible for all fragments, and the open extensions of the variants of applicative bisimi-
larity are shown to be compatible for a wide collection of fragments. The compatibility proof
uses Howe’s method [How89] and Howe and Ong’s [Ong92a, How96] extension of the method,
as well as incorporating new techniques for handling countable non-determinism, refinement
similarity, and fragments. The proof makes use of Lassen’s algebra of relations [Las98b], which
builds upon Gordon’s [Gor94] reorganisation of Howe’s method.

We prove relative definability properties of some common forms of erratic non-determinism
with respect to the variants of applicative bisimilarity. These constitute lower sets of relative
definability equivalence classes for closed terms of type P⊥(nat). We then show that convex
bisimilarity is different for nearly all of the relative definability equivalence classes that we
define, e.g., convex bisimilarity for the smallest fragment containing countable choice ?ω is
strictly finer than convex bisimilarity for the smallest fragment containing ?〈false,true〉.
We also consider fixed-points for the lower, upper, and convex variants of applicative similarity
and prove the Scott induction principle for these relations for all fragments of the language L .

22 CHAPTER 1. INTRODUCTION

Discussion

We summarise and consider directions for future research.

1.4 Contributions

The contributions of this dissertation are:

• Chapter 2 provides an account of elementary material including trees, transition systems,
coinduction, similarity and bisimilarity, and recursive ordinals. Examples are given to
demonstrate the relationships between these objects.

• Typed transition systems abstract the structure required to define the variants of similarity
and bisimilarity. Several results are presented in this abstract setting. General inclusions
between the relations are established in lemmas 4.2.4, 4.2.5, and 4.2.6. A major case
study of a typed transition system is described in sections 4.3 and 4.4, and this provides
a rich source of examples of non-inclusions between the relations. A category of typed
transition systems is defined, and theorem 4.5.15 shows that the typed transition system
from the case study is a weak terminal in a non-trivial subcategory.

• Ong and Howe independently proved compatibility of some of the lower, upper, and con-
vex variants of similarity and bisimilarity for λ-calculi that exhibit finite non-determinism,
and Lassen extended their method to countable non-determinism. This extension was
proved independently by the author. In this dissertation, the same method is used to
prove compatibility of the lower, upper, and convex variants of similarity and bisimi-
larity for L and all of its fragments (see theorem 5.4.8). However, compatibility of the
variants of bisimilarity (see theorem 5.4.14) requires a new technique and some restric-
tions upon the fragments. Another new argument is used to establish compatibility of
refinement similarity, a previously open problem, for a restricted collection of fragments
(see theorem 5.4.18). In each case, the compatibility results apply to many different non-
deterministic λ-calculi (fragments of L).

• Theorem 5.7.9 is the Scott induction principle with respect to the lower, upper, and convex
variants of similarity for L and all of its fragments.

• A lower set of relative definability equivalence classes, with respect to convex bisimilar-
ity, is identified in lemmas 5.5.4, 5.5.5, and 5.5.6. The approach to relative definability
is novel in that it does not require a denotational model, in contrast to the usual formu-
lations of Turing degrees and Sazonov’s degrees of parallelism. New examples are given
to show that the relative definability equivalence classes have different theories with re-
spect to convex bisimilarity (see proposition5.6.4). In particular, the addition of countable
non-determinism to a finitely non-deterministic programming language is not conservative
with respect to the upper and convex variants of similarity, mutual similarity, and bisim-
ilarity, i.e., there are programs that can be distinguished by countably non-deterministic
programs but not by finitely non-deterministic programs.

Chapter 2

Preliminaries

This chapter is a review of basic notions including trees and ordinals (section2.1), labelled and
unlabelled transition systems with and without divergence (section2.2), induction and coinduc-
tion (section 2.3), similarity and bisimilarity (section 2.4), recursive ordinals and recursive trees
(section 2.5), and some of the binary choice operators that appear in the literature (section2.6).
Examples are given to demonstrate the relationships between these objects and relations. The
typed transition systems defined in chapter 4 build upon the discussion and examples of transi-
tion systems in this chapter.

2.1 Ordinals and Trees

We review ordinals and trees in preparation for a discussion of recursive ordinals and recursive
trees in section 2.5. Thorough accounts can be found in [Acz77, Kun77, Lev79, Gir87, Odi89,
Kun80, Pot90, Gal91, Joh87].

Definition 2.1.1 A set A is an ordinal if C ∈ B ∈ A implies C ∈ A, and, for all B,C ∈ A, either
B ∈C, C ∈ B, or B = C holds.

Example 2.1.2 The natural numbers can be defined as ordinals. Define 0
def= /0 and Succ(A) def=

A∪{A}. Then the numbers from 0 to 4 are the sets:

0 = /0
1 = Succ(0) = 0∪{0} = {/0}
2 = Succ(1) = 1∪{1} = {/0,{ /0}}
3 = Succ(2) = 2∪{2} = {/0,{ /0},{ /0,{ /0}}}
4 = Succ(3) = 3∪{3} = {/0,{ /0},{ /0,{ /0}},{ /0,{ /0},{ /0,{ /0}}}}

The set of natural numbers ω is the least set with respect to ⊆ that contains 0 and is closed
under Succ(·) (the existence of one such set must be postulated). The principle of mathematical
induction depends on the fact that ω is the least such set. The empty set /0 is an ordinal, and
it is straightforward to show that Succ(A) is an ordinal whenever A is an ordinal, so we can

23

24 CHAPTER 2. PRELIMINARIES

use mathematical induction to show that every natural number (element of ω) is an ordinal. In
addition, it can be shown that ω is itself an ordinal and that the restriction of ∈ to ω×ω is an
irreflexive, transitive relation that determines a total order on the natural numbers. The set of
natural numbers ω is a limit ordinal because it is neither empty nor Succ(A) for some other ordi-
nal A. It is possible to construct ordinals greater than ω by using the Succ(·) operator and taking
the least upper bounds of sets of ordinals. The arithmetic operations of addition, multiplication,
and exponentiation can be defined for all ordinals, but have some unusual properties such as a
lack of commutativity for ordinal arithmetic.

Lemma 2.1.3 states that every ordinal is the union of the successors of its elements.

Lemma 2.1.3 Let A be an ordinal. Then:

A =
[

{Succ(B) | B ∈ A}
Proof The inclusion A ⊆S{Succ(B) | B ∈ A} is trivial. For the other direction, consider D ∈S{Succ(B) | B ∈ A}, so there exists B ∈ A such that D ∈ B∪{B}, i.e., D ∈ B ∈ A or D = B ∈ A.
If D ∈ B ∈ A, then D ∈ A because A is an ordinal. Therefore A ⊇S{Succ(B) | B ∈ A}. �

The total order 〈ω,∈〉 has the property that there are no strictly decreasing ω-chains. More

generally, we say that a relation R is well-founded relation if there are no ω-chains with respect

to R op, the dual of R .

Definition 2.1.4 A binary relation R ⊆ A×A is well-founded if there are no ω-chains 〈an ∈ A |
n ∈ ω〉 such that 〈an+1,an〉 ∈ R for all n ∈ ω. A well-order is a total order 〈A,≤〉 such that < is
well-founded.

Well-founded strict partial orders are often of interest, but, in general, a well-founded relation
need not be transitive. It is straightforward to show that a relation is well-founded if and only if
its transitive closure is well-founded. Note that a well-founded relation must be irreflexive.

Sets with a well-founded relation admit a form of induction known as well-founded induction.
The idea is to prove that an element satisfies a property whenever all strictly smaller elements
satisfy the property.

Proposition 2.1.5 (Principle of Well-Founded Induction) Let R ⊆ A×A be well-founded and
B ⊆ A such that:

∀a ∈ A.(∀b ∈ A.〈b,a〉 ∈ R =⇒ b ∈ B) =⇒ a ∈ B

Then B = A.

Proof Suppose for a contradiction that there exists a0 ∈ A\B. By assumption, there must exist

a1 ∈ A\B such that (a1,a0) ∈ R . This process can be iterated to obtain an ω-chain 〈an ∈ A\B |
n ∈ ω〉 such that (an+1,an) ∈ R for all n ∈ ω, which contradicts the well-foundedness of R . �

2.1. ORDINALS AND TREES 25

Traditional set theory is based upon the notion that sets are well-founded, meaning that ∈ is
well-founded. This is ensured by the axiom of Foundation:

∀A.A
= /0 =⇒∃B ∈ A.B∩A = /0 (Foundation)

With this axiom we can deduce that ∈ is well-founded. Suppose for a contradiction that 〈Ai | i ∈
ω〉 is an ω-chain such that, for all i ∈ ω, Ai+1 ∈ Ai. Let C = {Ai | i ∈ ω}
= /0. By the axiom of
Foundation, there exists Aj ∈C such that Aj ∩C = /0. However, that contradicts Aj+1 ∈ A j ∩C.
Therefore no strictly descending ω-chains can exist with respect to ∈. This leads to an ∈-
induction principle (see [Joh87]), which is essentially well-founded induction on ∈.

One of the consequences of Foundation is that every member of an ordinal is also an ordinal.
We can also show that ∈ coincides with � and that ∈ determines a total order on ordinals, so
∈ well-orders the ordinals (although the ordinals constitute a proper class not a set, and we are
quietly assuming the axiom of Choice).

Lemma 2.1.6 If A and B are ordinals, then B ⊆ A if and only if B ∈ A or B = A.

Proof The right-to-left direction is trivial because A is an ordinal. For the other direction,
define:

X
def= {C ∈ Succ(A) | B � C}

If B = A we are done. Otherwise, A∈ X , and by Foundation there exists D∈X such that D∩X =
/0. Now D∈X implies that there exists C ∈ D\B. We claim that B⊆C. Consider any E ∈B⊆ D,
so that E ∈ D. D is an ordinal because D ∈ Succ(A), and so C ∈ E , C = E , or E ∈C. However,
C
∈ B and B an ordinal imply that C
∈ E and C
= E , so we have E ∈ C as desired. Therefore
B ⊆ C. We can then deduce that B = C because C
∈ X , and so B = C ∈ D ∈ Succ(A) = A∪{A}.
Therefore B ∈ A or B = A. �

Lemma 2.1.7 If A and B are ordinals, then A ∈ B, A = B, or B ∈ A.

Proof By lemma 2.1.6, it suffices to show that A ⊆ B or B ⊆ A. Define:

X
def= {C ∈ Succ(A) | ∃D ∈ Succ(B).C � D∧D � C}

We claim that X = /0, in which case A
∈ X and so A ⊆ B or B ⊆ A. For a contradiction, suppose
that X
= /0. By Foundation, there exist E ∈ X and F ∈ Succ(B) such that E ∩X = /0, E � F ,
and F � E . There must exist ordinals C ∈ E \F and D ∈ F \E . Suppose that C ⊆ D. By
lemma 2.1.6, this is equivalent to C ∈ D or C = D. However, neither of these are possible
because F is an ordinal, D ∈ F , and C
∈ F . Therefore C � D, and similarly D � C. Thus we
have the contradiction C ∈ E ∩X
= /0. �

Example 2.1.8 Although ∈ is well-founded, it is easy to see that its dual " is not. For example,
consider 〈n | n ∈ ω〉, where Succ(n) " n, for all n ∈ ω.

We now turn to forests and trees. A forest is a partial order such that the corresponding strict
partial order is well-founded and the down-set of every element is totally ordered. This definition
permits forests with limit elements.

26 CHAPTER 2. PRELIMINARIES

Definition 2.1.9 A forest is a partial order 〈A,≤〉 such that {b ∈ A | b < a} is well-ordered by
≤ for all a ∈ A. A root of a forest is an element of A that is minimal with respect to ≤. A tree
is a forest with only one root. A forest or tree 〈A,≤〉 is well-founded if > is also well-founded,
i.e., there are no strictly increasing ω-chains. An element b ∈ A is a successor of a ∈ A if a < b
and whenever a ≤ c < b, for some c ∈ A, we have a = c. An element a ∈ A is a limit if it is not
a root or the successor of some other element.

König’s lemma identifies a condition under which a tree is not well-founded. This result is
used in chapter 3.4.8 to illustrate the difference between binary erratic choice and the countable
choice operator ?ω.

Lemma 2.1.10 (König) If 〈A,≤〉 is a tree such that A is infinite and every element has a finite
number of successors, then it is not a well-founded tree, i.e., there exists a strictly increasing
ω-chain 〈an ∈ A | n ∈ ω〉 such that, for all n ∈ ω, an < an+1.

Proof Define:

B = {a ∈ A | {b ∈ A | a < b} is infinite}
By hypothesis, B contains the root of the tree and is thus non-empty. For any a∈B, there must be
at least one successor b ∈ B, because otherwise the finite number of successors of a would each
have finite up-sets, contradicting the fact that the up-set of a is infinite. Pick a0 ∈B. This process
can be iterated to obtain a strictly increasing ω-chain 〈an ∈ B | n ∈ ω〉 such that an < an+1, for
all n ∈ ω. �

The primary examples of trees with limit points are ordinals greater than ω.

Example 2.1.11 Every ordinal A determines a tree 〈A,⊆〉 because ∈ is a well-founded strict
total order. Every element has at most one successor, so the trees do not branch at all. The
root of the tree is /0. If A is greater than or equal to ω, then the tree is not well-founded (cf.
example 2.1.8). If A is strictly greater than ω, then the tree contains limit ordinals which are
limit elements.

Ordinals also determine another kind of tree that are introduced in definition2.1.13.

Trees are often constructed from sets of sequences, and, in general, such trees are not total
orders.

Example 2.1.12 Let A be a non-empty set and B ⊆ S{An | n ∈ ω} a prefix-closed set. Then
〈B,#〉 is a tree, where # is the prefix order, because a strictly decreasing chain of finite se-
quences determines a strictly decreasing sequence of natural numbers (the lengths of the se-
quences) and thus must have finite length. The empty sequence 〈〉 is the root of the tree.
Although every element of B is a finite sequence of elements from A, the trees need not be
well-founded because for any element a ∈ A there is a strictly increasing ω-chain:

〈〉 # 〈a〉 # 〈a,a〉 # 〈a,a,a〉 # . . .

If the infinite sequence 〈a | n ∈ ω〉 is added to the tree, then it is a limit of the above chain. More
generally, it is possible to construct trees in this manner using transfinite sequences of elements
from A, i.e., functions from ordinals to A.

2.1. ORDINALS AND TREES 27

Figure 2.1: ∈-trees of ordinals from 0 to 4

We now consider a special case of example 2.1.12. Sets are often depicted as ∈-trees. For
example, the ∈-trees for the ordinals from 0 to 4 are illustrated in figure2.1. The elements of
the ∈-tree for a set A are finite strictly descending chains of sets related by ∈, where the first
element of a non-empty chain is a member of A.

Definition 2.1.13 The ∈-tree of a set A is Tree(A) def= 〈B,#〉 where # is the prefix order and B
is defined by:

B
def= {〈〉}∪{〈A0,A1, . . . ,An〉 | n ∈ ω∧A0 ∈ A∧∀i < n.Ai+1 ∈ Ai}

∈-trees are always well-founded because the axiom of Foundation ensures that there are no
strictly descending ω-chains of sets. However, it is worth considering why the lack of well-
foundedness of ", demonstrated in example 2.1.8, does not prevent an ∈-tree from being a tree.
In fact, the ω-chain 〈n | n ∈ ω〉 becomes an ω-antichain 〈〈n〉 | n ∈ ω〉 (a sequence of singleton
sequences) in Tree(ω). More generally, if A is an ordinal, then 〈〈B〉 | B ∈ A〉 is an A-antichain of
successors of the root 〈〉 in Tree(A).

We can go back from trees to ordinals by associating ordinals with the elements of a set ordered
by a well-founded relation.

Definition 2.1.14 Let R ⊆ A×A be a well-founded relation. The rank of a ∈ A with respect to

R is an ordinal defined by well-founded induction on R :

Rank(a,R) def=
[

{Succ(Rank(b,R)) | 〈b,a〉 ∈ R }

The rank function is a closure operator upon sets ordered by ∈.

Lemma 2.1.15 Let A be an ordinal. Then Rank(A,∈) = A.

Proof Define:

X
def= {B ∈ Succ(A) | Rank(B,∈)
= B}

ch-preliminaries.6

28 CHAPTER 2. PRELIMINARIES

If X = /0 we are done. For a contradiction, suppose X
= /0. By Foundation, there exists C ∈ X
such that C∩X = /0 and Rank(C,∈)
= C. For all B ∈ C, we know B
∈ X , so Rank(B,∈) = B.
Thus, using lemma 2.1.3, we have:

Rank(C,∈) =
[

{Succ(Rank(B,∈)) | B ∈C} =
[

{Succ(B) | B ∈C} = C

Therefore we have the contradiction Rank(C,∈) = C. �

Two different ordinal measures are associated with trees depending on whether the order or its
dual is used. The length of a tree is a measure of how long strictly increasing chains can be,
starting from the root. The rank of a well-founded tree is a measure of its breadth, because
it is sensitive to the kind of antichains that appear in the ∈-trees for infinite ordinals (see the
discussion after definition 2.1.13).

Definition 2.1.16 Let 〈A,≤〉 be a tree.

1. The length Len(A,≤) (also known as the height) of the tree is defined by:

Len(A,≤) def=
[

{Succ(Rank(a,<)) | a ∈ A}

2. If 〈A,≤〉 is a well-founded tree with root a ∈ A, then the rank of the tree is Rank(a,>).

Example 2.1.17 Define a well-founded tree 〈A,≤〉 by:

A
def= {�}∪{〈m,n〉 ∈ ω×ω | n ≤ m}

� < 〈m,n〉 and 〈m1,n1〉 < 〈m2,n2〉 ⇐⇒ m1 = m2 ∧n1 < n2

The strict order < and its dual > are well-founded. This tree is illustrated in figure2.2. The
ranks of the elements with respect to the order and its dual are:

Rank(�,<) = 0 Rank(〈m,n〉,<) = n+ 1
Rank(�,>) = ω Rank(〈m,n〉,>) = m−n

In this example the length and the rank of the tree are both ω. In general, the length and rank of
a tree are not the same.

The length of any well-founded tree or, more generally, tree without limit elements is less than
or equal to ω. The length of a tree with limits is greater than or equal to ω. The rank of a tree is
only defined if the tree is well-founded. In contrast to the length, the rank of a well-founded tree
is not bounded by ω (or indeed by any ordinal). These points are illustrated in lemma2.1.18.

Lemma 2.1.18 Let A be an ordinal. Then:

1. The length of the tree 〈A,⊆〉 is A.

2. The rank of the well-founded ∈-tree Tree(A) is A.

2.1. ORDINALS AND TREES 29

Figure 2.2: A well-founded tree with rank ω

Proof

1. By lemmas 2.1.15 and 2.1.3:

Len(A,⊆) =
[

{Succ(Rank(B,∈)) | B ∈ A} =
[

{Succ(B) | B ∈ A} = A

2. Define:

X
def= {B ∈ Succ(A) | the rank of Tree(B)
= B}

If X = /0 we are done. For a contradiction, suppose X
= /0. By Foundation, there exists
C ∈ X such that C∩X = /0 and the rank of Tree(C)
= C. The rank of Tree(C) is:

[
{Succ(Rank(〈C0,C1, . . . ,Cn〉,�)) | n ∈ ω∧C0 ∈C∧∀i < n.Ci+1 ∈Ci}

For any chain 〈C0,C1, . . . ,Cn〉 that is an element of Tree(C), we can consider its up-set
in Tree(C), i.e., the chains with prefix 〈C0,C1, . . . ,Cn〉. With the prefix order, the up-set
is a tree and is order-isomorphic to Tree(Cn). Now C is an ordinal, so Cn ∈ C, and thus
Cn
∈ X . Therefore the rank of Tree(Cn) = Cn. It can be shown that the rank of a tree is an
invariant under order-isomorphism, so Rank(〈C0,C1, . . . ,Cn〉,�) is also Cn. Then the rank
of Tree(C) is:

S{Succ(Cn) | n ∈ ω∧C0 ∈C∧∀i < n.Ci+1 ∈Ci}
=
S{Succ(B) | B ∈C}

By lemma 2.1.3, this is equal to C. Thus we have the contradiction that the rank of
Tree(C) = C. �

ch-preliminaries.3

30 CHAPTER 2. PRELIMINARIES

2.2 Transition Systems

Computational systems can often be modelled as a collection of states together with a description
of the circumstances in which one state can evolve to another (see [Plo81, Mil89]).

Definition 2.2.1

1. A transition system (TS) 〈S,−→〉 consists of a set of states S and a transition relation

−→ ⊆ S×S.

2. A labelled transition system (LTS) 〈S,A,−→〉 consists of a set of states S, a set of labels

A, and a labelled transition relation −→ ⊆ S×A× S. For states s, t and a label a ∈ A, we

write s
a−→ t for 〈s,a, t〉 ∈ −→. We sometimes use s −→ t to mean there exists a ∈ A such

that s
a−→ t.

In chapters 3 and 4 we see examples of these structures as components of the operational se-
mantics of the non-deterministic λ-calculus L . For now, we consider the relationships between
TSs, LTSs, and trees.

Example 2.2.2 A TS 〈S,−→〉 determines an LTS 〈S,{�},−→〉 with a singleton set of labels {�},

where an unlabelled transition s−→ t corresponds to a labelled transition s
�−→ t. Conversely, an

LTS 〈S,A,−→〉 determines a TS 〈S,−→〉, where s−→ t if and only there exists a label a ∈ A such

that s
a−→ t. This TS simply forgets the labels upon transitions. Alternatively, we can define a TS

〈S +(A× S)+ A,−→〉 that does encode the labelling information in an LTS 〈S,A,−→〉 by adding
extra states and transitions to terminal states that represent labels. We assume that S, A×S, and
A are pairwise disjoint so that S∪ (A×S)∪A can be used for the disjoint union S+(A×S)+A.
Then the transition relation is defined, for states s, t ∈ S and a label a ∈ A, by:

• s −→ 〈a, t〉 if and only if s
a−→ t

• 〈a, t〉 −→ a

• 〈a, t〉 −→ t

The TS 〈S +(A×S)+ A,−→〉 is not entirely satisfactory as a replacement for the LTS 〈S,A,−→〉
because terminal states are usually identified by operationally-defined equivalences, and so the

encodings of s
a−→ t and s

b−→ t could not be distinguished by considering only transitions when
a
= b. For bisimilarity (see section 2.4), this could be fixed by adding more transitions and states
after each state in A, but we do not pursue this here.

Every tree 〈A,≤〉 determines several TSs. For example, 〈A,≤〉 and 〈A,<〉 are both TSs. A more
useful TS is obtained via the successor relation (cf. Hasse diagrams [DP90]).

2.2. TRANSITION SYSTEMS 31

(a) ∈-transition system (b) ∈-tree

Figure 2.3: ∈-transition system and ∈-tree for {{/0,{ /0}},{{ /0}}}

Example 2.2.3 A tree 〈A,≤〉 determines a TS 〈A,−→〉, where −→⊆ A×A is defined, for a,b ∈ A,

by a −→ b if and only if b is a successor of a. There are no cycles in the resulting TS because the
transitive closure of the transition relation is contained in the strict order < and is thus irreflexive.
Limit elements and their predecessors in the tree are disconnected in the TS.

A set A determines a TS TS(A) with transition relation ". The states of TS(A) are those sets that
are reachable from A by the reflexive, transitive closure of ".

Definition 2.2.4 The ∈-TS of a set A is TS(A) def= 〈B,"〉, where B is defined by:

B
def= {C | ∃n ∈ ω,A0,A1, . . . ,An.A = A0 ∧C = An ∧∀i < n.Ai+1 ∈ Ai}

In general, the ∈-TS TS(A) is not the same as the TS determined by the ∈-tree Tree(A) using
example 2.2.3, because the latter has more states. This is illustrated in example2.2.5.

Example 2.2.5 Consider the set A
def= {{ /0,{ /0}},{{ /0}}}. The ∈-TS TS(A) and ∈-tree Tree(A)

associated with A are illustrated in figure 2.3.

Recall that, for any set A, the ∈-tree Tree(A) is well-founded. By Foundation, the ∈-TS TS(A)
also has the property that there are no ω-chains with respect to the transition relation ". However,
the well-founded order Tree(ω) differs from TS(ω) in that the latter does have ω-chains with
respect to ∈, the dual of the transition relation " (see example2.1.8), so the transition relation is
not well-founded.

We have seen how to obtain TSs from trees. In the other direction, there are several reasons why

a TS 〈S,−→〉 may fail to be a tree (assuming a state has been chosen as the root):

• The transition relation −→ may not be reflexive or transitive.

• There may be states s1,s2, t such that s1−→ t and s2−→ t but there are no paths from s1 to
s2 and vice-versa, i.e., the down-set of t is not totally ordered. The ∈-TS in figure 2.3
provides an example.

ch-preliminaries.7
ch-preliminaries.2

32 CHAPTER 2. PRELIMINARIES

w

x

y z

Figure 2.4: The unlabelled transition system associated with a non-well-founded set

• The transition relation −→ may not be well-founded. For example, the transition relation
of TS(ω) is not well-founded.

Each TS with a distinguished root state determines a tree called a synchronisation tree (see
[WN95]). The elements of the synchronisation tree are paths in the TS from the distinguished
state, and are ordered with the prefix order.

Definition 2.2.6 Consider a TS 〈S,−→〉 and a state s ∈ S. The synchronisation tree of 〈S,−→〉
rooted at s is ST(〈S,−→〉,s) = 〈A,#〉 where # is the prefix order and A is defined by:

A
def= {〈〉}∪{〈s0,s1, . . . ,sn〉 | n ∈ ω∧ s −→ s0 ∧∀i < n.si −→ si+1}

It is easy to see that ∈-trees are the synchronisation trees of ∈-TSs, i.e., for all sets A, TS(A) =
ST(Tree(A),A). A synchronisation tree is obtained by unfolding a TS. A state in the TS will
be duplicated in the synchronisation tree if there are multiple paths to it from the root state.
This can be seen in figure 2.3. Synchronisation trees do not have limit points, but need not be
well-founded. In particular, cycles in the transition system are unfolded to create ω-chains in the
synchronisation tree. For example, the synchronisation tree of a TS 〈{�},−→〉, where � −→ �, is
not well-founded.

Example 2.2.7 Forti and Honsell [FH83] and Aczel [Acz88] consider an axiom for set theory
that contradicts and replaces the axiom of Foundation (see also [FHL94, BM96]). The Anti-
Foundation axiom asserts the existence of non-well-founded sets (also known as hypersets), upon
which the membership relation ∈ is not well-founded. For example, the following equations
define a non-well-founded set w:

w = {x} x = {y,z} y = {w} z = /0

The definitions of ∈-trees and ∈-TSs can be replayed for non-well-founded sets. The ∈-TS of w
is depicted in figure 2.4. Non-well-founded sets determine non-well-founded ∈-trees, but they
do not have limit elements.

We now consider TSs and LTSs with a may divergence predicate that partitions the states into
those that may diverge and those that must converge.

ch-preliminaries.8

2.3. INDUCTION AND COINDUCTION 33

Definition 2.2.8 A transition system with divergence (TSWD) 〈S,⇑may,−→〉 is a TS with a
may divergence predicate ⇑may⊆ S. Similarly, a labelled transition system with divergence
(LTSWD) 〈S,A,⇑may,−→〉 is an LTS with a may divergence predicate ⇑may⊆ S. The de-

rived must convergence predicate ⇓must is the complement of ⇑may, i.e., s ∈ ⇓must if and only if
s
∈ ⇑may. For a state s ∈ S, we write s ⇑may for s ∈ ⇑may, and s ⇓must for s ∈ ⇓must.

Abramsky [Abr87b] and Walker [Wal90] consider LTSWDs that are derived from other LTSWDs
that include the distinguished label τ. If we suppose that no states may diverge in a LTSWD,
then it is just an LTS. In this case, a state in the derived system may diverge if it possible to begin
an infinite sequence of τ-labelled transitions from that state. The transitions in the LTSWD are
derived from those of the LTS by ignoring certain τ-labelled transitions.

Example 2.2.9 builds upon definition 2.2.4 to show that sets with a distinguished urelement ⊥
form TSWDs. This example is extended in chapter 4 to typed transition systems which are a
special case of LTSWDs.

Example 2.2.9 Consider sets (well-founded or non-well-founded) constructed using a single
urelement ⊥. For such a set A, the definition of the ∈-TS TS(A) can be replayed by not treating
⊥ as a state. The may divergence predicate of the ∈-TSWD is defined, for a state B of TS(A),
by B ⇑may if and only ⊥ ∈ B. We write TSWD(A) for this ∈-TSWD.

As an example, consider the states of the ∈-TSWD TSWD({/0,{ /0},{⊥, /0}}):

{ /0,{ /0},{⊥, /0}} {⊥, /0} { /0} /0

The only state that may diverge is {⊥, /0} ⇑may. All of the other states must converge.

2.3 Induction and Coinduction

Many of the definitions and proofs for operational semantics are inductive or coinductive. In
this section we recall the fundamentals of induction and coinduction, and then consider some
definitions and results that are of particular use for operational semantics.

We present induction and coinduction abstractly in the framework of order theory (see [DP90]
for an excellent introduction to this subject). There is also an appealing category-theoretic
account of induction and coinduction (see [JR97]) that generalises the order-theoretic version
given below: categories generalise partial orders; functors generalise monotone functions; alge-
bras and coalgebras generalise post-fixed-points and pre-fixed-points; and initiality and finality
generalise least and greatest fixed-points. However, the extra generality is not required here.

Definition 2.3.1 Let 〈A,≤〉 be a partial order. If F : A→A is a monotone function, then an
element a ∈ A is a pre-fixed-point if a ≤ F(a), and a post-fixed-point1 if F(a) ≤ a. If it exists,
the meet of a set B ⊆ A, is the unique element of A, written

�
B, such that, for all a ∈ A, a ≤�

B
if and only if, for all b ∈ B, a ≤ b. If it exists, the join of a set B ⊆ A, is the unique element of

1Warning: in [Gun92], this is the definition of a pre-fixed-point.

34 CHAPTER 2. PRELIMINARIES

A, written
F

B, such that, for all a ∈ A,
F

B ≤ a if and only if, ∀b ∈ B, b ≤ a. We write a� b
for

�{a,b}, a$b for
F{a,b}, % for

�
/0, and ⊥ for

F
/0. The partial order 〈A,≤〉 is a complete

lattice if meets exist for all subsets of A. If 〈A,≤〉 is a complete lattice, then elements a,b ∈ A
are complements if a� b = ⊥ and a$ b = %. We write a for the complement of a ∈ A when
it exists and it is the unique complement. A complete lattice 〈A,≤〉 satisfies the meet-infinite
distributive law and join-infinite distributive law respectively if, for all a ∈ A and B ⊆ A:

a$
�

{b | b ∈ B} =
�

{a$b | b ∈ B} (meet-infinite distributive)

a�
G

{b | b ∈ B} =
G

{a�b | b ∈ B} (join-infinite distributive)

It is straightforward to show that all joins exist in a complete lattice 〈A,≤〉 because they can be
defined using meets: if B ⊆ A, then:

G
B =

�
{a ∈ A | ∀b ∈ B.b ≤ a}

Powersets ordered by set inclusion form an important class of complete lattices. In particular,
the similarity and bisimilarity relations defined in the sequel are constructed inside complete
lattices of this form.

Example 2.3.2 For any set A, the partial order 〈P(A),⊆〉 is a complete lattice that satisfies
the meet-infinite and join-infinite distributive laws. The meet operation on non-empty sets is
set intersection. The meet of the empty set is A. The join operation is set union. Unique
complements exist for all B ∈ P(A), and are given by B = A\B.

Complete lattices admit inductive and coinductive definitions as the least and greatest fixed-
points (respectively) of monotone functions. The Knaster-Tarski theorem tells us that the least
and greatest fixed-points always exist. Moreover, the least fixed-point is the meet of all post-
fixed-points and the greatest fixed-point is the join of all pre-fixed-points.

Theorem 2.3.3 (Knaster-Tarski) If 〈A,≤〉 is a complete lattice and F : A→A is monotone,
then the least and greatest fixed-points of F are respectively:

µa.F(a) def=
�

{a ∈ A | F(a) ≤ a}
νa.F(a) def=

G
{a ∈ A | a ≤ F(a)}

Proof We first show that µa.F(a) is a fixed-point. The proof for νa.F(a) is dual. We claim
F(µa.F(a))≤ µa.F(a). If b∈A is such that F(b)≤ b, then µa.F(a)≤�{a∈A |F(a)≤ a}≤ b.
By monotonicity of F , F(µa.F(a)) ≤ F(b). Hence, F(µa.F(a)) ≤ b, and so F(µa.F(a)) ≤�{a∈A |F(a)≤ a}= µa.F(a). For the reverse inequality, note that F(F(µa.F(a)))≤F(µa.F(a))
by monotonicity. Therefore:

µa.F(a) =
�

{a ∈ A | F(a) ≤ a} ≤ F(µa.F(a))

and it follows that µa.F(a) = F(µa.F(a)) as required. By duality, we see that νa.F(a) is a fixed-
point. Finally we claim that for any fixed-point b ∈ A of F , we have µa.F(a) ≤ b ≤ νa.F(a).
This follows immediately from the universal properties of meet and join given that b = F(b) is
a post-fixed-point and a pre-fixed-point of F . �

2.3. INDUCTION AND COINDUCTION 35

Park [Par79, Par81] and Milner [Mil89] show the importance of coinduction as a technique for
defining semantic relations upon LTSs (see section 2.4 and chapter 4).

The term coinductive was in use by 1974. Moschovakis [Mos74] describes a set as coinductive
if it is the complement of an inductively-defined set (as opposed to the greatest fixed-point of
a monotone function). Lemma 2.3.5 shows that these definitions coincide for a certain class of
complete lattices. Aczel [Acz77] uses the term kernel for the greatest fixed-point of a monotone
function.

The following induction and coinduction principles, and their strong variants, can be deduced
from the Knaster-Tarski theorem.

Lemma 2.3.4 If 〈A,≤〉 is a complete lattice and F : A→ A is monotone, then the following
induction and coinduction principles, and their strong variants, are valid for all b ∈ A:

F(b) ≤ b =⇒ µa.F(a) ≤ b (Induction)

b ≤ F(b) =⇒ b ≤ νa.F(a) (Coinduction)

(F(b�µa.F(a))�µa.F(a)) ≤ b =⇒ µa.F(a) ≤ b (Strong Induction)

b ≤ (F(b$νa.F(a))$νa.F(a)) =⇒ b ≤ νa.F(a) (Strong Coinduction)

Proof The induction and coinduction principles follow immediately from the universal prop-
erty defining the meet and join operators. We prove the strong coinduction principle. The strong
induction principle is dual. First show that:

b$νa.F(a) ≤ F(b$νa.F(a))

This follows from the hypothesis and:

νa.F(a) = F(νa.F(a)) ≤ F(b$νa.F(a))

Now, by the ordinary coinduction principle:

b$νa.F(a) ≤ νa.F(a)

Therefore b ≤ νa.F(a) �

In the remainder of this section we derive results, concerning induction and coinduction, that
are used for reasoning about the operational semantics and semantic relations considered in the
sequel.

Lemma 2.3.5 appears in [Acz77, Lev79], and justifies the use of the term coinductive for both the
complement of an inductively-defined set and the greatest fixed-point of a monotone function. It
is used in chapter 3 to show that the inductively-defined must convergence predicate on programs
is the complement of the coinductively-defined may divergence predicate.

Lemma 2.3.5 Let 〈A,≤〉 be a complete lattice satisfying the meet-infinite distributive and join-
infinite distributive laws, and F : A→A a monotone function. If complements exist for every
element in A, then the complements are unique and:

µa.F(a) = νa.F(a)

νa.F(a) = µa.F(a)

36 CHAPTER 2. PRELIMINARIES

Proof If b,c ∈ A are complements of a ∈ A then:

b$ c = %� (b$ c) = (a$ c)� (b$ c) = (a�b)$ c = ⊥$ c = c

Similarly, b$ c = b and therefore complements are unique. Consequently, a = a for all a ∈ A.
Note that we only require distributivity over finite meets and joins for unique complements. Next
we prove that the following equalities hold for all B ⊆ A:

G
{b | b ∈ B} =

�
{b | b ∈ B} and

�
{b | b ∈ B} =

G
{b | b ∈ B}

For the first, we need to show that
F{a | a ∈ B} and

�{b | b ∈ B} are complements:

G
{a | a ∈ B}�

�
{b | b ∈ B} =

G
{a�

�
{b | b ∈ B} | a ∈ B}

=
G

{
�

{a�b | b ∈ B} | a ∈ B}
=
G

{⊥ | a ∈ B}
= ⊥

Similarly,
F{a | a ∈ B}$�{b | b ∈ B} = % and so they are complements. The second equality

follows by duality. From these equalities we deduce that, for all a,b ∈ A, if a ≤ b, then b ≤ a.
This is because a = a�b implies a = a�b = a$b, which in turns implies b ≤ a. Now we can
prove the main results. For µa.F(a) = νa.F(a), the above properties imply that:

µa.F(a) =
�

{a ∈ A | F(a) ≤ a}
=
�

{a ∈ A | a ≤ F(a)}
=
�

{a ∈ A | a ≤ F(a)}
=
G

{a ∈ A | a ≤ F(a)}
= νa.F(a)

The case for νa.F(a) = µa.F(a) is dual. �

The next four lemmas are used later when we work with relations defined by coinduction.
Lemma 2.3.6 identifies sufficient conditions for a coinductively-defined relation to be reflex-
ive, symmetric, and transitive.

Lemma 2.3.6 For a set A, consider the complete lattice 〈P(A×A),⊆〉 and a monotone function
F : P(A×A)→P(A×A). If F preserves reflexivity (respectively symmetry, transitivity) of a
relation, then the greatest fixed-point of F is reflexive (respectively symmetric, transitive).

Proof

1. Because F preserves reflexivity and Id(A)⊆ Id(A), we have Id(A)⊆ F(Id(A)), i.e., Id(A)
is a pre-fixed-point of F . Therefore Id(A) ⊆ νR .F(R).

2.3. INDUCTION AND COINDUCTION 37

2. Consider a pre-fixed-point of F , R ⊆ A×A. Now R ∪R op is symmetric, and so F(R ∪
R op) is also symmetric by hypothesis. By monotonicity of F , we have F(R) ⊆ F(R ∪
R op). Then we can deduce that R ∪R op is a pre-fixed-point of F :

R ∪R op ⊆ F(R)∪ (F(R))op ⊆ F(R ∪R op)∪ (F(R ∪R op))op = F(R ∪R op)

The result follows by taking R to be νR .F(R).

3. Consider a pre-fixed-point of F , R ⊆ A×A. Now R + is transitive and so F(R +) is also

transitive by hypothesis. By monotonicity of F , we have F(R) ⊆ F(R+). Then we can

deduce that R + is a pre-fixed-point of F:

R + ⊆ (F(R))+ ⊆ (F(R +))+ ⊆ F(R +)

The result follows by taking R to be νR .F(R).
�

Lemma 2.3.7 shows that the dual of a least or greatest fixed-point relation is, respectively, a least
or greatest fixed-point.

Lemma 2.3.7 For a set A, consider the complete lattice 〈P(A×A),⊆〉. If F : P(A×A)→
P(A×A) is monotone, then:

µR .(F(R op))op = (µR .F(R))op

νR .(F(R op))op = (νR .F(R))op

Proof For the first equality:

µS .(F(S op))op =
�{S | (F(S op))op ⊆ S }

=
�{R op | (F(R))op ⊆ R op}

=
�{R op | F(R) ⊆ R }

= (
�{R | F(R) ⊆ R })op

= (µR .F(R))op

The second equality is obtained by duality. �

Lemma 2.3.8 and corollary 2.3.9 are used to show that variations of bisimilarity are always
included in the corresponding mutual similarity.

Lemma 2.3.8 Let 〈A,≤〉 be a complete lattice and F,G ∈ A→A monotone functions. If F(a)≤
G(a), for all a ∈ A, then:

µa.F(a) ≤ µa.G(a)

νa.F(a) ≤ νa.G(a)

38 CHAPTER 2. PRELIMINARIES

Proof For the first inequality, it suffices to show that µa.G(a) is a post-fixed-point for F , i.e.,
F(µa.G(a)) ≤ µa.G(a). This holds because F is bounded by G, and µa.G(a) is a fixed-point,
so:

F(µa.G(a)) ≤ G(µa.G(a)) = µa.G(a)

The proof for the second inequality is similar. �

Corollary 2.3.9 Let 〈A,≤〉 be a complete lattice and F,G : A→A monotone functions. Then:

µa.F(a)�G(a) ≤ (µa.F(a))� (µa.G(a))

νa.F(a)�G(a) ≤ (νa.F(a))� (νa.G(a))

Proof In both cases, apply lemma 2.3.8 twice. �

Lemma 2.3.10 is an “up to” result for coinductively-defined relations (see [Mil89, Gor95a,
Las98a]). This result is used to simplify proofs that elements are related by a coinductively-
defined relation. It is used in chapter 5 to prove Scott induction principles for coinductively-
defined preorders (theorem 5.7.9).

Lemma 2.3.10 For a set A, consider the complete lattice 〈P(A×A),⊆〉 and a monotone func-

tion F : P(A×A)→P(A×A) such that F(R);F(S) ⊆ F(R ;S), whenever R ,S ⊆ A×A. If

T = νR .F(R), then, for any S ⊆ A×A:

S ⊆ F(T ;S ;T) =⇒ S ⊆ T

Proof Assume S ⊆ F(T ;S ;T). We first establish that T ;S ;T ⊆ T . By coinduction, this

follows from T ;S ;T ⊆ F(T ;S ;T), which holds because:

T ;S ;T ⊆ T ;F(T ;S ;T);T

⊆ F(T);F(T ;S ;T);F(T)

⊆ F(T ;T ;S ;T ;T)

⊆ F(T ;S ;T)

The last line requires transitivity of T . To prove transitivity, by lemma2.3.6, it suffices to show

that, for any R ⊆ A×A, R ;R ⊆ R implies that F(R);F(R) ⊆ F(R). This follows from

the hypotheses because F(R);F(R) ⊆ F(R ;R) ⊆ F(R). Therefore we know T ;S ;T ⊆ T .

The result follows by applying the strong coinduction principle to S ⊆ F(T ;S ;T) ⊆ F(T).

Therefore S ⊆ T . �

2.4. SIMILARITY AND BISIMILARITY 39

Finally, lemma 2.3.11 identifies a condition under which the least and greatest fixed-points of
a monotone function are the same (and thus are the unique fixed-point). Informally, we may

consider a complete lattice of the form 〈P(A),⊆〉 with a well-founded relation R ⊆ A×A. If
F : A→A is a monotone function generated from rules where every premise of a rule is related
to the conclusion by R , then every coinductive proof must be a well-founded tree and thus an
inductive proof.

This result is used to show that the variants of similarity and bisimilarity defined in chapter4 are
both least and greatest fixed-points because they are defined for LTSs with a type system that
lacks recursive or coinductive types. The well-founded relation in this case is the order on the
size of the type of a state.

Lemma 2.3.11 For sets A and X ⊆ P(A), suppose that 〈X ,⊆〉 is a complete lattice. Let F :

X →X be monotone with respect to the inclusion order and R ⊆ A×A a well-founded relation

such that, for all a ∈ νB.F(B), there exists C ⊆ νB.F(B) such that a ∈ F(C) and CR a, where

CR a means that, for all c ∈C, cR a. Then:

µB.F(B) = νB.F(B)

Proof We know µB.F(B) ⊆ νB.F(B), and so it suffices to show the reverse inclusion, i.e.,
a ∈ νB.F(B) implies a ∈ µB.F(B). The proof is by well-founded induction on a with respect to

R . If a ∈ νB.F(B), then by assumption there exists C ⊆ νB.F(B) such that a ∈ F(C) and CR a.
Applying the induction hypothesis to the elements of C yields that C ⊆ µB.F(B). Therefore, by
monotonicity, a ∈ F(C) ⊆ F(µB.F(B)) = µB.F(B). �

2.4 Similarity and Bisimilarity

Park [Par79, Par81] and Milner [Mil89] introduce bisimilarity as an equivalence relation upon
processes. Bisimilarity is a coinductively-defined relation upon the states of an LTS, and pro-
cesses are equivalent if the initial states of the LTSs that they determine are related by bisimi-
larity. It is also possible to define a preorder called similarity in the same style as bisimilarity.
Informally, a state s is related to a state t by similarity if the possible behaviours of s and the
states that can be reached via the transition relation are “dominated” by those of t.

The concepts underlying bisimilarity have proven robust. For example, there is a treatment of
bisimilarity for CSP (see [BRW88, Ros98]), there are many variants of similarity and bisim-
ilarity for LTSs and related structures such as LTSWDs (see [Abr87b, Wal90, Van90, Abr91,
Van93]), and applicative similarity and applicative bisimilarity can be used to reason about λ-
calculi even in the presence of recursive types (see [Abr90, Gor95b]).

The definitions in this section are for LTSs and LTSWDs. They also apply to TSs and TSWD
using example 2.2.2.

Similarity for an LTS is defined as the greatest fixed-point of a monotone simulation function
〈·〉S on the set of binary relations on the states. Bisimilarity is also defined in terms of the
simulation function.

40 CHAPTER 2. PRELIMINARIES

Definition 2.4.1 Consider an LTS 〈S,A,−→〉 and a relation on the states R ⊆ S× S. Define the

relation 〈R 〉S ⊆ S×S, for s1, t1 ∈ S, by:

〈s1, t1〉 ∈ 〈R 〉S ⇐⇒∀a ∈ A.∀s2 ∈ S.s1
a−→ s2 =⇒∃t2 ∈ S. t1

a−→ t2 ∧〈s2, t2〉 ∈ R

Now similarity and bisimilarity can be defined using coinduction. In addition, mutual similarity
is defined to be the greatest symmetric relation contained in similarity.

Definition 2.4.2 For an LTS 〈S,A,−→〉, similarity, mutual similarity, and bisimilarity are the
binary relations on S defined by:

�S
def= νR .〈R 〉S (similarity)

�S
def= �S ∩�op

S (mutual similarity)

�B
def= νR .〈R 〉S ∩〈R op〉op

S (bisimilarity)

If 〈S,A,−→〉 is an LTS, then the fact that similarity and bisimilarity are pre-fixed-points (actually
fixed-points by theorem 2.3.3) means that for all states s1, t1 ∈ S:

s1 �S t1 =⇒∀a ∈ A.∀s2 ∈ S.s1
a−→ s2 =⇒∃t2 ∈ S. t1

a−→ t2 ∧ t2 �S s2

s1�B t1 =⇒ (∀a ∈ A.∀s2 ∈ S.s1
a−→ s2 =⇒∃t2 ∈ S. t1

a−→ t2 ∧ s2�B t2)∧
(∀a ∈ A.∀t2 ∈ S. t1

a−→ t2 =⇒∃s2 ∈ S.s1
a−→ s2 ∧ s2�B t2)

However, these properties do not define similarity or bisimilarity. There are many relations
that are pre-fixed-points, including the empty set, but similarity and bisimilarity are the greatest
pre-fixed-points.

We can use the results developed in section 2.3 to obtain generic results about similarity and
bisimilarity.

Lemma 2.4.3 For any LTS, similarity �S is a preorder, and mutual similarity �S and bisimilar-

ity �B are equivalence relations.

Proof It is straightforward to show that 〈·〉S preserves reflexivity and transitivity, and that

(R &→ 〈R 〉S ∩〈R op〉op
S) preserves reflexivity, symmetry, and transitivity. The results follow by

lemma 2.3.6 �

It is often necessary to compare states from different LTSs with respect to similarity or bisimilar-
ity. The states can be compared inside the disjoint union of the LTSs. Define the disjoint union

of LTSs 〈S1,A1,−→1〉 and 〈S2,A2,−→2〉 to be 〈S,A,−→〉 where S
def= S1 + S2 and A

def= A1 + A2. If
S1 and S2 (respectively A1 and A2) are disjoint so that S (respectively A) can be represented by

S1 ∪S2 (respectively A1 ∪A2), then −→ ⊆ S×A×S is −→1 ∪−→2.

Example 2.4.4 shows that a state with a transition to itself and no other states is bisimilar to a
state that has an infinite sequence of transitions without cycles.

2.4. SIMILARITY AND BISIMILARITY 41

Example 2.4.4 Consider the TSs 〈{�},−→1〉 and 〈ω,−→2〉 where the transition relations are de-

fined by �−→1 � and n−→2 n + 1, for all n ∈ ω. We show that ��B n, for all n ∈ ω. First define

S def= {〈�,n〉 | n ∈ ω}. It suffices to show that S is a pre-fixed-point of (R &→ 〈R 〉S ∩〈R op〉op
S),

in which case 〈�,n〉 ∈ S ⊆ �B, for all n ∈ ω. However, S is clearly a pre-fixed-point because,

for any 〈�,n〉 ∈ S , the only transitions from � and n are �−→1 � and n−→2 n + 1, and we have

〈�,n+ 1〉 ∈ S .

The states in these TSs are greater than states in any other TS with respect to similarity. To

see this, suppose that 〈S,−→3〉 is a TS and s ∈ S is a state. Then s�S �, because � always has a

transition to itself. Formally, S def= {〈s,�〉 | s ∈ S} is a pre-fixed-point of 〈·〉S.

We now examine the inclusions between the three relations.

Lemma 2.4.5 For any LTS, �B ⊆ �S ⊆ �S.

Proof By definition, �S ⊆ �S. By lemma 2.3.7 and corollary 2.3.9, we have:

�B = νR .〈R 〉S ∩〈R op〉op
S

⊆ (νR .〈R 〉S)∩ (νR .〈R op〉op
S)

= (νR .〈R 〉S)∩ (νR .〈R 〉S)
op

= �S

�

Example 2.4.6 shows that the inclusions in lemma 2.4.5 are strict.

Example 2.4.6 Define LTSs 〈S1,A,−→1〉, 〈S2,A,−→2〉, and 〈S3,A,−→3〉, where A = {a,b,c}, by:

S1
def= {〈〉,〈a,0〉,〈a,1〉,〈a,b〉,〈a,c〉}

S2
def= {〈〉,〈a〉,〈a,b〉,〈a,c〉}

S3
def= {〈〉,〈a,0〉,〈a,1〉,〈a,b,0〉, 〈a,b,1〉,〈a,c〉}

And the transition relations by:

〈〉 a−→1 〈a,0〉 〈〉 a−→1 〈a,1〉 〈a,0〉 b−→1 〈a,b〉 〈a,1〉 c−→1 〈a,c〉
〈〉 a−→2 〈a〉 〈a〉 b−→2 〈a,b〉 〈a〉 c−→2 〈a,c〉
〈〉 a−→3 〈a,0〉 〈〉 a−→3 〈a,1〉 〈a,0〉 b−→3 〈a,b,0〉 〈a,1〉 b−→3 〈a,b,1〉 〈a,1〉 c−→3 〈a,c〉

These LTSs are illustrated in figure 2.5. Now write 〈〉i for 〈〉 ∈ Si, where i is 1, 2, or 3. Recall
that they are distinct elements in the disjoint union of the LTSs. The relationships between these
states are:

〈〉1 �S 〈〉2�S 〈〉3 〈〉3
�B 〈〉2
�S 〈〉1

42 CHAPTER 2. PRELIMINARIES

a a

b c

a

b c

a a

b b c

Figure 2.5: LTSs related by similarity

In particular, 〈〉1 and 〈〉2 are related by similarity but not mutual similarity, and 〈〉2 and 〈〉3 are
related by mutual similarity but not by bisimilarity. Thus mutual similarity is strictly finer than
similarity, and bisimilarity is strictly finer than mutual similarity.

Similarity and bisimilarity are defined coinductively (as greatest fixed-points) rather than in-
ductively (as least fixed-points) because there may be infinite paths in an LTS (the dual of the
transition relation of a TS may not be well-founded), and in such cases the least fixed-point is un-

satisfactory. For example, the least fixed-point of (R &→ 〈R 〉S ∩〈R op〉op
S) is irreflexive upon the

TS 〈{�},−→〉 where � −→ �. By lemma 2.3.5, the complements of similarity and bisimilarity can
be given an inductive definition. Informally, this means that a proof of similarity or bisimilarity
may be represented by a potentially non-well-founded derivation tree, whereas a proof of the
complement of either similarity or bisimilarity may be represented by a well-founded deriva-
tion tree. This is related to the difference between the winning strategies for game-theoretic
characterisations of inductively and coinductively-defined sets (see [Acz77, BM96, Sti97]).

In the case of ∈-TSs obtained from well-founded sets, lemma2.3.11 and the axiom of Founda-
tion can be used to show that similarity and bisimilarity are also least fixed-points, and so could
have been defined by induction. In addition, Extensionality and Foundation can be used to show
that bisimilar well-founded sets are equal.

Proposition 2.4.7 Consider (well-founded) sets A and B. We have A = B if and only if A�B B

in the disjoint union of the ∈-TSs TS(A) and TS(B).

Proof Bisimilarity is reflexive, so we only have to show A�B B implies A = B. We write
C ∈ TS(A) to mean C is a state of the ∈-TS TS(A). Define:

X
def= {C ∈ TS(A) | ∃D ∈ TS(B).C�B D∧C
= D}

We claim that X = /0, in which case we are done. For a contradiction, suppose that X
= /0. By
Foundation, there exist E ∈ TS(A) and F ∈ TS(B) such that E ∩X = /0, E�B F , and E
= F .

Because E ∩X = /0, we know that, for all C ∈ E and D ∈ TS(B) ⊇ F , if C�B D then C = D.

Using E�B F , we have that, for all C ∈ E , there exists D ∈ F such that C�B D. Therefore

C = D, so E ⊆ F . Similarly, for all D ∈ F , there exists C ∈ E such that C�B D. Therefore
C = D, so F ⊆ E . Thus E = F , contradicting E ∈ X . �

ch-preliminaries.14

2.4. SIMILARITY AND BISIMILARITY 43

Foundation is required in the above proof, which precludes a similar proof for non-well-founded
sets. However, the various approaches to axiomatising non-well-founded sets force the Super
Strong Extensionality Axiom, which states that sets are equal if they are related by bisimilarity
(see [FH83, Acz88, FHL94, BM96]).

Sets are also a rich source of TSs. This is demonstrated by the fact that for any TS and every
state that does not have an ω-chain of transitions, there is a bisimilar well-founded set.

Proposition 2.4.8 Consider a TS 〈S,−→〉 and a state s ∈ S such that s
−→ω , i.e., there are no

chains 〈sn ∈ S | n ∈ ω〉 such that sn −→ sn+1, for all n ∈ ω. Then there exists a well-founded set

A such that s�B A in the disjoint union of the TSs 〈S,−→〉 and TS(A).

Proof The dual −→op of the transition relation −→ is well-founded on {t ∈ S | s−→∗ t}. For every

t1 ∈ S such that s−→∗ t1, we use well-founded induction on −→op to define the set f (t1) by:

f (t1)
def= { f (t2) | t1−→ t2}

It is straightforward to show that for all t ∈ S such that s−→∗ t, t�B f (t) in the disjoint union of

the TSs 〈S,−→〉 and TS(f (t)). The result follows by taking A = f (s). �

The next result shows that the root of a synchronisation tree of a state in a TS is bisimilar to
the state itself. This means that only trees need to be considered when studying bisimilarity
invariant properties of TSs.

Proposition 2.4.9 Consider a TS 〈S,−→〉 and a state s ∈ S. Then s�B 〈〉 in the disjoint union

of 〈S,−→〉 and the TS determined by the synchronisation tree ST(〈S,−→〉,s) via the successor
relation (see example 2.2.3).

Proof We assume without loss of generality that the TSs are disjoint. Define:

R def= {〈s,〈〉〉}∪ {〈sn,〈s0,s1, . . . ,sn〉〉 | n ∈ ω∧ s −→ s0 ∧∀i < n.si −→ si+1}

It is straightforward to show that R is a pre-fixed-point, and so s�B 〈〉. �

We now consider TSWDs and LTSWDs. There are several variants of similarity and bisimilarity
when divergence is introduced.

Recall that similarity and bisimilarity for LTSs are defined in terms of 〈·〉S. For LTSWDs, the

variants of similarity and bisimilarity are generated by a lower simulation function 〈·〉LS and an

upper simulation function 〈·〉US.

44 CHAPTER 2. PRELIMINARIES

Definition 2.4.10 For an LTSWD 〈S,A,⇑may,−→〉 and a relation on the states R ⊆ S×S, define

the relations 〈R 〉LS,〈R 〉US ⊆ S×S by:

〈s1, t1〉 ∈ 〈R 〉LS ⇐⇒∀a ∈ A.∀s2 ∈ S.s1
a−→ s2 =⇒∃t2 ∈ S. t1

a−→ t2 ∧〈s2, t2〉 ∈ R

〈s1, t1〉 ∈ 〈R 〉US ⇐⇒ s1 ⇓must =⇒
(t1 ⇓must ∧
∀a ∈ A.∀t2 ∈ S. t1

a−→ t2 =⇒∃s2 ∈ S.s1
a−→ s2 ∧〈s2, t2〉 ∈ R)

For LTSWDs where no states may diverge, and a binary relation on the states R, the lower

simulation function 〈R 〉LS is the same as 〈R 〉S, and 〈R op〉op
US is the same as 〈R 〉S.

There are four variants for each of similarity, mutual similarity, and bisimilarity obtained from
combinations of the lower and upper simulation functions.

Definition 2.4.11 For an LTSWD 〈S,A,⇑may,−→〉, the lower, upper, convex, and refinement vari-
ants of similarity, mutual similarity, and bisimilarity are the binary relations on S defined by:

�LS
def= νR .〈R 〉LS (lower similarity)

�LS
def= �LS ∩�op

LS (mutual lower similarity)

�LB
def= νR .〈R 〉LS ∩〈R op〉op

LS (lower bisimilarity)

�US
def= νR .〈R 〉US (upper similarity)

�US
def= �US ∩�op

US (mutual upper similarity)

�UB
def= νR .〈R 〉US ∩〈R op〉op

US (upper bisimilarity)

�CS
def= νR .〈R 〉LS ∩〈R 〉US (convex similarity)

�CS
def= �CS ∩�op

CS (mutual convex similarity)

�CB
def= νR .〈R 〉LS ∩〈R 〉US ∩〈R op〉op

LS ∩〈R op〉op
US (convex bisimilarity)

�RS
def= νR .〈R op〉op

LS ∩〈R 〉US (refinement similarity)

�RS
def= �RS ∩�op

RS (mutual refinement similarity)

�RB
def= νR .〈R op〉op

LS ∩〈R 〉US ∩〈R 〉LS ∩〈R op〉op
US (refinement bisimilarity)

It is straightforward to show that the variants of similarity are preorders, and that the variants of
mutual similarity and bisimilarity are equivalences using lemma2.3.6.

The variants are named lower, upper, and convex because of the correspondence with construc-
tions used to obtain the lower (Hoare), upper (Smyth), and convex (Plotkin) powerdomains,
e.g., using the Egli-Milner construction on preorders (see [Plo76, Smy78, Plo83, Gun92, AJ94,
AC98]). Lassen [Las98b] proposes naming the final variant refinement similarity because it
seems to be the most suitable order for refining non-deterministic programs that use ambiguous
choice.

By definition, convex bisimilarity and refinement bisimilarity are identical, but, in general, the
variants of similarity, mutual similarity, and bisimilarity are distinct. Example 2.4.12 briefly

2.5. RECURSIVE ORDINALS AND RECURSIVE TREES 45

illustrates some of the differences between the variants of similarity on TSWDs arising from
well-founded sets with a ⊥ urelement. The relations are also used in section2.6 to examine the
relationship between different binary choice operators, and are studied in detail in chapter4.

Example 2.4.12 Amongst the ∈-TSWDs obtained in example 2.2.9, the following inequalities
hold:

{⊥}�LS /0�LS {⊥} {⊥}�LS {⊥, /0}
�LS {⊥}
{⊥}�US /0
�US {⊥} {⊥}�US {⊥, /0}�US {⊥}
{⊥}�CS /0
�CS {⊥} {⊥}�CS {⊥, /0}
�CS {⊥}
{⊥}�RS /0
�RS {⊥} {⊥}
�RS {⊥, /0}�RS {⊥}

2.5 Recursive Ordinals and Recursive Trees

Some countable well-orders are recursively decidable. Ordinals that are order-isomorphic to
such a well-order are called recursive, and constitute a down-set (a proper subset) of the count-
able ordinals. There is a close correspondence between recursive ordinals and well-founded
trees for which membership of the underlying set of the tree is decidable. This correspondence
is exploited in chapter 3 when non-deterministic operators are classified by countable ordinals
associated with derivation trees for the operational semantics. The texts [Rog67, Gir87, Odi89]
are good references for recursion theory, recursive ordinals, and recursive trees.

Definition 2.5.1 An ordinal is recursive if it is order-isomorphic to a recursive well-ordering of
a subset of ω, i.e., there exists a set A ⊆ ω, a well-order (⊆ A×A, and a recursive function
f : ω×ω→ω such that, for all m,n ∈ ω, f (m,n) is defined and:

f (m,n) =

{
0 if m
(n∨m
∈ A∨n
∈ A

1 if m (n

Example 2.5.2 The ordinal ωω is recursive. To see this, note that any ordinal A < ωω has
unique Cantorian normal form A = ωn ·an +ωn−1 ·an−1 + · · ·+ω·a1 + a0, where a0,a1, . . . ,an

are natural numbers and an
= 0 (see [Pot90]). Hence the ordinals strictly less than ωω can be
represented as finite sequences of natural numbers, and there is an order-isomorphism between
ωω and 〈B,≺〉, where B is defined by:

B
def= {〈a0,a1, . . . ,an〉 | n ∈ ω∧an
= 0∧∀i ≤ n.ai ∈ ω}

The strict order ≺⊆ B×B is defined, for �a = 〈a0,a1, . . . ,am〉,�b = 〈b0,b1, . . . ,bn〉 ∈ B, by:

�a ≺�b
def= m < n∨ (m = n∧∃i ∈ ω. i ≤ m∧ai < bi ∧∀ j ∈ ω. i < j ≤ n =⇒ aj = bj)

A finite sequence of natural numbers can be encoded as a number, so the order (is decidable
on such encodings. Therefore ωω is a recursive ordinal.

46 CHAPTER 2. PRELIMINARIES

Lemma 2.5.3 If A is a recursive ordinal and B ∈ A, then B is a recursive ordinal.

Proof Let C ⊆ ω, (1 ⊆C×C, and f : ω×ω→ωbe the set, well-order, and recursive function
associated with A as in definition 2.5.1. Suppose that c ∈ C corresponds to B in the order-

isomorphism, and define D
def= {d ∈C | d ≺1 c} and (2

def= (1∩ (D×D). Then 〈D,(2〉 is a well-
order that is order-isomorphic to B. We can now define the total recursive function g : ω×ω→ω,
for m,n ∈ ω, by:

g(m,n) def=

{
0 if f (m,n) = 0∨ f (n,c) = 0∨n = c

1 if f (m,n) = 1∧ f (n,c) = 1∧n
= c

It can be verified that g and (2 are related as required by definition 2.5.1. Therefore B is a
recursive ordinal. �

Using example 2.5.2 and lemma 2.5.3 we can find many infinite recursive ordinals. However, a
diagonalisation argument can be used to show that not all countable ordinals are recursive, and
so there must be a least non-recursive ordinal.

Definition 2.5.4 The least non-recursive ordinal is denoted ωCK
1 .

Church and Kleene [CK37, Chu38, Kle38] identified the ordinal ωCK
1 . In the literature both

ωCK
1 and ω1 are used for the least non-recursive ordinal. We use ω1 for the least non-countable

ordinal. The subscript 1 is present because it is possible to define a sequence of countable
ordinals by defining ωCK

n+1 in terms of ωCK
n . From this perspective ωCK

0 is ω.

There are many different characterisations of ωCK
1 . We now work towards a characterisation in

terms of trees consisting of finite sequences of natural numbers (see example2.1.12) with the
prefix order. The Kleene-Brouwer order on the elements of such a tree is used to construct an
ordinal from that tree (see [Gir87, Odi89, Mos90]). The definition of the Kleene-Brouwer order
is similar to that of the well-known lexicographic order, so both are defined in definition2.5.5
for the sake of comparison.

Definition 2.5.5 Consider a tree 〈A,#〉, where A ⊆S{ωn | n ∈ ω}, A is prefix closed, and # is

the prefix order. The lexicographic order ≤LX and the Kleene-Brouwer order ≤KB (also known

as the Lusin-Sierpinski order) are defined, for �a = 〈a0,a1, . . . ,am〉,�b = 〈b0,b1, . . . ,bn〉 ∈ A, by:

�a<LX
�b

def= �a ��b∨ (∃i ∈ ω. i ≤ m�n∧ai < bi ∧∀ j < i.aj = bj)

�a<KB
�b

def=�b ��a∨ (∃i ∈ ω. i ≤ m�n∧ai < bi ∧∀ j < i.aj = bj)

The lexicographic and Kleene-Brouwer orders differ in whether or not a prefix �a of a sequence
�b is less than or greater than�b. For example, the empty sequence 〈〉 is the bottom element for
the lexicographic order, and the top element for the Kleene-Brouwer order. Figure2.6 illustrates
the successor relation for the orders on finite trees.

The lexicographic and Kleene-Brouwer orders are total, and are well-orders whenever the tree
is well-founded. However, the reverse implication only holds for the Kleene-Brouwer order,
because of their different behaviour with respect to �.

2.5. RECURSIVE ORDINALS AND RECURSIVE TREES 47

〈〉

0

0 1

1

0 1

(a) Lexicographic order

〈〉

0

0 1

1

0 1

(b) Kleene-Brouwer order

Figure 2.6: Orders on recursive trees

Lemma 2.5.6 Consider a tree 〈A,#〉, where A ⊆S{ωn | n ∈ω}, A is prefix closed, and # is the
prefix order. The following properties hold of the lexicographic and Kleene-Brouwer orders:

1. 〈A,≤LX〉 and 〈A,≤KB〉 are total orders.

2. If 〈A,#〉 is a well-founded tree, then <LX and <KB are well-founded on A.

3. If <KB is well-founded on A, then 〈A,#〉 is a well-founded tree.

Proof

1. The relations are reflexive by definition, and it is straightforward to show that they are
transitive. If �a = 〈a0,a1, . . . ,am〉,�b = 〈b0,b1, . . . ,bn〉 ∈ A such that �a
��b and�b
��a, then
there exists a unique i ∈ ω such that i ≤ m� n, ai
= bi, and, for all j ∈ ω, j < i implies
aj = bj. It follows that �a and�b are comparable by ≤LX and ≤KB, and so both orders are
total.

2. Consider ≤LX first. For a contradiction, suppose that 〈A,#〉 is a well-founded tree and

that there exists an ω-chain 〈�ai | i ∈ ω〉 such that �ai+1 <LX �ai, for all i ∈ ω. Set �ai =
〈ai,0,ai,1, . . . ,ai,mi〉, for all i ∈ ω. We define an ω-sequence of natural numbers 〈bi | i ∈ ω〉
such that 〈b0,b1, . . . ,bi〉 ∈ A, for all i ∈ ω. If such a sequence exists, then 〈〈b0,b1, . . . ,bi〉 |
i ∈ ω〉 is a strictly increasing ω-chain in A with respect to #, and thus 〈A,#〉 is not a
well-founded tree. How can we define b0 ∈ ω? For all i ∈ ω, �ai
= 〈〉 because 〈〉 is the

bottom element for ≤LX. Hence there is an ω-sequence 〈ai,0 | i ∈ ω〉 of the first elements

from each sequence. This sequence is decreasing because�ai+1 <LX �ai, for all i ∈ω, and so
must eventually be constant. Thus there exists k ∈ ω such that, for all i ∈ ω, ak,0 = ak+i,0.
Set b0 = ak,0. We know that 〈b0〉 ∈ A because A is prefix-closed. To define the remainder
of the sequence 〈bi | i ∈ ω〉, consider the sequence 〈〈ak+i,1,ak+i,2, . . . ,ak+i,mi〉 | i ∈ ω〉 (the
sequence obtained by removing the first element b0 from each sequence in 〈�ak+i | i ∈ ω〉).
It can be verified that this is a strictly decreasing sequence with respect to ≤LX, and so

ch-preliminaries.12
ch-preliminaries.13

48 CHAPTER 2. PRELIMINARIES

we can iterate this process to obtain 〈bi | i ∈ ω〉 such that, for all i ∈ ω, there exists j ∈ ω
such that, for all k ∈ ω, k ≥ j implies 〈b0,b1, . . . ,bi〉 #�ak. Therefore 〈b0,b1, . . . ,bi〉 ∈ A,
for all i ∈ ω, because A is prefix-closed. This contradicts the assumption that 〈A,#〉 is a

well-founded tree, and so <LX is well-founded on A. A similar argument shows that <KB

is well-founded on A. The only difference is that 〈〉 is the top element for ≤KB and so it
may appear at the start of a strictly descending ω-chain, in which case it can be removed
without affecting the rest of the proof.

3. Let <KB be well-founded on A. For a contradiction, suppose that that there exists an ω-

chain 〈�ai ∈ A | i ∈ ω〉 such that �ai ��ai+1, for all i ∈ ω. But �ai ��ai+1 implies �ai+1 <KB �ai,

and so 〈�ai ∈A | i∈ω〉 is a strictly decreasing ω-chain with respect to <KB. This contradicts

the assumption that <KB is well-founded, and therefore 〈A,#〉 is a well-founded tree. �

Example 2.5.7 shows that the lexicographic order can be well-founded on a non-well-founded
tree.

Example 2.5.7 Consider the tree 〈A,#〉, where # is the prefix order and A
def= {0}∗ is the set

of all finite sequences of 0 (including the empty sequence). The strict lexicographic order <LX

is well-founded on A×A, but the tree is not well-founded because of the ω-chain 〈〉 � 〈0〉 �
〈0,0〉 � . . .

A well-founded tree is well-ordered by the Kleene-Brouwer order, so we can compare the ranks
of elements of the tree with respect to � and <KB.

Lemma 2.5.8 Consider a tree 〈A,#〉, where A ⊆S{ωn | n ∈ω}, A is prefix closed, and # is the

prefix order. If the tree 〈A,#〉 is well-founded, then, for all �a ∈ A, Rank(�a,�) ≤ Rank(�a,<KB)
(when the relations are restricted to A×A). In particular, the rank of the tree, given by Rank(〈〉,�),

is less than or equal to Rank(〈〉,<KB).

Proof By well-founded induction with respect to <KB on A× A. Consider �a ∈ A. If we

also have �b ∈ A such that �a ��b, then �b <KB �a. By the induction hypothesis, Rank(�b,�) ≤
Rank(�b,<KB). Then we deduce:

Rank(�a,�) =
S{Succ(Rank(�b,�)) |�b ∈ A∧�b ��a}

≤S{Succ(Rank(�b,�)) |�b ∈ A∧�b <KB �a}
≤S{Succ(Rank(�b,<KB)) |�b ∈ A∧�b <KB �a}
= Rank(�a,<KB)

�

2.5. RECURSIVE ORDINALS AND RECURSIVE TREES 49

Therefore, a well-founded tree determines a well-order that, as an ordinal, is greater than or
equal to the rank of the tree.

The alternative characterisation of ωCK
1 is in terms of recursive trees.

Definition 2.5.9 A tree 〈A,#〉 is recursive if A ⊆ S{ωn | n ∈ ω}, A is prefix closed, # is the
prefix order, and the characteristic function of A is recursive (with respect to a suitable encoding
of
S{ωn | n ∈ ω} in ω).

Proposition 2.5.10 gives an alternative characterisation of ωCK
1 as the least ordinal that is greater

than the rank of every recursive well-founded tree. The Kleene-Brouwer order is used in the
proof to construct a recursive ordinal from a recursive well-founded tree, and, by lemma2.5.8,
that ordinal is greater than or equal to the rank of the tree.

Proposition 2.5.10 An ordinal A is recursive if and only if there exists a recursive well-founded
tree 〈B,#〉 such that the rank of the tree is A, i.e., Rank(〈〉,�) = A (when � is restricted to
B×B).

Proof Suppose that A is a recursive ordinal, so there exists B ⊆ ω, a well-order (⊆ B×B,
and a recursive function f : ω×ω→ω as in definition 2.5.1. Recall that the ∈-tree Tree(A) has
rank A by lemma 2.1.15. The underlying set of Tree(A) is

{〈〉}∪{〈a0,a1, . . . ,an〉 | n ∈ ω∧a0 ∈ A∧∀i < n.ai+1 ∈ ai}

The order-isomorphism between 〈A,⊆〉 and 〈B,(〉 induces an order-isomorphism between Tree(A)
and the tree 〈C,#〉, where C ⊆S{ωn | n ∈ ω} is defined by:

C
def= {〈〉}∪{〈c0,c1, . . . ,cn〉 | n ∈ ω∧ f (c0,c0) = 1∧∀i < n. f (ci+1,ci) = 1∧ ci+1
= ci}

The rank of a tree is invariant under order-isomorphism, so the rank of the tree 〈C,#〉 is also A.
By the fact that f is recursive, 〈C,#〉 is a recursive tree, and we are done.

For the other direction, suppose that A is an ordinal, 〈B,#〉 is a recursive well-founded tree,
and the rank of 〈B,#〉 is A, i.e., Rank(〈〉,�) = A (when restricted to B×B). We need to show

that A is a recursive ordinal. Using lemmas 2.5.6 and 2.5.8, the Kleene-Brouwer order ≤KB

is a well-order on A, and Rank(〈〉,<KB) ≥ Rank(〈〉,�) = A (when restricted to B×B). By

lemma 2.5.3, it suffices to show that Rank(〈〉,<KB) is a recursive ordinal. A finite sequence of
natural numbers can be encoded as a natural number, and, by the fact that 〈B,#〉 is a recursive

tree, the Kleene-Brouwer order <KB is decidable on the encodings. Of course, we can decide
whether one sequence is less than another with respect to the Kleene-Brouwer order even if the
tree is not recursive. However, we also need to be able to decide membership of B in order to
construct a recursive ordinal. Therefore we have a recursive ordinal greater than or equal to A,
and so A is also a recursive ordinal. �

50 CHAPTER 2. PRELIMINARIES

2.6 Binary Choice Operators

In this section, we consider some of the binary choice operators considered in the literature. The
discussion is based upon a simple set-based model of non-deterministic computation, as opposed
to an operational semantics for the choice operators. We assume that non-deterministic programs
can be modelled within Pne(ω⊥) (the set of non-empty subsets of ω⊥), and a non-deterministic
program is represented by A ∈ Pne(ω⊥) if, for all n ∈ ω, the program may terminate with result
n if and only if n ∈ A, and the program may fail to terminate if and only if ⊥ ∈ A. Binary
choice operators are modelled by functions Pne(ω⊥)×Pne(ω⊥)→Pne(ω⊥). After defining these
functions, we show that there is a natural LTSWD for Pne(ω⊥), and so we have definitions of
the variants of similarity and bisimilarity upon Pne(ω⊥). We then describe representations of
the equivalence classes with respect to lower mutual similarity and upper mutual similarity, and
identify which choice operators are well-defined on the equivalence classes.

The binary choice operators that we consider are:

1. Global angelic choice: returns a value that one of the arguments can return, but only fails
to terminate if both arguments always fail to terminate.

2. Ambiguous choice: evaluates both arguments and returns the value returned by the first
argument to terminate (the relative speed of evaluation is deliberately unspecified).

3. Erratic choice: chooses between the arguments before evaluating just one of them, and
returning the value if it terminates.

4. Local demonic choice: evaluates both arguments and, if both terminate with a value, it
returns one of those values, otherwise it fails to terminate.

5. Global demonic choice: always fail to terminate if either argument may fail to terminate,
but otherwise returns a value that one of the arguments can return.

The descriptions above are rather imprecise, so we define a function for each operator.

Definition 2.6.1 The binary choice operators are represented by functions:

GAng,Amb,Err,LDem,GDem : Pne(ω⊥)×Pne(ω⊥)→Pne(ω⊥)

which are defined, for A,B ∈ Pne(ω⊥) by:

GAng(A,B) def= {⊥ | A∪B = {⊥}}∪{m ∈ ω | m ∈ A}∪{n ∈ ω | n ∈ B}
Amb(A,B) def= {⊥ | ⊥ ∈ A∩B}∪{m ∈ ω | m ∈ A}∪{n ∈ ω | n ∈ A}
Err(A,B) def= {⊥ | ⊥ ∈ A∪B}∪{m ∈ ω | m ∈ A}∪{n ∈ ω | n ∈ A}

LDem(A,B) def= {⊥ | ⊥ ∈ A∪B}∪{m ∈ ω | m ∈ A∧ (∃n ∈ ω.n ∈ B)}
∪{n ∈ ω | (∃m ∈ ω.m ∈ A)∧n ∈ B}

GDem(A,B) def= {⊥ | ⊥ ∈ A∪B}∪{m ∈ ω | m ∈ A∧⊥
∈ A∪B}
∪{n ∈ ω | n ∈ B∧⊥
∈ A∪B}

2.6. BINARY CHOICE OPERATORS 51

GAng Amb Err LDem GDem

{0} and {1} {0,1} {0,1} {0,1} {0,1} {0,1}
{0} and {⊥} {0} {0} {⊥,0} {⊥} {⊥}
{0} and {⊥,1} {0,1} {0,1} {⊥,0,1} {⊥,0,1} {⊥}
{⊥} and {⊥} {⊥} {⊥} {⊥} {⊥} {⊥}
{⊥} and {⊥,1} {1} {⊥,1} {⊥,1} {⊥} {⊥}
{⊥,0} and {⊥,1} {0,1} {⊥,0,1} {⊥,0,1} {⊥,0,1} {⊥}

Figure 2.7: Action of binary choice operators

We have the following equalities, for all A,B ∈ Pne(ω⊥):

GAng(A,B) =

{
{⊥} if A∪B = {⊥}
(A∪B)\{⊥} otherwise

Amb(A,B) =

{
A∪B if ⊥ ∈ A∩B

(A∪B)\{⊥} otherwise

Err(A,B) = A∪B

GDem(A,B) =

{
{⊥} if ⊥ ∈ A∪B

A∪B otherwise

Figure 2.7 shows the behaviour of the choice operators on a representative collection of sets.

The set Pne(ω⊥) can be considered as the set of states of an LTSWD. As before, a ⊥ urelement
signifies divergence, but now the natural numbers are treated as urelements, not as sets. Defini-
tion 2.6.2 describes an LTSWD for the special case Pne(ω⊥), but a more general definition could
be given for arbitrary sets of urelements.

Definition 2.6.2 The ∈-LTSWD for Pne(ω⊥) is 〈P(ω⊥),ω,⇑may,−→〉, where the may divergence
predicate and labelled transition relation are defined, for A ⊆ ω⊥, by:

• A ⇑may if and only if ⊥ ∈ A.

• For all n ∈ ω, A
n−→ /0 if and only if n ∈ A.

Note that it is necessary to add a terminal state in the LTSWD for Pne(ω⊥), and the empty set
serves this purpose.

The variants of similarity, mutual similarity, and bisimilarity apply to the states of the ∈-LTSWD
for Pne(ω⊥), but it is useful to have an elementary definition. The following equivalences hold

52 CHAPTER 2. PRELIMINARIES

for the variants of similarity, for all A,B ∈ Pne(ω⊥):

A�LS B ⇐⇒∀n ∈ ω.n ∈ A =⇒ n ∈ B

A�US B ⇐⇒⊥
∈ A =⇒ (⊥
∈ B∧∀n ∈ ω.n ∈ B =⇒ n ∈ A)

A�CS B ⇐⇒ (∀n ∈ ω.n ∈ A =⇒ n ∈ B)∧
⊥
∈ A =⇒ (⊥
∈ B∧∀n ∈ ω.n ∈ B =⇒ n ∈ A)

A�RS B ⇐⇒ (∀n ∈ ω.n ∈ B =⇒ n ∈ A)∧
⊥
∈ A =⇒ (⊥
∈ B∧∀n ∈ ω.n ∈ B =⇒ n ∈ A)

For lower similarity and refinement similarity, we can simplify to:

A�LS B ⇐⇒ A\{⊥} ⊆ B\{⊥}
A�RS B ⇐⇒ B ⊆ A

For upper similarity and the second part of convex similarity, we have that, for all A,B ∈
Pne(ω⊥):

⊥
∈ A =⇒ (⊥
∈ B∧∀n ∈ ω.n ∈ B =⇒ n ∈ A)

⇐⇒⊥
∈ A =⇒ (⊥
∈ B∧B ⊆ A)

⇐⇒ (⊥ ∈ B =⇒⊥∈ A)∧ (⊥∈ A∨B ⊆ A)

⇐⇒ (⊥ ∈ B =⇒⊥∈ A)∧ (∀n ∈ ω.n ∈ B =⇒⊥∈ A∨n ∈ A)

In the ∈-LTSWD for Pne(ω⊥), each variant of mutual similarity coincides with the correspond-
ing variant of bisimilarity, because there no sequences of transitions with length greater than one
(a similar result is proved in lemma 4.2.5). In addition, convex bisimilarity, which is the same as
refinement bisimilarity, coincides with equality. It follows that convex similarity and refinement
similarity are anti-symmetric, and thus partial orders.

Lower similarity and upper similarity are not anti-symmetric, and so lower bisimilarity and
upper bisimilarity have non-trivial equivalence classes. All of the non-trivial equivalences are
generated by:

• For A ∈ Pne(ω), A�LB A∪{⊥}.

• For A,B ∈ P(ω), A∪{⊥}�UB B∪{⊥}.

For lower bisimilarity and upper bisimilarity, the above equivalences imply that there is a unique
member of each equivalence class in Pne(ω)∪{⊥}, and so lower similarity and upper similarity
are partial orders on this set. The bijection between Pne(ω)∪{⊥} and P(ω) that maps ⊥ to the
empty set can be turned into order-isomorphisms for lower similarity and upper similarity by

defining partial orders ≤LS ⊆ P(ω)×P(ω) and ≤US ⊆ P(ω)×P(ω), for A,B ∈ P(ω), by:

A≤LS B ⇐⇒ A ⊆ B

A≤US B ⇐⇒ A = /0∨ (B
= /0∧B ⊆ A)

2.6. BINARY CHOICE OPERATORS 53

GAng Amb Err LDem GDem

Lower Similarity ✓ ✓ ✓ ✓ ✗

Upper Similarity ✗ ✗ ✓ ✓ ✓

Convex Similarity ✗ ✗ ✓ ✓ ✓

Refinement Similarity ✗ ✓ ✓ ✓ ✗

Figure 2.8: Monotonicity of choice operators

Then 〈Pne(ω) ∪ {⊥},�LS〉 is order-isomorphic to 〈P(ω),≤LS〉, and 〈Pne(ω) ∪ {⊥},�US〉 is

order-isomorphic to 〈P(ω),≤US〉. The partial orders on P(ω) are used more often than those
on Pne(ω)∪{⊥} in the specification and refinement literature. In particular, the partial order

〈P(ω),≤US〉 is often embedded into the space of predicate transformers which, in this case, is a
subset of P(ω)→P(ω).

If the choice functions are monotone for lower similarity and upper similarity, then they deter-
mine well-defined monotone choice functions on the equivalence classes of P(ω). The choice
functions and their monotonicity properties for the different variants of similarity are presented
in figure 2.8. Counter examples for the non-monotonic combinations are:

GDem({0},{1}) = {0,1}
�LS {⊥} = GDem({⊥,0},{1})
GAng({⊥},{1}) = {1}
�US {0,1} = GAng({⊥,0},{1})
Amb({⊥},{1}) = {1}
�US {0,1} = Amb({⊥,0},{1})
GAng({⊥},{1}) = {1}
�CS {0,1} = GAng({⊥,0},{1})
Amb({⊥},{1}) = {1}
�CS {0,1} = Amb({⊥,0},{1})
GAng({⊥,0},{⊥}) = {0}
�RS {⊥} = GAng({⊥},{⊥})
GDem({⊥,0},{1}) = {⊥}
�RS {0,1} = GDem({0},{1})

Global angelic and global demonic choice are unusual because they require knowledge of all
possible terminating and non-terminating behaviour of their arguments. Adding a terminating
or non-terminating behaviour to one of the arguments of global angelic or global demonic choice
may remove a terminating or non-terminating behaviour from the result, as demonstrated by the
lack of monotonicity of global angelic and global demonic choice with respect to refinement
similarity.

Informal operational accounts of global angelic and global demonic choice are sometimes de-
scribed, and a formal semantics can be given (see [CC92]). However, these choice operators
are normally studied in conjunction with lower similarity and upper similarity (respectively).
Then there is no need to give an operational account of the global choice operators because they
coincide with the erratic choice operator which has a straightforward operational semantics. It

54 CHAPTER 2. PRELIMINARIES

can be shown that, for all A,B ∈ Pne(ω⊥):

GAng(A,B)�LB Amb(A,B)�LB Err(A,B)

Err(A,B)�UB LDem(A,B)�UB GDem(A,B)

The monotonicity of erratic choice with respect to lower similarity and upper similarity ensures
that it induces well-defined monotone functions on the equivalence classes for those relations.
The image of those functions on the partial orders 〈P(ω),≤LS〉 and 〈P(ω),≤US〉 are given by
LErr,UErr : P(ω)×P(ω)→P(ω), which are defined, for A,B ∈ P(ω), by:

LErr(A,B) = A∪B

UErr(A,B) =

{
/0 if (A = /0)∨ (B = /0)
A∪B otherwise

Chapter 3

The Non-Deterministic λ-Calculus L

We define a non-deterministic λ-calculus L with a call-by-name operational semantics. The
type system and syntax are based upon Moggi’s computational λ-calculus [Mog89b, Mog89a,
Mog91] in order to control the resolution of non-determinism. Non-determinism is introduced
via indexed erratic choice terms. The non-deterministic terms that can be formed are not equally
expressive, and in chapter 5 we study relative definability properties of such terms. A family of
non-deterministic λ-calculi is obtained by considering fragments of L . In the sequel, we show
that the convex bisimilarity relations for the λ-calculi in this family are not simply restrictions
of convex bisimilarity for L .

Sections 3.1 and 3.2 introduce the type system and syntax of L , and section3.3 presents a type
assignment system. Sections 3.4 and 3.5 define operational semantics via a reduction relation
and an evaluation relation with a may divergence predicate. Section 3.6 proves that the terms
of certain types always terminate. Section 3.7 states the closure conditions needed to obtain
reasonable fragments of L , and section 3.8 proves results about the ranks of derivation trees for
the operational semantics in certain fragments of L .

3.1 Types

This section defines a type system for the non-deterministic λ-calculus L introduced in sec-
tion 3.2. It is a Church-style type assignment system (see [Bar92]), where terms are annotated
with types in such a way that the type of a term can be inferred.

The set of types includes indexed coproducts and products, where the indexing set may be count-
ably infinite. The natural numbers type can be defined as a coproduct type, as opposed to an
inductive or recursive type. However, it is necessary to consider infinite terms in order to make
full use of such types. For example, a case statement upon a term of natural numbers type must
have a branch for each natural number. The map from the natural numbers to (codings of) the
branches need not be computable, and this provides a richer structure in which to study relative
definability.

The programming language is based upon Moggi’s computational λ-calculus and thus has a
computation type constructor P⊥(·). Programs that are non-terminating or non-deterministic

55

56 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

must have a type of the form P⊥(σ), for some type σ. For example, there is a program with type
P⊥(nat) that sometimes fails to terminate, sometimes terminates with result 0, and sometimes
terminates with result 1.

Definition 3.1.1 The set of types is defined by:

σ,τ,ρ ::= sum〈σn | n < κ〉 (indexed coproducts, κ ≤ ω)
| prod 〈σn | n < κ〉 (indexed products, κ ≤ ω)
| σ → τ (functions)
| P⊥(σ) (non-terminating, non-deterministic computations)

The computation types are those of the form P⊥(σ). The remaining types are called value types.

The variable κ ranges over cardinals less than or equal to ω, and hence is always a natural
number or ω. This restricts n to natural numbers. The set of types is well-defined even though
the indexing set for coproducts and products may be countably infinite.

The following type abbreviations are used in the sequel:

unit
def= prod 〈〉

bool
def= sum〈unit,unit〉

nat
def= sum〈unit | n < ω〉

σ× τ def= prod 〈σ,τ〉
σ+ τ def= sum〈σ,τ〉

In section 4.2 we require a measure of the occurrences of the computation type constructor P⊥(·)
in a type. A suitable measure is formalised in definition 3.1.2.

Definition 3.1.2 The P-order of a type σ is an ordinal defined by induction on σ:

POrd(sum〈σn | n < κ〉) def=
[

{POrd(σn) | n < κ}
POrd(prod 〈σn | n < κ〉) def=

[
{POrd(σn) | n < κ}

POrd(σ → τ) def= POrd(τ)

POrd(P⊥(σ)) def= POrd(σ)+ 1

The P-order of a type is the rank of a tree derived from the type by discarding the source type
from function types, and folding coproduct, product, and function types into the nearest enclos-
ing computation type. It can be shown that the image of the P-order function is ω1.

3.2 Language

We define the syntax of the non-deterministic λ-calculus L and discuss features of the language.

3.2. LANGUAGE 57

L,M,N ::= x (variable, x ∈ Var)
| injn,σof M (injection into component n, n < ω)
| caseM of 〈xn.Nn | n < κ〉 (case, xn bound in Nn, κ ≤ ω)
| tuple〈Mn | n < κ〉 (tuple, κ ≤ ω)
| projnof M (projection of component n, n < ω)
| λx:σ.M (abstraction, x bound in M)
| M N (application)
| [M] (unit)
| letx:σ ⇐ M inN (sequencing, x bound in N)
| fixx:σ.M (fixed-point, x bound in M)
| ?〈Mn | n < κ〉 (indexed erratic choice, 0 < κ ≤ ω)

K ::= injn,σof M
| tuple〈Mn | n < κ〉
| λx:σ.M
| [M]

Figure 3.1: Terms and canonical terms

Definition 3.2.1 A set of variables Var with cardinality ω1 is assumed. The terms and canonical
terms of the language L are defined in figure 3.1. The scope of variable binding constructs
extends as far to the right as possible. The free variables of a term are given by a function
Fv(·) defined in figure 3.2 by induction on terms. A term M is closed if Fv(M) = /0, and open
otherwise.

Set-theoretic tuples of terms are written 〈Mn | n < κ〉, whereas tuples of the language have the
form tuple〈Mn | n < κ〉. A term of L may be an infinite object and should be thought of as a
countably-branching well-founded tree, where each instance of a term constructor corresponds
to a node in the tree, rather than as a sequence of symbols. Formally, the set of terms can
be constructed as the least fixed-point of a monotone function (determined by the grammar in
figure 3.1) on a set of trees composed of sequences (see example2.1.12).

Infinitary languages have been used for mathematical and program logics with infinitary con-
junctions, disjunctions, or quantifiers (see [Kei77, Mil89, Abr87a]). Several process calculi also
permit infinitary term constructors: CCS has ∑i∈I Pi, and CSP with unbounded non-determinism
[Ros88, Ros98] has

�
i∈I Pi. In contrast with these languages, L allows only natural numbers or

ω as indexing sets. This does not reduce the expressiveness of L and makes it easier to work
with the definition of compatibility in chapter 5. However, it does imply that, in general, the
terms ?〈M,N〉, ?〈N,M〉, and ?〈M,M,N〉 are not syntactically identical, although they are iden-
tified by all of the semantic relations we consider because binary erratic choice is expected to
be commutative, associative, and idempotent (cf. the non-idempotent category-theoretic seman-
tics for erratic non-determinism in [Leh76, Abr83, PR88, Rus90]). Note that ?〈〉 is not a term
because κ must be non-zero for indexed erratic choice.

As with types, a set-theoretic tuple of terms 〈Mn | n < κ〉 that appears in another term need
not arise as a computable map with respect to some coding. For the indexed erratic choice

58 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Fv(x) def= {x}
Fv(injn,σof M)def= Fv(M)

Fv(caseM of 〈xn.Nn | n < κ〉) def= Fv(M)∪S{Fv(Nn)\{xn} | n < κ}
Fv(tuple〈Mn | n < κ〉) def=

S{Fv(Mn) | n < κ}
Fv(projnof M)def= Fv(M)

Fv(λx:σ.M)def= Fv(M)\{x}
Fv(M N) def= Fv(M)∪Fv(N)

Fv([M]) def= Fv(M)

Fv(letx:σ ⇐ M inN)def= Fv(M)∪ (Fv(N)\{x})
Fv(fixx:σ.M)def= Fv(M)\{x}

Fv(?〈Mn | n < κ〉) def=
S{Fv(Mn) | n < κ}

Figure 3.2: Free variables

constructor this is reasonable because we intend to reason about families of implementations,
and there is no suggestion that a single implementation should be able to generate all possible
outcomes (or test whether an outcome is possible). For indexed coproducts and products, we
expect to write specifications using the full language and subsequently refine them to a fragment
of the language that uses only a restricted collection of countably infinite case statements for
arithmetic.

In the presence of countably-infinite term constructors it is necessary to assume an uncountable
set of variables if the usual variable renaming and capture-free substitution conventions are to
be used. For example, if Var = {xn | n ∈ ω}, then tuple〈xn | n < ω〉 would exhaust the supply
of variables. In fact, such terms cannot be typed using the system defined in section3.3 because
environments are finite and there are no term constructors that bind infinitely many variables
simultaneously in the same subterm. A Martin-Löf style “split” term constructor (see [Tho91,
Gor94]) would have to bind infinitely many variables.

A set of variables with cardinality ω1 is adequate because every term uses only countably many
variables in free, bound, or binding occurrences. This can be shown by induction on the structure
of terms, making use of the fact that ω1 is a regular cardinal1. This property implies that fresh
variables can always be chosen, even for a countable set of terms, and so we can establish the
usual naming convention for bound variables: each variable appears at most once in a binding
occurrence within a term. Every term is α-equivalent (see [Bar84]) to a term satisfying the
naming convention, and henceforth terms are considered up to α-equivalence instead of syntactic
identity. Capture-free substitution (or just substitution) can be defined in the usual way upon the
equivalence classes with respect to α-equivalence (see [Cro93]).

Substitution into a canonical term clearly results in another canonical term. Conversely, if a
canonical term is the result of a substitution it can be shown that one of the original terms must
have been canonical.

1A cardinal κ is regular if it is not the limit of a set of ordinals strictly less than κ unless the set has cardinality
greater than or equal to κ (see [Kun80]).

3.3. TYPE ASSIGNMENT 59

Lemma 3.2.2 If M[N/x] is canonical, then either M is canonical, or M = x and N is canonical.

Proof Case analysis of M. �

The unit and sequencing term constructors are taken from Moggi’s computational λ-calculus
[Mog89b, Mog91]. The computational λ-calculus arose from the observation that there is com-
monality between the abstract structures used to model programming languages with different
notions of computation. The common structure can be formulated as a finite product category
with a strong monad and additional structure that depends on the notion of computation embod-
ied by the programming language. For example, in a category of predomains the lifting functor
(·)⊥ forms part of a strong monad (see [Fio94]).

There is a well known correspondence between many-sorted equational logic and finite product
categories (see [LS86, Cro93]). Moggi shows that there is a similar correspondence between
the computational λ-calculus and the class of finite product categories with a strong monad
and certain exponentials (if the functor component of the monad is T , then every exponential
of the form T (B)A must exist, for objects A and B). Terms of the form [M] are interpreted
using the unit of the monad, allowing values to be converted into computations. Terms of the
form letx ⇐ M inN are interpreted using the functor and multiplication of the monad, allowing
computations to be composed.

Cenciarelli and Moggi [CM93] propose structuring complex denotational semantics as a se-
quence of computational λ-calculi ML(Σ1), . . . ,ML(Σn), with signatures Σ1, . . . ,Σn, and a se-
quence of syntactic translations φ : ML(Σi)→ML(Σi+1). If there is a syntactic translation from
the programming language to ML(Σ0), and a denotational model of the computational λ-calculus
ML(Σn), then a denotational semantics for the programming language can be given via the trans-
lations. The benefit of using the computational λ-calculus for this approach is that the unit and
sequencing constructors are factored out of the signatures.

Wadler [Wad92] shows that a mechanism for sequencing) computations is useful for introduc-
ing notions of computations such as state or input/output into a lazy functional programming
language. Independently of Moggi and Wadler, Spivey [Spi89, Spi90] also observes that list
comprehensions and exceptions form monads.

The computational λ-calculus has a natural call-by-name operational semantics with strict se-
quencing (see sections 3.4 and 3.5). For example, the term letx ⇐ M inN is evaluated by eval-
uating M, substituting the result for x in N, and then evaluating the result of that substitution.
Crole and Gordon [Gor94, CG95] use this operational semantics for deterministic λ-calculi with
input/output, and Jeffrey [Jef99] uses it for a non-deterministic λ-calculus.

A call-by-name operational semantics with strict sequencing for the non-deterministic λ-calculus
L provides an adequate degree of control over the resolution of non-determinism, whilst still
permitting definitions of semantic relations as applicative similarity and bisimilarity (see the
discussion on page 19).

3.3 Type Assignment

The type assignment system for L is adapted from those of PCF and the computational λ-
calculus following [Gor94, CG95, Jef99]. We define the system and introduce some useful

60 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

abbreviations for terms.

A type is assigned to a term with respect to an environment, which determines types for a finite
collection of variables that may be free in the term. It suffices to consider a finite collection
because we are primarily interested in terms that have no free variables, and there is no way to
bind an infinite collection of free variables in a term.

Definition 3.3.1 An environment is a finite partial function from Var to types. The symbols Γ
and ∆ range over environments. When x
∈ Dom(Γ), the environment that extends Γ by mapping
x to σ is denoted Γ,x : σ. The environment Γ,∆ is defined similarly for environments Γ and ∆
such that Dom(Γ)∩Dom(∆) = /0. The empty environment is denoted by /0.

Definition 3.3.2 The type assignment judgement, term M has type σ in environment Γ, written
Γ � M : σ, is defined inductively by the rules in figure 3.3. The notation Γ � M = N : σ means
that the terms M and N are equal (up to α-conversion), and both Γ � M : σ and Γ � N : σ can be
derived. Define the set of well-typed terms L , the set of well-typed, closed terms L0, and the
set of well-typed, closed, canonical terms Can0 by:

L
def= {M | ∃Γ,σ. Γ � M : σ}

L0
def= {M | ∃σ. /0� M : σ}

Can0
def= {K | ∃σ. /0� K : σ∧K canonical}

Henceforth, terms are assumed to be well-typed. A term M is a program if M ∈ L0, and in
this case the empty environment is omitted from the type assignment judgement, i.e., we write
� M : σ for /0� M : σ.

The fixed-point and erratic choice term constructors are always assigned a computation type. In
sections 3.4 and 3.6, it is shown that there is no way to use the other constructors to introduce
non-termination or non-determinism at value types.

The type assignment system satisfies the usual properties such as weakening and contraction.

Lemma 3.3.3 Let Γ and ∆ be environments such that Dom(Γ)∩Dom(∆) = /0. Then:

1. If Γ � M : σ, then Fv(M) ⊆ Dom(Γ).

2. If Γ � M : σ and Γ � M : τ, then σ = τ.

3. If Γ � M : σ, then Γ,∆ � M : σ.

4. If Γ,∆ � M : σ and Fv(M) ⊆ Dom(Γ), then Γ � M : σ.

5. If Γ,x1 : σ1, . . . ,xn : σn � M : τ and Γ � Ni : σi, for 1 ≤ i ≤ n, then
Γ � M[N1, . . . ,Nn/x1, . . . ,xn] : τ.

Proof In each case, by induction on the type assignment derivation for M. (2) makes essential
use of the type annotations. (3) uses the bound variable naming convention to ensure that the
bound variables of M do not appear in ∆. �

3.3. TYPE ASSIGNMENT 61

Γ � x : σ (Γ(x) = σ)

Γ � M : σm

Γ � injm,sum〈σn | n < κ〉of M : sum〈σn | n < κ〉 (m < κ)

Γ � M : sum〈σn | n < κ〉 {Γ,xn : σn � Nn : τ | n < κ}
Γ � caseM of 〈xn.Nn | n < κ〉 : τ

{Γ � Mn : σn | n < κ}
Γ � tuple〈Mn | n < κ〉 : prod〈σn | n < κ〉

Γ � M : prod〈σn | n < κ〉
Γ � projmof M : σm

(m < κ)

Γ,x : σ � M : τ
Γ � λx:σ.M : σ → τ

Γ � M : σ → τ Γ � N : σ
Γ � M N : τ

Γ � M : σ
Γ � [M] : P⊥(σ)

Γ � M : P⊥(σ) Γ,x : σ � N : P⊥(τ)
Γ � letx:σ ⇐ M inN : P⊥(τ)

Γ,x : P⊥(σ) � M : P⊥(σ)
Γ � fixx:P⊥(σ).M : P⊥(σ)

{Γ � Mn : σ | n < κ}
Γ �?〈Mn | n < κ〉 : P⊥(σ)

Figure 3.3: Type assignment

62 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Although type annotations within terms are necessary to ensure uniqueness of types, we often
omit them for brevity.

Lemma 3.3.4 describes an equivalence between terms with successive substitutions. The type
assignment judgements are used only to restrict the free variables appearing in terms, and so a
slightly more general statement could be given for untyped terms.

Lemma 3.3.4 Let Γ and ∆ = x1 : σ1, . . .xn : σn be environments such that Γ ∩∆ = /0. If the
variables y1, . . . ,ym are not in the domains of Γ or ∆, and:

• Γ,∆,y1 : τ1, . . . ,ym : τm � L : σ

• For all 1 ≤ i ≤ m, Γ,∆ � Mi : τi

• For all 1 ≤ i ≤ n, Γ � Ni : σi

Then, with �M = M1, . . . ,Mm and �N = N1, . . . ,Nn:

Γ � L[�M/�y][�N/�x] = L[�N/�x][M1[�N/�x], . . . ,Mm[�N/�x]/y1, . . . ,ym] : σ

Proof The equality is proven by induction on the term L. The type assignment follows from
lemma 3.3.3. �

We now consider abbreviations for frequently used terms. The abbreviations defined in Fig-
ure 3.4 include constants for the ground types unit, bool, and nat, as well as logical and arith-
metical operators. Variables that appear only on the right-hand side of definitions are fresh.

In addition, every non-empty set of natural numbers determines a program of type P⊥(nat).
For A ⊆ne ω, let 〈an | n < κ〉 be the unique strictly increasing sequence of natural numbers that
enumerates the elements of A. Then define:

?A
def=?〈an | n < κ〉

For example, ?ω=?〈n | n < ω〉.
The terms �, false, true, n are canonical, for all n ∈ ω. The boolean terms false and true are
distinct from the numerical terms 0 and 1 because their type annotations differ.

The definitions of the arithmetic operators illustrate how functions on ω determine terms. More
generally, any function f : ωn →ω determines a term x1 : nat, . . . ,xn : nat � M : nat composed
of nested case statements.

With the exception of conditional terms if L thenM elseN, the third group of definitions in fig-
ure 3.4 create or manipulate computations. Terms of the form Ωσ never terminate. The call-
by-value abbreviation λvx:σ.M combines the default call-by-name abstraction with strict se-
quencing to evaluate the argument before it is substituted into M. The “function” versions of the
sequencing and fixed-point constructs fletσ x:τ ⇐ M inN and ffixσ f :τ.M are used to define recur-
sive functions with type σ → P⊥(τ). In contrast, a program of the form fixx.M would have type
P⊥(σ → P⊥(τ)). The call-by-value abstractions and the “function” sequencing and fixed-point
constructs are always canonical terms.

3.3. TYPE ASSIGNMENT 63

�
def= tuple〈〉

false
def= inj0,bool of �

true
def= inj1,bool of �

n
def= injn,nat of � (n ∈ ω)

not(M)def= caseM of 〈x0.true,x1.false〉
or (M,N)def= caseM of 〈x0.caseN of 〈y0.false,y1.true〉,x1.true〉

and(M,N)def= caseM of 〈x0.false,x1.caseN of 〈y0.false,y1.true〉〉
plus(M,N)def= caseM of 〈xi.caseN of 〈y j.i+ j | j < ω〉 | i < ω〉

minus(M,N)def= caseM of 〈xi.caseN of 〈y j.Li, j | j < ω〉 | i < ω〉
where Li, j =

{
i− j if i ≥ j

0 if i < j

eq (M,N)def= caseM of 〈xi.caseN of 〈y j.Li, j | j < ω〉 | i < ω〉
where Li, j =

{
false if i
= j

true if i = j

lt(M,N)def= caseM of 〈xi.caseN of 〈y j.Li, j | j < ω〉 | i < ω〉
where Li, j =

{
false if i ≥ j

true if i < j

Ωσ
def= fixx:σ.x

λvx:σ.M
def= λy:P⊥(σ). letx:σ ⇐ y inM

if L thenM elseN
def= caseLof 〈x0.N,x1.M〉

fletσ x:τ ⇐ M inN
def= λy:σ. letx:τ ⇐ M inN y

ffixσ f :τ.M def= fletσ f :τ ⇐ (fixg:P⊥(τ). [fletσ f :τ ⇐ g inM]) inM

M∪N
def= letx:bool ⇐?〈false,true〉 in if x thenM elseN

Figure 3.4: Abbreviated terms

64 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Γ � � : unit Γ � false : bool

Γ � true : bool Γ � n : nat (n ∈ ω)

Γ � M : bool

Γ � not (M) : bool

Γ � M : bool Γ � N : bool

Γ � or (M,N) : bool

Γ � M : bool Γ � N : bool

Γ � and(M,N) : bool

Γ � M : nat Γ � N : nat

Γ � plus(M,N) : nat

Γ � M : nat Γ � N : nat

Γ � minus(M,N) : nat

Γ � M : nat Γ � N : nat

Γ � eq(M,N) : bool

Γ � M : nat Γ � N : nat

Γ � lt(M,N) : bool

Γ � ΩP⊥(σ) : P⊥(σ)

Γ,x : σ � M : P⊥(τ)
Γ � λvx:σ.M : P⊥(σ) → P⊥(τ)

Γ � L : bool Γ � M : σ Γ � N : σ
Γ � if L thenM elseN : σ

Γ � M : P⊥(τ1) Γ,x : τ1 � N : σ → P⊥(τ2)
Γ � fletσ x:τ1 ⇐ M inN : σ → P⊥(τ2)

Γ, f : σ → P⊥(τ) � M : σ → P⊥(τ)
Γ � ffixσ f :σ → P⊥(τ).M : σ → P⊥(τ)

Γ � M : P⊥(σ) Γ � N : P⊥(σ)
Γ � M∪N : P⊥(σ)

Γ �?A : P⊥(nat) (A ⊆ne ω)

Figure 3.5: Type assignment for abbreviated terms

The abbreviation M∪N serves as the binary erratic choice constructor for L . It is also possible

to define M ∪N
def= letx ⇐?〈M,N〉 inx. However, the latter definition would cause problems

when we consider fragments of L , because a fragment that contains M∪N would also have to
contain ?〈M,N〉. The definition in figure 3.4 is more useful because it only requires a fragment
to contain ?〈false,true〉.
Derived type assignment rules for the abbreviations are given in figure3.5.

3.4 Reduction Semantics

In this section we present a reduction semantics for L and a novel treatment of reduction con-
texts, and then discuss some of the properties of reduction. The reduction semantics follows

3.4. REDUCTION SEMANTICS 65

E ::= case(−)of 〈xn.Nn | n < κ〉
| projnof (−)
| (−)N
| letx:σ ⇐ (−) inN

Figure 3.6: Reduction constructors

Plotkin’s [Plo81] guidelines for a structural operational semantics because the behaviour of a
term M depends only upon the behaviour of terms formed from subterms of M.

The reduction semantics consists of a reduction relation � ⊆ L ×L and a finer deterministic

reduction relation �det ⊆�. Reductions are permitted on open terms to facilitate a proof tech-
nique used in chapter 5. The relations are defined by induction from a collection of rule schema.
Reduction constructors are used to specify where reduction can take place, and this simplifies
the rule schema because only one rule schema is needed to express that reduction may take
place inside a reduction constructor. Felleisen and Friedman [FF86] introduced this approach
to defining reduction relations, as well as the terminology reduction context for nested reduc-
tion constructors. Reduction contexts do not require a treatment of variable-capturing contextual
substitution (see [Pit97]).

Definition 3.4.1 The reduction constructors are defined in figure3.6. They contain exactly one
occurrence of a distinguished symbol (−)
∈ L . When E is a reduction constructor and M is a
term, we write E(M) for the term that is obtained by replacing the occurrence of (−) by M. This
induces a well-defined function on α-equivalence classes of terms.

Reduction constructors determine a reduction strategy, or a path through each abstract syntax
tree to the next redex, and so each term has at most one redex. Only one rule schema can apply
to a redex, but reduction is non-deterministic because the rule schema for indexed erratic choice
may be instantiated in more than one way. The deterministic reduction relation is obtained by
excluding the reduction rule for indexed erratic choice.

It is sometimes inconvenient to work with reduction contexts in proofs. For this reason, we define
a blocking relation � ⊆ L ×Var and a blocked substitution operation. A term M is blocked
at a variable x, written M � x, if there is a reduction context �E(−) = E1(E2(. . .En(−) . . .))
such that M = �E(x). The blocked substitution of N for the blocked variable x in M satisfies
M[x &→N] = �E(N), i.e., substitution only happens at the occurrence of x corresponding to the
distinguished symbol (−).

Definition 3.4.2

• The reduction relation � ⊆ L ×L (also known as a transition relation or a small-step
relation) is defined inductively from the rules in figure3.7.

• The deterministic reduction relation �det ⊆ � is defined inductively from the rules in

figure 3.7 with the rule ?〈Mn | n < κ〉� [Mm] removed.

66 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

M � N

E(M)� E(N)

case(injmof M)of 〈xn.Nn | n < κ〉� Nm[M/xm]

projmof (tuple〈Mn | n < κ〉)� Mm

(λx.M)N � M[N/x]

letx ⇐ [M] inN � N[M/x]

fixx.M � M[fixx.M/x]

?〈Mn | n < κ〉� [Mm] (m < κ)

Figure 3.7: Reduction relation

• A term M converges to a term N if M �∗ N and N has no reductions.

• A term M0 diverges, denoted M0 �ω, if there exists an ω-sequence of terms 〈Mn | n < ω〉
such that Mn � Mn+1, for all n ∈ ω.

• The blocking relation �⊆ L ×Var is defined inductively from the rules:

x � x
M � x

E(M) � x

If M � x, then we say that the term M is blocked on x.

• For terms Γ,x : τ � M : σ and Γ,x : τ � N : τ such that M � x, define the blocked substi-
tution of N for the blocked occurrence of x in M, denoted M[x &→N], by induction on the
derivation of M � x:

x[x &→N] def= N

E(M)[x &→N] def= E(M[x &→N])

Example 3.4.3 demonstrates the use of the sequencing construct for controlling resolution of
non-determinism.

Example 3.4.3 Consider the following programs of type P⊥(nat) → P⊥(nat):

M
def= λx:P⊥(nat). lety ⇐ x in [plus(y,y)]

N
def= λx:P⊥(nat). lety ⇐ x in letz ⇐ x in [plus(y,z)]

When M is applied to ?〈0,1〉, a possible reduction sequence is:

M ?〈0,1〉 � lety ⇐?〈0,1〉 in [plus(y,y)]

� lety ⇐ [0] in [plus(y,y)]

� [plus(0,0)]

3.4. REDUCTION SEMANTICS 67

Ω �det Ω

(λvx.M)N �det letx ⇐ N inM

if falsethenM elseN �det N

if truethenM elseN �det M

(fletx ⇐ L inM)N �det letx ⇐ L inM N

(ffix f .M)N �+
det (M[ffix f .M/ f])N

M∪N �+ M

M∪N �+ N

?A� [n] (n ∈ A)

Figure 3.8: Derived reduction rules

The only other reduction sequence gives M ?〈0,1〉�+[plus(1,1)]. Similarly, for N ?〈0,1〉 , we

have N ?〈0,1〉�+[plus(0,0)] and N ?〈0,1〉�+[plus(1,1)]. In addition, there is a reduction se-
quence in which two different choices are made:

N ?〈0,1〉 � lety ⇐?〈0,1〉 in letz ⇐?〈0,1〉 in [plus(y,z)]

� lety ⇐ [0] in letz ⇐?〈0,1〉 in [plus(y,z)]

� letz ⇐?〈0,1〉 in [plus(0,z)]

� letz ⇐ [1] in [plus(0,z)]

� [plus(0,1)]

Reversing the two choices gives a fourth reduction sequence N ?〈0,1〉 �+ [plus(1,0)].

Appropriate reduction rules can be derived for the arithmetic operators. For example, it can be

shown that for all programs M,N ∈ L0, if M �∗ m and N �∗ n, then plus(M,N)�+ m+ n.
Note that the arithmetic expressions in example 3.4.3 are not reduced unless they are placed
inside another context because, e.g., [plus(0,1)] is canonical.

The reduction rules in figure 3.8 can be derived for the other abbreviations in figure 3.4. In
addition, the conditional construct is a reduction constructor if (−)thenM elseN. Call-by-value
abstractions and the “function” sequencing and fixed-point constructs do not form reduction
constructors because they immediately reduce to a sequencing construct when applied to a term.

The derived reduction rules have the expected properties. For example, Ω always diverges,
ffix f .M is a fixed-point for recursively-defined functions, binary erratic choice M∪N reduces
to either M or N, and the erratic choice ?A of a set of numbers A ⊆ne ω reduces to any number
in A.

The reduction relation preserves the type of a term, and, if a term of value type has a reduction,
then it must be a deterministic reduction.

68 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Lemma 3.4.4 (Subject Reduction) If Γ � M : σ and M � N then:

1. Γ � N : σ

2. If σ is a value type, then M �det N.

Proof By induction on the derivation of M � N. �

The reduction relation determines a TS 〈L ,�〉 with terms as states (or configurations). The
terms are partitioned according to their type, and the subject reduction property implies that
the reduction relation does not cross partitions. The TS has a complex structure. For example,
there are terms that diverge and terms that have infinitely many successors. However, much
of the reduction behaviour of terms is ignored, because only the convergence and divergence
properties of programs are considered in chapters 4 and 5. Other approaches based on higher-
order weak bisimilarity, such as [FHJ95, Jef99], are more sensitive to reductions (they become
τ-labelled transitions).

Lemma 3.4.5 shows that the blocking relation only relates a term to its free variables, and so
programs are never blocked. Blocked substitution of a term N for the blocked occurrence of x
in M only replaces that occurrence of x. There may be other free occurrences of x in M and free
occurrences of x in N.

Lemma 3.4.5 If Γ � M : τ and M � x, then x ∈ Dom(Γ). If in addition Γ(x) = σ and Γ � N : σ,
then Γ � M[x &→N] : τ.

Proof Prove x∈Fv(M) by induction on the derivation of M � x, and then apply lemma3.3.3(1).
The second part is also proven by induction on the derivation of M � x. �

The “progression” property for the reduction relation tells us that every program is either canon-
ical or has at least one reduction to another program. More generally, every term is canonical,
has at least one reduction, or is blocked on a free variable.

Lemma 3.4.6 If Γ � M : σ, then exactly one of the following holds:

1. M is canonical; or

2. There exists N such that M � N, and the term N is unique if M �det N; or

3. There exists x ∈ Dom(Γ) such that M � x.

Proof By induction on the derivation of Γ � M : σ. �

It follows immediately from lemmas 3.4.4 and 3.4.6 that a term of value type can reduce to at
most one other term. The majority of terms that have reductions with respect to the reduction
relation, but not the deterministic reduction relation, can reduce to more than one term because
they are indexed erratic choice terms inside reduction contexts. The exceptions are singleton
erratic choices, e.g., ?〈�〉 only reduces to [�].

By iterating lemma 3.4.6, we can show that every program diverges or converges to some canon-
ical program (possibly both).

3.4. REDUCTION SEMANTICS 69

Lemma 3.4.7 If M is a program, then M converges to some canonical program or M diverges.

Proof Let X ⊆ L0 be the set of programs that cannot converge to a canonical program:

X
def= {M ∈ L0 |
 ∃K ∈ Can0.M �∗ K}

Consider a program Mn ∈ X . The program Mn cannot be canonical or blocked, and so, by
lemma 3.4.6, there exists Mn+1 such that Mn � Mn+1. If Mn+1 converged to some canonical
program, then Mn could as well, contradicting Mn ∈ X . Therefore Mn+1 ∈ X . We can then
construct an ω-sequence of programs 〈Mn | n ∈ ω〉 such that Mn � Mn+1 and Mn ∈ X , for all
n ∈ ω. Therefore a program must diverge whenever it cannot converge to a canonical program.

�

The reduction relation is certainly not Church-Rosser (see [Bar84, HS86]) because of erratic
choice terms such as ?〈false,true〉. The deterministic reduction relation is trivially Church-
Rosser because each term has at most one deterministic reduction.

In a deterministic setting, programs M and N are said to be Kleene equivalent (see [Pit97,
Las98b]) if, for all canonical programs K, M converges to K if and only if N converges to
K. Non-divergent terms are Kleene equivalent if and only if they are related by the reflexive,
transitive closure of the union of the reduction relation and its dual. In contrast, the relation
(�∪�op)∗ is not useful for L because it relates many programs with the same computation

type, e.g., [false]	?〈false,true〉� [true]. The definition of Kleene equivalence can be replayed
for L , but it is not sensitive to some of the divergence properties of programs. For example, the
programs Ω∪ [�] and [�], both of type P⊥(unit), are Kleene equivalent, but only the first program
can diverge. Taking the divergence properties of programs into consideration leads to a family
of equivalences (and preorders) based upon Kleene equivalence that corresponds to the family
of variants of similarity and bisimilarity for LTSWDs (see definition2.4.11).

Lemma 3.4.8 establishes cardinality bounds upon the set of canonical programs to which a
program can converge.

Lemma 3.4.8 Consider a program M.

1. The set of canonical programs {K | M converges to K} is countable.

2. If M does not contain any occurrences of infinite indexed erratic choice term constructors
and M does not diverge, then the set of canonical programs {K | M converges to K} is
finite.

Proof

1. Each state has a countable set of successors with respect to reduction, because indexed
erratic choice is restricted to finite or ω-sequences of terms. So, for all n ∈ ω, the set of
programs related to M by �n is countable. Therefore

S{{N | M �n N} | n ∈ ω} is also
countable. It is a superset of {K | M converges to K} and we are done.

70 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

2. If {K |M converges to K} is infinite, then the synchronisation tree with root M obtained by

unfolding the TS 〈L ,�〉 has an infinite set of nodes. The synchronisation tree is finitely-
branching, and so, by König’s lemma (lemma 2.1.10), there exists an infinite sequence of
reduction steps from M, i.e., M diverges.

�

Erratic non-determinism is sometimes classified into finite non-determinism and countably in-
finite non-determinism. For example, ?〈false,true〉 and ?〈0,1, . . . ,n〉, for n ∈ ω, are finitely
non-deterministic, whereas ?ω is countably non-deterministic. This classification is based upon
the maximum cardinality of non-divergent programs constructed using the non-deterministic
operator. Example 3.4.9 illustrates the importance of the non-divergence condition.

Example 3.4.9 Finite non-determinism can be used to construct programs that converge to a
countably infinite set of canonical programs. Lemma 3.4.8 ensures that such programs always
diverge. For example, define the program M of type P⊥(nat) by:

M
def= fixx. [0]∪ (lety ⇐ x in [plus(y,1)])

For any n ∈ ω, there is a program N such that M �+ [N] and N �∗ n, but M can also diverge.
The program M has the same convergence and divergence behaviour as Ω∪?ω. If divergence
behaviour is ignored, these programs are also identified with ?ω, in which case the distinction
between finite non-determinism and countable non-determinism is lost. Finally, if ambiguous
choice is used instead of erratic choice in the definition of M, then the resulting program is equiv-
alent to ?ω because of the divergence avoiding properties of ambiguous choice (see [Mor98]).

There are different forms of countable non-determinism arising from countably indexed erratic
choice, and ?ω is the least expressive. The differences are formalised as relative definability
results in section 5.5. For example, if A ⊆ne ω is not recursively enumerable, then ?ω can be
defined in terms of ?A using PCF-like programs, but not vice-versa.

This section concludes with two lemmas, used in section 5.7, that concern reduction, substitu-
tion, and blocked substitution for a blocked occurrence of a variable. Lemma3.4.10(1) shows
that if an open term reduces to another, we can deduce that performing the same substitution
on both terms also gives a valid reduction. In other words, a reduction of an open term can
be instantiated in different ways by substituting for the free variables. Part (2) of the lemma
is a partial converse. If an open term with a substitution can reduce, then that reduction either
involves the substituted term, in which case the open term must be blocked on the substitution
variable, or it does not involve the substituted term, in which case the open term can perform the
same reduction.

Lemma 3.4.10 If Γ � L : σ and Γ,x : σ � M1 : τ then:

1. If M1 � M2 then M1[L/x]� M2[L/x].

2. If M1[L/x]� N, then M1 � x or there exists a term M2 such that M1 � M2 and M2[L/x] =
N.

3.4. REDUCTION SEMANTICS 71

Proof

1. By induction on the derivation of M1 � M2, making use of lemma 3.3.4.

2. By induction on the derivation of Γ,x : σ � M1 : τ, making use of lemmas 3.2.2 and 3.3.4.
�

Lemma 3.4.11(2) shows that, with some restrictions on free variables, a substitution into a
blocked term can be written as a blocked substitution followed by the original substitution. Part
(3) essentially states that reduction takes place inside reduction contexts presented as blocked
terms. Part (4) shows that substituting a fixed-point for a blocked variable gives a term with a
known reduction in which the fixed-point is only unwound once. This property is used in the
proof of the Scott induction principle.

Lemma 3.4.11 Consider terms:

Γ,x : σ � L : τ Γ ,x : σ � M1 : σ Γ � N : σ

such that L � x. Then:

1. L[x &→M1][N/x] = L[x &→M1[N/x]][N/x]

2. L[N/x] = L[x &→N][N/x]

3. If M1 � M2, then L[x &→M1]� L[x &→M2].

4. If σ is a computation type, then L[fixx.M1/x]�det L[x &→M1][fixx.M1/x].

Proof

1. By induction on the derivation of L � x.

2. Follows from (1) by taking M1 = x and observing that L[x &→ x] = L.

3. By induction on the derivation of L � x.

4. Using prior results:

L[fixx.M1/x] = L[x &→fixx.M1][fixx.M1/x] (3.4.11(2))
�detL[x &→M1[fixx.M1/x]][fixx.M1/x] (3.4.11(3),3.4.10(1))
= L[x &→M1][fixx.M1/x] (3.4.11(1))

�

72 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

K ⇓may K (K ∈ Can0)

L ⇓may injmof M Nm[M/xm] ⇓may K
caseLof 〈xn.Nn | n < κ〉 ⇓may K

M ⇓may tuple〈Nn | n < κ〉 Nm ⇓may K
projmof M ⇓may K

L ⇓may λx.M M[N/x] ⇓may K
LN ⇓may K

L ⇓may [M] N[M/x] ⇓may K
letx ⇐ L inN ⇓may K

M[fixx.M/x] ⇓may K
fixx.M ⇓may K

?〈Mn | n < κ〉 ⇓may [Mm] (m < κ)

Figure 3.9: May convergence

3.5 Evaluation Semantics

The evaluation semantics describes the convergence and divergence behaviour of programs with-
out mention of the intermediate states in a sequence of reductions. Evaluation semantics are
also known as natural semantics or big-step semantics (see [Kah87, Gun92, Win93]). Conver-
gence behaviour is given by an inductively-defined may convergence relation, and divergence
behaviour by a coinductively-defined may divergence predicate. In contrast to the reduction
relation, the may convergence relation and the may divergence predicate are restricted to pro-
grams.

Definition 3.5.1 The may convergence relation ⇓may ⊆ L0 ×L0 is defined inductively from
the rules in figure 3.9. For a program M, we write M ⇓may if and only if there exists a program
N such that M ⇓may N.

Lemma 3.5.2 establishes the connection between the reduction semantics and the may conver-
gence relation. In particular, may convergence only relates program to canonical programs so
⇓may ⊆ L0 ×Can0, and, if M ⇓may K, then M and K have the same type.

Lemma 3.5.2 For programs M and N:

1. If M ⇓may N, then M �∗ N and N is canonical.

2. If M � N and N ⇓may K, then M ⇓may K.

3. M ⇓may N if and only if M �∗ N and N is canonical.

3.5. EVALUATION SEMANTICS 73

M ⇑may

E(M) ⇑may

L ⇓may injmof M Nm[M/xm] ⇑may

caseLof 〈xn.Nn | n < κ〉 ⇑may

M ⇓may tuple〈Nn | n < κ〉 Nm ⇑may

projmof M ⇑may

L ⇓may λx.M M[N/x] ⇑may

LN ⇑may

L ⇓may [M] N[M/x] ⇑may

letx ⇐ L inN ⇑may

M[fixx.M/x] ⇑may

fixx.M ⇑may

Figure 3.10: May divergence

Proof

1. By induction on the derivation of M ⇓may N.

2. By induction on M � N, using case analysis of N ⇓may K in the inductive step.

3. The forward direction is established in (1). The reverse direction is established by an
induction on the length of the sequence of reductions, using (2) for the inductive step. �

In a deterministic programming language the may divergence predicate can be defined as the
complement of the may convergence predicate. In L the relationship between the may di-
vergence and may convergence predicates is weaker: by lemma 3.4.7, every program may
converge or may diverge. The may divergence predicate is defined coinductively following
[CC92, HM95, Las97, IS98].

Definition 3.5.3 The may divergence predicate ⇑may ⊆ L0 is defined coinductively from the
rules in figure 3.10. The may convergence judgements are side conditions rather than premises.

In section 3.6 it is shown that programs of value type cannot diverge, and consequently we can
replace the rule:

M ⇑may

E(M) ⇑may

with:

L ⇑may

letx ⇐ L inN ⇑may

74 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

However, the original formulation is more convenient for the statement and proof of the com-
patibility theorems in chapter 5.

The may divergence predicate coincides with the notion of divergence arising from the reduction
semantics.

Lemma 3.5.4 If M is a program, then M ⇑may if and only if M �ω.

Proof We prove the forward direction first. By coinduction it suffices to prove that M ⇑may

implies there exists a program N such that M �+ N and N ⇑may. This is proven by induction
on the type assignment derivation of M, making use of lemma 3.5.2. The reverse direction
is also proven by coinduction. We need to show that the conclusion of one of the rules in
figure 3.10 matches M and that the premise of that rule (not the may convergence side conditions)

is contained in �ω. This is proven by case analysis on the derivation of the first reduction. The

base cases are straightforward. For the remaining case, suppose that E(M)� E(N)�ω and

M � N. If M �ω, then the may divergence rule for E(M) applies. Otherwise, there exists a

canonical program K such that M �+ K and E (M) �+ E (K) �ω. By lemma 3.5.2, M ⇓may K,
and it can be verified that one of the may divergence rules applies for each of the four forms of
reduction constructors. �

The must convergence predicate is the complement of the may divergence predicate, so a pro-
gram must converge if it cannot diverge. By lemma 2.3.5, the complement of the coinductively-
defined may divergence predicate is the least fixed-point of some monotone function on pro-
grams, and this function can be defined in terms of the monotone function induced by the may
divergence rules. In fact, the must convergence predicate is also inductively-defined from a
collection of rules.

Definition 3.5.5 The must convergence predicate ⇓must ⊆ L0 is defined inductively from the
rules in figure 3.11.

As with the may divergence rules, the must convergence rules do not take advantage of the fact
that programs of value type cannot diverge.

Example 3.4.9 demonstrates that some programs may converge to infinitely many canonical
programs. Consequently, some instances of the must convergence rule schema for programs of
the form letx ⇐ M inN have an infinite collection of premises, and so the derivation trees for
must convergence judgements may have nodes with an infinite set of successors. The derivation
trees for inductive definitions are always well-founded and so have a rank. In this case, the
rank may be greater than ω because of infinite branching. The rank of derivation trees for must
convergence judgements is investigated in section3.8.

Finally, we consider derived rules for binary erratic choice. The binary erratic choice of M and
N may converge to a canonical program if either M or N can:

M ⇓may K
M∪N ⇓may K

N ⇓may K
M∪N ⇓may K

3.6. NORMALISATION 75

K ⇓must (K ∈ Can0)

L ⇓must {Nm[M/xm] ⇓must| L ⇓may injmof M}
caseLof 〈xn.Nn | n < κ〉 ⇓must

M ⇓must {Nm ⇓must| M ⇓may tuple〈Nn | n < κ〉}
projmof M ⇓must

L ⇓must {M[N/x] ⇓must| L ⇓may λx.M}
LN ⇓must

L ⇓must {N[M/x] ⇓must| L ⇓may [M]}
letx ⇐ L inN ⇓must

M[fixx.M/x] ⇓must

fixx.M ⇓must

?〈Mn | n < κ〉 ⇓must

Figure 3.11: Must convergence

The binary erratic choice of M and N may diverge if either M or N can:

M ⇑may

M∪N ⇑may

N ⇑may

M∪N ⇑may

M ⇓must N ⇓must

M∪N ⇓must

The may divergence (equivalently, must convergence) behaviour of binary erratic choice differ-
entiates it from binary ambiguous choice (see [Las98b, Mor98] and section 2.6), because the
binary ambiguous choice of M and N may diverge only if both M and N may diverge.

3.6 Normalisation

Programs of computation type can exhibit non-termination or non-determinism. In this section
we prove that these behaviours are restricted to computation types because a program of value
type always converges to a unique canonical program.

There are a number of techniques for proving normalisation of typed functional programming
languages. For example, Girard [GLT89] describes both an elementary proof of weak normali-
sation and his extension of Tait’s method to System F. Gordon [Gor94] proves a normalisation
result for a variant of the computational λ-calculus with restricted recursive types via a transla-
tion to a strongly normalising λ-calculus.

The normalisation result for L requires some care because of infinitary terms. Reduction cannot
be permitted inside constructors unless they form a reduction context, even for value types,
because it may lead to infinite sequences of reductions for canonical programs. For example,
each instance of (λx.x)� in the following program could reduce to �:

tuple〈(λx.x)� | n < ω〉

76 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

The proof of normalisation given here is based upon Tait’s method. We first define a type-
indexed family of reducibility candidates.

Definition 3.6.1 For each type σ, define a set of programs Red(σ) by M ∈ Red(σ) if and only if
M is a program of type σ and one of the following holds:

• σ = sum〈σn | n < κ〉∧∃m,N.(M ⇓may injmof N)∧N ∈ Red(σm)

• σ = prod 〈σn | n < κ〉∧∃〈Nn | n < κ〉.M ⇓may tuple〈Nn | n < κ〉∧∀n < κ.Nn ∈ Red(σn)

• σ = σ1 → σ2 ∧∀N ∈ Red(σ1).∃L.(M ⇓may λx.L)∧L[N/x] ∈ Red(σ2)

• σ is a computation type.

Lemma 3.6.2 If M and N are programs such that M � N and N ∈ Red(σ), then M ∈ Red(σ).

Proof Immediate for programs of computation type. For programs of value type, apply
lemma 3.5.2(2). �

Tait’s method involves showing that the reducibility candidates contain all programs, and so
every program of value type must converge to a canonical program.

Proposition 3.6.3 If M is a program of a value type, then M ⇓must and there exists a unique
canonical program K such that M ⇓may K.

Proof We show that every program of type σ is a member of Red(σ), and deduce that there
exists a canonical program K such that M ⇓may K. The uniqueness of K and the must con-
vergence property follow because reduction is deterministic at value types (see lemma3.4.4).
To show that every program of type σ is a member of Red(σ), we prove a more general re-
sult. For an environment Γ = x1 : σ1, . . . ,xn : σn and a term Γ � M : τ such that, whenever
N1 ∈ Red(σ1), . . . ,Nn ∈ Red(σn), we have M[�N/�x]∈ Red(τ). This is a straightforward induction
on the derivation of Γ � M : τ, making use of lemma 3.6.2 when M has value type and is not
canonical.

�

3.7 Fragments of L

The non-deterministic λ-calculus L is more expressive than most of the non-deterministic
λ-calculi in the literature because of countably infinite coproducts, products, and indexed er-
ratic choice (the notable missing features are call-by-need parameter-passing and parallel non-
determinism such as ambiguous choice). If we were only to consider semantic relations such
as contextual equivalence and bisimilarity for L , then the results may be inapplicable to less
expressive calculi because the semantic relations may be too fine for higher-order terms. For
example, in chapter 5 it is shown that binary erratic choice cannot distinguish some programs
that can be distinguished using ?ω (cf. programs that cannot be distinguished by sequential pro-
grams but can be distinguished using parallel-or, see [Gun92]). Fortunately, the definition of the

3.7. FRAGMENTS OF L 77

syntax and operational semantics of the coproducts, products, and indexed erratic choice per-
mits a straightforward treatment of fragments of L , where each fragment is a non-deterministic
λ-calculus in its own right. The compatibility and Scott induction proofs in chapter5 are param-
eterised by a fragment of L . In this section, we define the collection of fragments via a number
of closure conditions upon sets of terms of L .

The expressiveness of L can also be exploited for a study of relative definability of different
forms of indexed erratic choice in an operational setting (see section5.5). Previous treatments of
relative definability rely upon a denotational model as a source of non-definable elements. For
example, the theory of Turing degrees [Rog67, Cut80, Odi89] is concerned with relative defin-
ability of the characteristic functions of sets of natural numbers in the space of partial functionsS{ωn ⇀ω | n ∈ ω}. The definable elements of the space are the partial recursive functions. As
another example, Sazonov’s degrees of parallelism [Saz75, Lic96, Buc97] is based in a space of
directed-complete partial orders. The definable elements are the (sequential) denotations of PCF
terms.

The fragments of L that we consider are not arbitrary sets of terms, but must satisfy certain
closure conditions. The definition of a fragment must satisfy at least three criteria. A fragment
should not constrain the existing operational semantics for L (see lemma3.7.2), it should be
possible to prove compatibility for variants of applicative similarity and bisimilarity, and each
fragment should be at least as expressive as PCF. The first and second criteria can be satisfied
by insisting that every fragment is closed under substitution and taking subterms. The third
criterion is satisfied by closing fragments under finite constructors and the abbreviated arithmetic
operations.

Definition 3.7.1 Consider a set of terms E ⊆ L . The notation Γ � M ∈ E : σ means that

Γ � M : σ and M ∈ E . The fragment containing E , written L (E) ⊆ L , is the least set closed
under the rules of figures 3.12 and 3.13, and also closed under subterms (including subterms of

infinitary terms). The set of programs in L (E) is defined by L0(E) def= L (E)∩L0. We write
L (M1, . . . ,Mn) for L ({M1, . . . ,Mn}).

The final condition in figure 3.13 forces fragments to be closed under substitutions that replace
a subset of variable occurrences. This ensures that fragments are closed under blocked substitu-
tion.

Fragments may be smaller than L because there are no closure rules for indexed erratic choice,
and the closure rules for terms involving coproducts and products are restricted to arithmetic
operators or finite κ by the side conditions κ < ω.

The substitution and subterm closure conditions ensure that the operational semantics for L is
well-behaved within each fragment.

Lemma 3.7.2 For E ⊆ L and M ∈ L (E):

1. If M � N then N ∈ L (E).

2. If M ⇓may K then K ∈ L0(E).

78 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Γ � x ∈ L (E) : σ (Γ(x) = σ)

Γ � M ∈ L (E) : σm

Γ � injmof M ∈ L (E) : sum〈σn | n < κ〉
(κ < ω)

Γ � M ∈ L (E) : sum 〈σn | n < κ〉
{Γ,xn : σn � Nn ∈ L (E) : τ | n < κ}

Γ � caseM of 〈xn.Nn | n < κ〉 ∈ L (E) : τ
(κ < ω)

{Γ � Mn ∈ L (E) : σn | n < κ}
Γ � tuple〈Mn | n < κ〉 ∈ L (E) : prod〈σn | n < κ〉

(κ < ω)

Γ � M ∈ L (E) : prod 〈σn | n < κ〉
Γ � projmof M ∈ L (E) : σm

(κ < ω)

Γ,x : σ � M ∈ L (E) : τ

Γ � λx:σ.M ∈ L (E) : σ → τ
Γ � M ∈ L (E) : σ → τ Γ � N ∈ L (E) : σ

Γ � M N ∈ L (E) : τ
Γ � M ∈ L (E) : σ

Γ � [M] ∈ L (E) : P⊥(σ)

Γ � M ∈ L (E) : P⊥(σ) Γ,x : σ � N ∈ L (E) : P⊥(τ)

Γ � letx:σ ⇐ M inN ∈ L (E) : P⊥(τ)
Γ,x : P⊥(σ) � M ∈ L (E) : P⊥(σ)

Γ � fixx:P⊥(σ).M ∈ L (E) : P⊥(σ)

Figure 3.12: Fragment closure (part 1)

3.7. FRAGMENTS OF L 79

Γ � M ∈ L (E) : σ (Γ � M ∈ E : σ)

Γ � n ∈ L (E) : nat (n ∈ ω)

Γ � M ∈ L (E) : nat Γ � N ∈ L (E) : nat

Γ � plus(M,N) ∈ L (E) : nat

Γ � M ∈ L (E) : nat Γ � N ∈ L (E) : nat

Γ � minus(M,N) ∈ L (E) : nat

Γ � M ∈ L (E) : nat Γ � N ∈ L (E) : nat

Γ � eq(M,N) ∈ L (E) : bool

Γ � M ∈ L (E) : nat Γ � N ∈ L (E) : nat

Γ � lt(M,N) ∈ L (E) : bool

Γ,x1 : σ1, . . . ,xn : σn � M : τ
Γ � M[�y/�x] ∈ L (E) : τ

{Γ � Ni ∈ L (E) : σi | 1 ≤ i ≤ n}
Γ � M[�N/�x] ∈ L (E) : τ

Figure 3.13: Fragment closure (part 2)

Proof By induction on the derivation of M � N, and then apply lemma3.5.2. �

The arithmetic closure conditions provide enough terms for a translation of PCF (call-by-name
or call-by-value) into L (/0). The call-by-value translation can be used to show that for every
partial recursive function f : ωn ⇀ω there is a program:

� M ∈ L (/0) : nat → . . . → nat → P⊥(nat)

such that, for all m,m1, . . . ,mn ∈ ω, f (m1, . . . ,mn) is defined and equal to m if and only if there
exists a program N such that M m1 . . . mn ⇓may [N] and N ⇓may m.

The set of terms used to define a fragment must be chosen carefully because of the subterm
closure condition. For example, any fragment that contains:

proj0of tuple〈�,?〈false,true〉〉
must also contain ?〈false,true〉, even though that program will be discarded in every reduction
sequence. For this reason, when we consider fragments of L that are strictly less expressive
than those containing binary erratic choice we use, for example:

E = {letx ⇐?〈Ω, [�]〉 inx}

rather than E = {Ω∪ [�]} because the latter uses binary erratic choice which forces ?〈false,true〉
into the fragment.

80 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

K ⇓must 0 (K ∈ Can0)

L ⇓must A L ⇓may injmof M Nm[M/xm] ⇓must B
caseLof 〈xn.Nn | n < κ〉 ⇓must (A+ 1)∪ (B+ 1)

M ⇓must A M ⇓may tuple〈Nn | n < κ〉 Nm ⇓must B
projmof M ⇓must (A+ 1)∪ (B+ 1)

L ⇓must A L ⇓may λx.M M[N/x] ⇓must B
LN ⇓must (A+ 1)∪ (B+ 1)

L ⇓must A {N[M/x] ⇓must BM | L ⇓may [M]}
letx ⇐ L inN ⇓must (A+ 1)∪S{BM + 1 | L ⇓may [M]}

M[fixx.M/x] ⇓must A
fixx.M ⇓must (A+ 1)

?〈Mn | n < κ〉 ⇓must 0

Figure 3.14: Must convergence rank

3.8 Rank of Must Convergence

In this section we investigate the rank of derivation trees for must convergence judgements. The
must convergence predicate is defined by induction, so the derivation trees are well-founded and
the rank always exists. The rank of the derivation trees can be used to classify programs and
provides a measure of the proof-theoretic strength of arguments involving induction on must
convergence judgements, such as the compatibility theorem in chapter5. Lassen [Las98b] gives
unwinding and syntactic continuity results for a non-deterministic λ-calculus with an operator
equivalent to ?ω. The results make use of transfinite unwindings of fixed-point terms, and the
operational semantics of such terms is based upon the rank of the derivation trees of must con-
vergence judgements.

The rank of a well-founded tree is defined in definition2.1.16. However, it is convenient to have
a direct definition of the rank of a derivation tree for a must convergence judgement.

Definition 3.8.1 Let M be a program such that M ⇓must. The must convergence rank of M is
an ordinal defined inductively from the rules in figure 3.14, where M ⇓must A means that M has
must convergence rank A.

The must convergence rank of a program is well-defined because each program has at most one
must convergence derivation tree.

Proposition 3.8.2 proves that the supremum of the must convergence ranks of programs in L is
ω1, the least uncountable ordinal. In addition, the supremum is shown to be ω when programs
are only drawn from deterministic or finitely non-deterministic fragments.

Proposition 3.8.2

3.8. RANK OF MUST CONVERGENCE 81

1. If E ⊆ L is such that L (E) does not contain any occurrences of infinite indexed erratic
choice term constructors, then:

[
{A | ∃M ∈ L0(E).M ⇓must A} = ω

2. If E ⊆ L is such that L (E) = L then:

[
{A | ∃M ∈ L0(E).M ⇓must A} = ω1

Proof

1. With the exception of the rule for the sequencing term constructor, all instances of the must
convergence rule schema have a finite number of premises, no matter which fragment of
the language is considered. If L (E) does not contain any infinite erratic choice term con-

structors, then lemma 3.4.8(2) applies to every must convergent program M ∈ L0(E) and
therefore the restriction of the must convergence rule schema for the sequencing term con-

structor to L0(E) must also be finitely-branching. By induction on the proof of M ⇓must A
it can be shown that A < ω. To see that the supremum is ω, consider the sequence defined
by:

M0
def= [�]

Mn+1
def= letx ⇐ [Mn] inx (n ∈ ω)

Then, for all n ∈ ω, Mn ⇓must n.

2. By lemma 3.4.8(1), the instances of the must convergence rule schema for the sequencing
term constructor may have at most a countably infinite family of premises. It can be shown
by induction on the proof of M ⇓must A that A < ω1. For the other direction, we would like
to define a transfinite sequence of must convergent programs by induction:

M0
def= [�]

MA
def= letx ⇐?〈MB | B < A〉 inx (0 < A < ω1)

However, letx ⇐?〈MB | B < A〉 inx is not a term when A > ω, and so we have to use
the fact that A is countable to obtain an ω-sequence of programs that is a reordering of
?〈MB | B < A〉. It is then straightforward to prove by induction that, for all A < ω1,
MA ⇓must A. �

There is an analogue of proposition 3.8.2 for countably non-deterministic fragments such as
L (?ω). For each fragment, the supremum of the must convergence ranks is the least non-
recursive ordinal ωCK

1 (see section 2.5). Proposition 3.8.3 is based upon a similar result given by
Apt and Plotkin [AP86] for an imperative programming language with an operator equivalent
to ?ω. Apt and Plotkin prove that the reduction sequences of a non-divergent program form a
well-founded tree with rank2 ωCK

1 .
2Warning: Apt and Plotkin [AP86] use height of a well-founded tree for the ordinal called the rank of a well-

founded tree here.

82 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Proposition 3.8.3 Consider E ⊆ L such that every term in E is a program of type P⊥(nat) and
has the form ?〈Mn | n < κ〉, where {m ∈ ω | ∃n < κ.Mn ⇓may m} is a recursive set. If at least one
of these subsets of ω is infinite, then:

[
{A | ∃M ∈ L0(E).M ⇓must A} = ωCK

1

Proof To prove that the supremum is less than or equal to ωCK
1 we show that, for every pro-

gram M ∈ L (E) such that M ⇓must A, we have A < ωCK
1 , i.e. A is a recursive ordinal. By

proposition 2.5.10, it suffices to show that each derivation tree is isomorphic to a recursive tree.

It is not necessarily possible to encode all terms in L (E) as natural numbers because there

could be infinitely many terms in E that determine the same recursive set. However, a fixed

must convergent program M ∈ L (E) uses only a finite subset E′ ⊆ E , so M ∈ L (E ′). By an
argument similar to that of lemma 3.7.2 it can be shown that all terms present in a derivation of
must convergence for M (including may convergence side conditions) can be encoded as natural
numbers. The terms in E′ are treated as constants rather than infinite terms. Building upon
the encoding of terms, derivation trees for may convergence judgements can also be encoded
as natural numbers so that they form a recursive set—it is decidable whether a natural number
represents a valid may convergence derivation. This requires the hypothesis that all of the terms
in the finite set E′ determine recursive sets. Finally, branches in the must convergence derivation
tree for M can be encoded as sequences of natural numbers so that it is decidable whether a se-
quence represents a valid branch. It is necessary to encode the may convergence side conditions
to ensure decidability. Therefore, a must convergence derivation is isomorphic to a recursive
tree, so its rank is a recursive ordinal, and the supremum of all of the must convergence ranks
for programs in L0(E) is less than or equal to ωCK

1 .

For the other direction, we may assume ?ω ∈ E without loss of generality, because there is
always a program with the same convergence and divergence behaviour. To see this, suppose
that �?〈Mn | n < κ〉 ∈ E : P⊥(nat) determines an infinite subset of ω. Then there is a program
with the same convergence and divergence behaviour as ?〈false,true〉, defined by choosing two
numbers and testing whether the first is less than the second:

letx ⇐?〈Mn | n < κ〉 in lety ⇐?〈Mn | n < κ〉 in if lt(x,y)then [false]else [true]

Hence, the binary erratic choice term constructor can be defined in terms of ?〈Mn | n < κ〉. Now
define the program N of type nat → P⊥(nat) by:

N
def= ffix f .λx. if eq (x,0)then [0]else ([x]∪ f (minus(x,1)))

Then ?ω has the same convergence and divergence behaviour as the program:

lety ⇐?〈Mn | n < κ〉 inN y

This program chooses a natural number y from an infinite set, and then N y chooses a number
between 0 and y. It is an acceptable substitute for ?ω in the argument below because its must
convergence rank is always greater than or equal to ω, as opposed to ?ω⇓must 0, and we intend to

3.8. RANK OF MUST CONVERGENCE 83

show that for every recursive ordinal A there is a program with a must convergence rank greater
than or equal to A.

Consider a recursive ordinal A. Suppose that a set of natural numbers B ⊆ ω, a well-order
(⊆ B×B, and a partial recursive function f : ω×ω⇀ ω specify a recursive well-order that is
order-isomorphic to A, and g : B→A is a component of that isomorphism. We assume a program
MA ∈L0(/0) of type nat→ nat→P⊥(bool) that implements f . Define a program slow∈L0(?ω)
with type (nat → nat → P⊥(bool)) → nat → P⊥(unit) by:

slow
def= λh.λx. lety ⇐?ωin

letz ⇐ hyx in if (and(z,not (eq(x,y))))then (slowhy)else [�]

The program slow takes as arguments a partial order h on the natural numbers and a natural
number x, and then chooses a new number y. If y is strictly less than x, with respect to the partial
order h, it recursively calls itself with h and y as arguments. Otherwise, it converges to [�]. Thus
all sequences of natural numbers starting with x that are strictly descending with respect to h
can occur during the evaluation of slowhx . Now, if n ∈ ω\B, then slowMA n ⇓must because
MA mn ⇓may false, for all m ∈ ω. Then, by well-founded induction on n ∈ B with respect to (, it
can be shown that there exists an ordinal A′ ≥ g(n) such that slowMA n ⇓must A′. Therefore, for
some ordinal A′ ≥ A we have that:

letx ⇐?ωinslowMA x ⇓must A′

Consequently, the supremum of the must convergence ranks of programs in L0(?ω) is greater
than or equal to ωCK

1 . �

Infinite coproducts that are not arithmetic operators are excluded from E for proposition3.8.3
because it would be possible to use infinitary case statements to construct programs that de-
termine non-recursive sets. For example, if {mn ∈ ω | n < ω} is a non-recursive set, then the
program:

letx ⇐?ωincasexof 〈yn.[mn] | n < ω〉

has the same convergence and divergence behaviour as ?〈mn | n < ω〉.

84 CHAPTER 3. THE NON-DETERMINISTIC λ-CALCULUS L

Chapter 4

Typed Transition Systems

We introduce and investigate a class of LTSWDs (see definition 2.2.8), called typed transition
systems, that are suitable for studying non-deterministic λ-calculi such as L and its fragments.
Each state of a typed transition system has a unique type from the type system for L . Typed
transition systems are a simply-typed variant of Ong’s (quasi-)non-deterministic applicative tran-
sition systems, which in turn draw upon analyses of process calculi via their LTS structure and
λ-calculi via applicative structures, pre-frames, (quasi-)applicative transition systems, and LTSs.
The variants of similarity and bisimilarity defined for LTSWDs apply to typed transition sys-
tems, and give rise to variants of applicative similarity and applicative bisimilarity on the typed
transition systems derived from non-deterministic λ-calculi.

In section 4.1 we define the class of typed transition systems, discuss basic properties of typed
transition systems, and review other classes of applicative structures that appear in the literature.
In section 4.2 we recall the definitions of the lower, upper, convex, and refinement variants of
similarity and bisimilarity for LTSWDs, and consider identifications between the relations that
hold in degenerate cases, e.g., for states of a type with P-order 0 or 1. Sections 4.3 and 4.4
provide a case study of a typed transition system S that extends ∈-TSWDs with coproduct,
product, and function types. The states of S can be defined by induction on their type because
the type system for L does not include coinductive or recursive types. For example, the states of
function type σ→ τ in S are set-theoretic functions from the states of type σ to the states of type
τ. Simple examples that differentiate the variants of similarity and bisimilarity are constructed
in S . In section 4.5 we investigate maps between typed transition systems, and show that there
is a map from every typed transition system satisfying certain conditions to S , so S is a weak
terminal in a non-trivial subcategory of the category of typed transition systems. In chapter5,
we show that many of the typed transition systems derived from fragments of L satisfy these
conditions.

4.1 Typed Transition Systems

Typed transition systems abstract the computational behaviour of programs of L , and serve the
same role for L and its fragments as LTSs do for CCS. Intuitively, the abstraction combines the

85

86 CHAPTER 4. TYPED TRANSITION SYSTEMS

evaluation semantics with a decomposition of the canonical programs resulting from evaluation.
Individual reduction steps are not part of the structure of a typed transition system.

A typed transition system can be presented as an LTSWD where each state has a unique type.
The transitions from a state are restricted by its type because a transition indicates convergent
behaviour and information about the result. For example, a state of type sum〈σn | n < κ〉 must
have exactly one transition. The label on the transition identifies the component of the coproduct
in which the result lies, and so must be a natural number m < κ. The target state of the transition
must have type σm. On the other hand, a state of type prod 〈σn | n < κ〉 must have exactly one
transition labelled with n, for each n < κ. The target state of a transition labelled with n must
have type σn. A state of function type σ → τ must have exactly one transition labelled with @s
for each state s of type σ, and the target state of the transition must have type τ. States of type
P⊥(σ) may have zero or more transitions, but they must be labelled with ⇓ and the target states
must have type σ. A state may only diverge if it has a computation type, and every state with a
computation type must be able to diverge if it has no transitions. This reflects the fact that every
program of computation type must have at least one convergent or divergent behaviour.

Definition 4.1.1 A typed transition system (TTS) is an LTSWD T = 〈S,A,⇑may,−→〉 such that:

1. Every state has a unique type. The set of states with type σ is denoted T (σ). We also
write T for S.

2. If s ⇑may, then s has a computation type.

3. The set of labels A satisfies:

A = ω∪{@s | s ∈ T }∪{⇓}

4. If s
a−→ t, then:

(a) s ∈ T (sum〈σn | n < κ〉) =⇒ (a ∈ ω)∧ (a < κ)∧ (t ∈ T (σa))

(b) s ∈ T (prod 〈σn | n < κ〉) =⇒ (a ∈ ω)∧ (a < κ)∧ (t ∈ T (σa))

(c) s ∈ T (σ → τ) =⇒ (∃u ∈ T (σ).a = @u)∧ (t ∈ T (τ))

(d) s ∈ T (P⊥(σ)) =⇒ (a = ⇓)∧ (t ∈ T (σ))

5. For all states s:

(a) s ∈ T (sum〈σn | n < κ〉) =⇒∃!m < κ.∃t ∈ T (σm).s m−→ t

(b) s ∈ T (prod 〈σn | n < κ〉) =⇒∀n < κ.∃t ∈ T (σn).s
n−→ t

(c) s ∈ T (σ → τ) =⇒∀u ∈ T (σ).∃t ∈ T (τ).s @u−−→ t

(d) s ∈ T (P⊥(σ)) =⇒ (s ⇑may)∨ (∃t ∈ T (σ).s
⇓−→ t)

6. If s
a−→ t, s

a−→ u and t
= u, then s has a computation type.

4.1. TYPED TRANSITION SYSTEMS 87

For a state s ∈ T (prod 〈σn | n < κ〉) and m < κ, we write s@m for the unique state such that

s
m−→ s@m. For states s ∈ T (σ → τ) and t ∈ T (σ), we write s@t for the unique state such that

s
@t−−→ s@t.

The dual −→op of the transition relation determined by the labelled transition relation of a TTS is
always well-founded, so there are no infinite sequences of transitions. This is because the type
system provides a well-founded measure upon states, and the target state of a transition always
has a type strictly smaller than the type of the source state.

It is useful to pick out the states of a TTS that cannot diverge or are deterministic at computation
types, and that have the same property at all successor states. By lemma2.3.11 and the well-
founded measure on the transition relation given by the type system, these sets of states can be
defined inductively or coinductively.

Definition 4.1.2 Let T be a TTS. The hereditarily total states Total(T) ⊆ T and the heredi-
tarily deterministic states Det(T) ⊆ T are the greatest sets such that, for all states s, t:

1. (a) If s ∈ Total(T) and s −→ t, then t ∈ Total(T).

(b) If s ∈ Det(T) and s −→ t, then t ∈ Det(T).

2. (a) If s ∈ Total(T) and s has a computation type, then s ⇓must.

(b) If s ∈ Det(T) and s has a computation type, then s ⇑may and there are no transitions
from s, or s ⇓must and there is exactly one transition from s.

Of course, if a state has type σ and POrd(σ) = 0, then the state must be hereditarily total and
hereditarily deterministic. Hereditarily total and hereditarily deterministic states are considered
in lemma 4.2.5.

Non-deterministic λ-calculi determine TTSs. In chapter 5 we show that L determines a TTS,
as does each fragment of L . The states of the TTSs are programs, and transitions are defined in
terms of the evaluation semantics and a decomposition of the outermost constructor of canonical
programs. For example, a program M of type sum〈σn | n < κ〉 has a transition to N, labelled by
m, whenever it may converge to injmof N.

However, not all TTSs arise from a programming language with an operational semantics. In
sections 4.3 and 4.4 we study a TTS S that is related to the ∈-TSWDs described in exam-
ple 2.2.9. If the set of states of type σ is S (σ), then the set of states of type P⊥(σ) is defined by

S (P⊥(σ)) def= Pne(S (σ)⊥). The states of coproduct, product, and function types are similarly
defined in terms of the states of their component types.

TTSs are related to a number of other structures that abstract the application of an object rep-
resenting a function to an argument. In the remainder of this section, we describe some of
those structures. Such structures can be broadly classified according to whether or not they
have a well-founded type system, where coinductive or recursive types are considered to be
non-well-founded even though their syntax is well-founded. If there is a well-founded type sys-
tem, then inductive techniques such as logical relations can be employed, otherwise coinductive
techniques such as similarity and bisimilarity must be used.

88 CHAPTER 4. TYPED TRANSITION SYSTEMS

Applicative structures, pre-frames, frames, and Henkin models (see [Gun92, Mit96]) use well-
founded type systems. They are defined with reference to a signature consisting of a set of
symbols for constants, and a set of ground or base types. The type systems are obtained by clos-
ing under the function type constructor (and sometimes product types). An applicative structure
is a family of sets indexed by types, say 〈A(σ) | σ a type〉, a family of application functions
indexed by pairs of types 〈Appσ,τ : A(σ → τ)×A(σ)→A(τ) | σ,τ types〉, and an element in
A(σ) for each constant symbol of type σ. The other structures impose additional constraints.
Specifically, each A(σ) may be required to be non-empty, the sets A(σ → τ) may be restricted to
subsets of A(σ)→A(τ) so that elements of A(σ → τ) are equal if they have the same applicative
behaviour (extensionality), or the structure may be required to support an interpretation of the
simply-typed λ-calculus. The syntax and operational semantics of a simply-typed λ-calculus de-
termine an applicative structure. In addition, there are many examples of syntax-free applicative
structures, e.g., based on interpreting the function type constructor as the set-theoretic function
space, the continuous function space between directed-complete partial orders, or as a set of
partial recursive functions.

An applicative structure determines an LTS with the disjoint union of the sets A(σ) as states.
The labelled transition relation replaces the family of application functions because there is a

labelled transition a
@b−−→ Appσ,τ(a,b) if and only if a ∈ A(σ → τ) and b ∈ A(σ).

Logical relations can be defined upon the elements of an applicative structure. We say that
elements a1,b1 ∈A(σ→ τ) are related if and only if Appσ,τ(a1,a2) and Appσ,τ(b1,b2) are related,
for all related a2,b2 ∈ A(σ). The type system must be well-founded for this definition to make
sense because of the (contravariant) requirement that a2 and b2 are related.

In contrast to applicative structures and the other structures mentioned above, (quasi-)applicative
transition systems, (quasi-)non-deterministic applicative transition systems, σ-transition sys-
tems, and LTSs can be used to abstract the application operation in a setting with no types,
or coinductive or recursive types. There are also untyped variations of applicative structures or
applicative structures with divergence (see [Bar84, HS86, Abr90]).

A quasi-applicative transition system (qATS) consists of a set A and a partial function Ev :
A ⇀ (A→A) (see [Abr90]). Closed terms of the lazy λ-calculus form a qATS. For a closed
term M of the lazy λ-calculus, Ev(M) is defined if there exists a term N such that M converges
to λx.N. In this case, for all closed terms L, Ev(M)(L) = N[L/x]. There are also syntax-free
examples of qATSs, e.g., those arising from domain-theoretic models of the lazy λ-calculus.

A preorder, applicative similarity, and an equivalence, applicative bisimilarity, can be defined
upon the states of a qATS by coinduction (see [Abr90, AO93]). However, a function similar to
the one used to define a logical relation is not monotonic without a well-founded type system
because of the need to test states a1,b1 ∈ A by applying them to related states a2,b2 ∈ A. Abram-
sky’s definition sidesteps this issue and only tests states a1,b1 ∈ A by applying them both to the
same state c ∈ A. This raises the question of whether or not the qATS satisfies a compatibility
property: if a,b,c ∈ A are such that Ev(a) is defined and b and c are related by applicative sim-
ilarity, then are Ev(a)(b) and Ev(a)(c) also related by applicative similarity? If so, the qATS is
called an applicative transition system (ATS), and the Ev function is well-defined on the equiva-
lence classes of A with respect to applicative similarity. Abramsky [Abr90] uses a domain logic

4.2. SIMILARITY AND BISIMILARITY 89

to prove that the qATS obtained from the lazy λ-calculus is an ATS. Howe [How89] proves the
same result using a syntactic technique, variations of which are used in chapter5.

A qATS can also be presented as an LTS or an LTSWD (although the may divergence predicate
is redundant because a qATS models deterministic behaviour). For a,b ∈ A, there is a transition

a
@b−−→ Ev(a)(b) if and only if Ev(a) is defined. Applicative similarity and applicative bisimilar-

ity on qATSs correspond to similarity and bisimilarity on such LTSs. Gordon [Gor94] introduces
this idea by presenting a specific LTS for an FPC-like language (see also [Gor95a]). Note that
these LTSs do not have τ-labelled transitions, and so there is no notion of weak similarity or
weak bisimilarity.

Ong [Ong92a, Ong92b, Ong93] generalises qATSs to quasi-non-deterministic applicative tran-
sition systems (qNATS) by incorporating a may divergence predicate and allowing the evaluation
operation to be a relation instead of a partial function, so Ev ⊆ A× (A→A). Every a ∈ A is re-
quired to either diverge or be related to at least one function by Ev. qNATSs can be used to
study untyped non-deterministic λ-calculi as qATSs can be used to study untyped deterministic
λ-calculi. Every qNATS determines an LTSWD, and the relation on the qNATS called “ap-
plicative bisimulation” in [Ong92a, Ong92b, Ong93] corresponds to convex similarity on the
LTSWD.

For consistency with the terminology of qATSs and qNATSs, TTSs should be named quasi-TTSs
to indicate that application need not be well-behaved with respect to a coinductively-defined
relation. However, that convention is not followed here because several variants of similarity
and bisimilarity are used with TTSs, and it is possible that application is well-behaved with
respect to some relations but not others.

Ong and Pitts [OP93] also propose σ-evaluation systems, with coinductively-defined relations
σ-simulation, to unify LTSWDs, qATSs, and qNATSs. For each type σ, they generate a class
of structures called σ-evaluation systems, and a preorder, σ-simulation, on the states of those
structures. The type σ can be chosen so that LTSWDs, qATSs, and qNATSs are σ-evaluation
systems.

4.2 Similarity and Bisimilarity

The lower, upper, convex, and refinement variants of similarity and bisimilarity are defined in
section 2.4 for LTSWDs. In this section we review and study these relations in more detail, and
focus on the special case of TTSs. The discussion covers the inclusions between variants of
similarity and bisimilarity on LTSWDs, and conditions upon the states of a TTS under which
the inclusions collapse to equalities. We conclude with a definition of applicative compatibility
for TTSs that permits a quotient structure to be constructed.

Recall that the variants of similarity and bisimilarity are defined in terms of a lower simula-
tion function 〈·〉LS and an upper simulation function 〈·〉US (see definition 2.4.10). When these
functions, or the variants of similarity and bisimilarity, are used with TTSs we annotate them
with the TTS, e.g., 〈·〉TLS and 〈·〉TUS, because the TTSs arising from fragments of L can have
common states of function type that behave differently in different TTSs. For example, in the
TTS determined by the fragment L (/0), a program M of type P⊥(bool) → P⊥(bool) can only

90 CHAPTER 4. TYPED TRANSITION SYSTEMS

be applied to programs from L (/0), which are always deterministic. However, in the TTS de-
termined by L (?〈false,true〉), M has transitions labelled with non-deterministic terms such as
?〈false,true〉. Consequently, the variants of similarity and bisimilarity need not be conservative

between fragments L (E1) and L (E2), even when E1 ⊆ E2 . That is, if the TTSs determined by

those fragments are denoted by L0(E1) and L (E2), there may be programs M,N ∈L (E1) such

that M�L0(E1)
CB N and M
�L0(E2)

CB N. The relationship between relations on overlapping TTSs is
examined in sections 4.5 and 5.6.

The definitions of 〈·〉LS and 〈·〉US are modified slightly for TTSs because states should only be
related if they have the same type. In definition 4.2.1 the functions are presented for TTSs using
the labelled transitions specific to each type. The two functions have the same behaviour upon
states of value types. States of a coproduct type are related if they are in the same component of
the coproduct and their target states are related. States of a product or function type are related
if every pair of projections is related. Using this definition means that we have to prove that
function application in a TTS behaves reasonably with respect to the variants of similarity and
bisimilarity. This is the purpose of the compatibility theorems for TTSs determined by fragments
of L (see chapter 5).

It is tempting to make use of the fact that L has a well-founded type system by defining a logical
relation. However, we do not have a proof of the fundamental theorem of logical relations
for a non-deterministic programming language. Operationally-based proofs for deterministic
languages are usually based upon a syntactic unwinding lemma, and the status of such properties
in the presence of non-determinism is not yet clear. In addition, the logical relations approach
would not extend to recursive types.

Definition 4.2.1 Let T be a TTS and R ⊆ T ×T . The relations 〈R 〉TLS ⊆ T ×T and

〈R 〉TUS ⊆ T ×T are defined, for s1, t1 ∈ T , by:

1. If s1 and t1 have the same value type, then 〈s1, t1〉 ∈ 〈R 〉TLS and 〈s1, t1〉 ∈ 〈R 〉TUS if and only
if:

(a) s1, t1 ∈ T (sum〈σn | n < κ〉)∧
∃m < κ.∃s2, t2 ∈ T (σm).s1

m−→ s2 ∧ t1
m−→ t2 ∧〈s2, t2〉 ∈ R

(b) s1, t1 ∈ T (prod 〈σn | n < κ〉)∧∀m < κ.〈s1@m, t1@m〉 ∈ R

(c) s1, t1 ∈ T (σ → τ)∧∀u ∈ T (σ).〈s1@u, t1@u〉 ∈ R

2. If s1 and t1 have the same type P⊥(σ), then:

(a) 〈s1, t1〉 ∈ 〈R 〉TLS if and only if:

∀s2 ∈ T (σ).s1
⇓−→ s2 =⇒∃t2 ∈ T (σ). t1

⇓−→ t2 ∧〈s2, t2〉 ∈ R

(b) 〈s1, t1〉 ∈ 〈R 〉TUS if and only if:

s1 ⇓must=⇒
(t1 ⇓must ∧∀t2 ∈ T (σ). t1

⇓−→ t2 =⇒∃s2 ∈ T (σ).s1
⇓−→ s2 ∧〈s2, t2〉 ∈ R)

4.2. SIMILARITY AND BISIMILARITY 91

In definition 4.2.1, the clause for 〈·〉TUS at a computation type can be rewritten to emphasise that
every divergent or convergent behaviour of t1 is matched by a suitable behaviour of s1. For

s1, t1 ∈ T (P⊥(σ)), we have that 〈s1, t1〉 ∈ 〈R 〉TUS if and only if:

(t1 ⇑may=⇒ s1 ⇑may)∧
(∀t2 ∈ T (σ). t1

⇓−→ t2 =⇒ (s1 ⇑may)∨ (∃s2 ∈ T (σ).s1
⇓−→ s2 ∧〈s2, t2〉 ∈ R))

The functions 〈·〉TLS and 〈·〉TUS are monotone with respect to the inclusion partial order. In addi-
tion, they satisfy the following property with respect to relational composition:

Lemma 4.2.2 For a TTS T and relations R ,S ⊆ T ×T :

1. 〈R 〉TLS;〈S 〉TLS ⊆ 〈R ;S 〉TLS

2. 〈R 〉TUS;〈S 〉TUS ⊆ 〈R ;S 〉TUS

Proof Straightforward. �

In definition 2.4.11, lower, upper, convex, and refinement variants of similarity, mutual simi-
larity, and bisimilarity are defined for LTSWDs in terms of 〈·〉LS and 〈·〉US. The same variants

can be defined for a TTS T using 〈·〉TLS and 〈·〉TUS. We use the same names for the relations
defined on TTSs, even though they may be finer than the corresponding relations when a TTS is
considered as an LTSWD because the latter can relate states of different type. In practice, this
should cause no confusion because we only ever consider whether states of the same type are
related.

Definition 4.2.3 uses coinduction to define the relations, but the well-founded type system and
the fact that every transition decreases the size of the types of the states, in conjunction with
lemma 2.3.11, implies that the relations are the unique fixed-points. However, in the sequel,
coinductive methods are used whenever possible to make it easier to extend results to structures
with recursive types.

Definition 4.2.3 For a TTS T , the lower, upper, convex, and refinement variants of similarity,

92 CHAPTER 4. TYPED TRANSITION SYSTEMS

mutual similarity, and bisimilarity are the binary relations on T defined by:

�T
LS

def= νR .〈R 〉TLS (lower similarity)

�T
LS

def= �T
LS ∩ (�T

LS)
op (mutual lower similarity)

�T
LB

def= νR .〈R 〉TLS ∩ (〈R op〉TLS)
op (lower bisimilarity)

�T
US

def= νR .〈R 〉TUS (upper similarity)

�T
US

def= �T
US ∩ (�T

US)
op (mutual upper similarity)

�T
UB

def= νR .〈R 〉TUS ∩ (〈R op〉TUS)
op (upper bisimilarity)

�T
CS

def= νR .〈R 〉TLS ∩〈R 〉TUS (convex similarity)

�T
CS

def= �T
CS ∩ (�T

CS)
op (mutual convex similarity)

�T
CB

def= νR .〈R 〉TLS ∩〈R 〉TUS ∩ (〈R op〉TLS)
op ∩ (〈R op〉TUS)

op (convex bisimilarity)

�T
RS

def= νR .(〈R op〉TLS)
op ∩〈R 〉TUS (refinement similarity)

�T
RS

def= �T
RS ∩ (�T

RS)
op (mutual refinement similarity)

�T
RB

def= νR .(〈R op〉TLS)
op ∩〈R 〉TUS ∩〈R 〉TLS ∩ (〈R op〉TUS)

op (refinement bisimilarity)

The names of the relations are summarised in the table below:

Lower Upper Convex Refinement

Similarity �T
LS �T

US �T
CS �T

RS

Mutual Similarity �T
LS �T

US �T
CS �T

RS

Bisimilarity �T
LB �T

UB �T
CB �T

RB

Refinement bisimilarity and convex bisimilarity are identical by definition.

By lemma 2.3.6, the variants of similarity are preorders and the variants of mutual similarity and
bisimilarity are equivalences.

Definition 4.2.3 is concise, but it is useful to have expansions of each combination of the simula-
tion functions. For value types, all of the variants of similarity, mutual similarity, and bisimilarity
have the same expansion. If R is any variant of similarity, mutual similarity, or bisimilarity on
T and s1, t1 ∈ T have a value type, then:

1. If s1, t1 ∈ T (sum 〈σn | n < κ〉), then 〈s1, t1〉 ∈ R if and only if:

∃m < κ.∃s2, t2.(s1
m−→ s2)∧ (t1

m−→ t2)∧〈s2, t2〉 ∈ R

2. If s1, t1 ∈ T (prod 〈σn | n < κ〉), then 〈s1, t1〉 ∈ R if and only if:

∀n < κ.〈s1@n, t1@n〉 ∈ R

4.2. SIMILARITY AND BISIMILARITY 93

3. If s1, t1 ∈ T (σ → τ), then 〈s1, t1〉 ∈ R if and only if:

∀u ∈ T (σ).〈s1@u, t1@u〉 ∈ R

In general, the relations are different at computation types. The expansions are given in figure4.1
for states s1, t1 ∈ T (P⊥(σ)).

We now examine the relationships between the variants of similarity and bisimilarity. Lemma4.2.4
identifies inclusions that hold in all TTSs. In example4.4.5, we show that some of the inclusions
are strict.

Lemma 4.2.4 The inclusions between the lower, upper, convex, and refinement variants of sim-
ilarity, mutual similarity, and bisimilarity depicted in figure4.2 hold in any TTS T .

Proof By corollary 2.3.9, and the fact that the mutual similarities and bisimilarities are equiv-
alences. �

Under certain conditions on states, there are identifications between the relations. For example,
if the P-order of a type is 0, then the restrictions of the variants of similarity, mutual similarity,
and bisimilarity to states of that type are all the same. Also, if the P-order of a type is 1,
then the restrictions of the mutual similarities coincide with the restrictions of the bisimilarities.
Lemma 4.2.5 proves these identifications, as well as some for hereditarily deterministic and
hereditarily total states.

Lemma 4.2.5 For a TTS T and s1, t1 ∈ T (σ):

1. If POrd(σ) = 0, then:

s1 �T
LS t1 ⇐⇒ s1 �T

US t1 ⇐⇒ s1 �T
CS t1 ⇐⇒ s1 �T

RS t1 ⇐⇒
s1�T

LS t1 ⇐⇒ s1�T
US t1 ⇐⇒ s1�T

CS t1 ⇐⇒ s1�T
RS t1 ⇐⇒

s1�T
LB t1 ⇐⇒ s1�T

UB t1 ⇐⇒ s1�T
CB t1

2. If POrd(σ) = 1, then:

(a) s1�T
LS t1 ⇐⇒ s1�T

LB t1

(b) s1�T
US t1 ⇐⇒ s1�T

UB t1

(c) s1�T
CS t1 ⇐⇒ s1�T

RS t1 ⇐⇒ s1�T
CB t1

3. If s1, t1 ∈ Total(T), then:

(a) s1 �T
LS t1 ⇐⇒ t1 �T

US s1 ⇐⇒ t1 �T
RS s1

(b) s1�T
LS t1 ⇐⇒ s1�T

US t1 ⇐⇒ s1�T
RS t1

(c) s1 �T
CS t1 ⇐⇒ s1�T

CS t1 ⇐⇒
s1�T

LB t1 ⇐⇒ s1�T
UB t1 ⇐⇒ s1�T

CB t1

94 CHAPTER 4. TYPED TRANSITION SYSTEMS

s1 �T
LS t1 ⇐⇒

∀s2.s1
⇓−→ s2 =⇒∃t2. t1

⇓−→ t2 ∧ s2 �T
LS t2

s1 �T
US t1 ⇐⇒

s1 ⇓must=⇒ (t1 ⇓must ∧∀t2. t1
⇓−→ t2 =⇒∃s2.s1

⇓−→ s2 ∧ s2 �T
US t2)

s1 �T
CS t1 ⇐⇒

(∀s2.s1
⇓−→ s2 =⇒∃t2. t1

⇓−→ t2 ∧ s2 �T
CS t2)∧

(s1 ⇓must=⇒ (t1 ⇓must ∧∀t2. t1
⇓−→ t2 =⇒∃s2.s1

⇓−→ s2 ∧ s2 �T
CS t2))

s1 �T
RS t1 ⇐⇒

(s1 ⇓must=⇒ t1 ⇓must)∧
(∀t2. t1

⇓−→ t2 =⇒∃s2.s1
⇓−→ s2 ∧ s2 �T

RS t2)

s1�T
LB t1 ⇐⇒

(∀s2.s1
⇓−→ s2 =⇒∃t2. t1

⇓−→ t2 ∧ s2�T
LB t2)∧

(∀t2. t1
⇓−→ t2 =⇒∃s2.s1

⇓−→ s2 ∧ s2�T
LB t2)

s1�T
UB t1 ⇐⇒

(s1 ⇑may ∧ t1 ⇑may)∨
((s1 ⇓must ∧ t1 ⇓must)∧
(∀s2.s1

⇓−→ s2 =⇒∃t2. t1
⇓−→ t2 ∧ s2�T

UB t2)∧
(∀t2. t1

⇓−→ t2 =⇒∃s2.s1
⇓−→ s2 ∧ s2�T

UB t2))

s1�T
CB t1 ⇐⇒

(s1 ⇓must⇐⇒ t1 ⇓must)∧
(∀s2.s1

⇓−→ s2 =⇒∃t2. t1
⇓−→ t2 ∧ s2�T

CB t2)∧
(∀t2. t1

⇓−→ t2 =⇒∃s2.s1
⇓−→ s2 ∧ s2�T

CB t2)

Figure 4.1: Unfoldings of similarity and bisimilarity for a TTS at P⊥(σ)

4.2. SIMILARITY AND BISIMILARITY 95

�T
LB

�T
LS

�T
LS

(�T
LS)op

�T
CB

�T
CS

�T
CS

(�T
CS)op

�T
UB

�T
US

�T
US

(�T
US)op

�T
RS (�T

RS)op

�T
RS

Figure 4.2: Inclusions between similarities and bisimilarities

Note that the order of s1 and t1 is reversed for upper similarity and refinement similarity.

4. If s1, t1 ∈ Det(T), then:

(a) s1 �T
LS t1 ⇐⇒ s1 �T

US t1 ⇐⇒ s1 �T
CS t1

(b) s1 �T
RS t1 ⇐⇒

s1�T
LS t1 ⇐⇒ s1�T

US t1 ⇐⇒ s1�T
CS t1 ⇐⇒ s1�T

RS t1 ⇐⇒
s1�T

LB t1 ⇐⇒ s1�T
UB t1 ⇐⇒ s1�T

CB t1

Proof

1. If R ⊆ T ×T and s, t ∈T (σ), where σ is a value type, the following equivalences hold:

〈s, t〉 ∈ 〈R 〉TLS ⇐⇒ 〈s, t〉 ∈ (〈R op〉TLS)
op ⇐⇒ 〈s, t〉 ∈ 〈R 〉TUS ⇐⇒ 〈s, t〉 ∈ (〈R op〉TUS)

op

The result follows by coinduction.

2. By lemma 4.2.4, it suffices to prove by coinduction that the mutual similarities are con-

tained in the bisimilarities. We show that s1�T
CS t1 implies s1�T

CB t1. The other cases are

similar. If s1 and t1 have computation type P⊥(σ), then, by s1�T
CS t1, we have that s1 ⇓must

if and only if t1 ⇓must. In addition, if there exists s2 such that s1
⇓−→ s2, then, using s1 �T

CS t1,

there exists t2 such that t1
⇓−→ t2 and s2 �T

CS t2. But s2 and t2 have type σ with P-order 0,

and so s2�T
CB t2, by (1). The other direction is similar, so s1�T

CB t1. Otherwise s1 and t1

ch-tts.19

96 CHAPTER 4. TYPED TRANSITION SYSTEMS

have a value type with P-order 1. It is straightforward to show that whenever s1
a−→ s2 and

t1
a−→ t2, we have s2�T

CS t2, and s2 and t2 have the same type with P-order 1. Therefore, by
coinduction, we are done.

3. The proofs are by coinduction and are straightforward at value types. For computation
types, the results follow easily from s1 ⇓must and t1 ⇓must.

4. The proof is by coinduction and is straightforward at value types. For computation types,
recall that if s1 has a computation type, then s1 ⇑may and s1 has no transitions, or s1 ⇓must

and s1 has exactly one transition. We give the case for s1 �T
RS t1 implies s1�T

CB t1. If

s1 ⇓must, then s1 �T
RS t1 implies t1 ⇓must. If t1 ⇓must, then, because t1 ∈ Det(T), there exists

t2 such that t1
⇓−→ t2. By s1 �T

RS t1, there exists s2 such that s1
⇓−→ s2 and s2 �T

RS t2, so

s1 ⇓must, because s1 ∈ Det(T). Therefore, s1 ⇓must if and only if t1 ⇓must. Now whenever

there is a state s2 such that s1
⇓−→ s2, we have that s1 ⇓must, so t1 ⇓must and there is a unique

t2 such that t1
⇓−→ t2. By s1 �T

RS t1 and the fact that the transition from s1 is unique, we

have s2 �T
RS t2. For the other direction, suppose that there is a state t2 such that t1

⇓−→ t2.

By s1 �T
RS t1, we immediately get a state s2 such that s1

⇓−→ s2 and s2 �T
RS t2. Applying

coinduction, we have that s1�T
CB t1. �

Representatives of the maximal equivalence classes with respect to the upper, convex, and re-
finement variants of similarity can be identified via the hereditarily total and hereditarily deter-
ministic properties.

Lemma 4.2.6 Let T be a TTS and s, t ∈ T states with the same type. Then:

1. If s�T
US t and s ∈ Total(T)∩Det(T), then s�T

UB t.

2. If s�T
CS t and s ∈ Total(T), then s�T

CB t.

3. If s�T
RS t and s ∈ Det(T), then s�T

CB t.

Proof

1. By coinduction. Define R ⊆ T ×T by:

R def= {〈s, t〉 ∈ T ×T | ∃σ.(s, t ∈ T (σ))∧ (s ∈ Total(T)∩Det(T))∧ (s�T
US t)}

We need to show that, for all 〈s1, t1〉 ∈ R , we have 〈s1, t1〉 ∈ 〈R 〉TUS ∩ (〈R op〉TUS)
op. The

cases when s1 and t1 have a value type are straightforward. If s1 and t1 have type P⊥(σ),
then s1 ∈ Total(T) and s1 �T

US t1 imply that s1 ⇓must and t1 ⇓must. Now consider any

t2 ∈ T (σ) such that t1
⇓−→ t2. By s1 ⇓must and s1 �T

US t1, we have that there exists s2 ∈

4.2. SIMILARITY AND BISIMILARITY 97

T (σ) such that s1
⇓−→ s2 and s2 �T

US t2. However, s2 is the unique successor of s1 because

s1 ∈ Det(T), so 〈s1, t1〉 ∈ 〈R 〉TUS ∩ (〈R op〉TUS)
op, and we are done.

2. Proceed as in (1), redefining R for the premises of (2). If s1, t1 ∈R have type P⊥(σ), then

s1 ∈ Total(T) and s1 �T
CS t1 imply that s1 ⇓must and t1 ⇓must. By s1 �T

CS t1, we have, for all

s2 ∈ T (σ) such that s1
⇓−→ s2, there exists t2 ∈ T (σ) such that t1

⇓−→ t2 and s2 �T
CS t2. The

opposite direction also holds, because s1 ⇓must, so, for all t2 ∈ T (σ) such that t1
⇓−→ t2,

there exists s2 ∈ T (σ) such that s1
⇓−→ s2 and s2 �T

CS t2. Therefore:

〈s1, t1〉 ∈ 〈R 〉TLS ∩〈R 〉TUS ∩ (〈R op〉TLS)
op ∩ (〈R op〉TUS)

op

3. Proceed as in (1), redefining R for the premises of (3). Suppose that s1, t1 ∈ R have
type P⊥(σ). If s1 ⇑may, then s1 ∈ Det(T) implies that s1 has no successors. Moreover, t1
cannot have any successors either and so t1 ⇑may, because s1 �T

RS t1. Otherwise s1 ⇓must,

so t1 ⇓must, also because s1 �T
RS t1. Now consider any t2 ∈ T (σ) such that t1

⇓−→ t2. By

s1 �T
RS t1, we have that there exists s2 ∈ T (σ) such that s1

⇓−→ s2 and s2 �T
RS t2. However,

s2 is the unique successor of s1 because s1 ∈ Det(T), so:

〈s1, t1〉 ∈ 〈R 〉TLS ∩〈R 〉TUS ∩ (〈R op〉TLS)
op ∩ (〈R op〉TUS)

op

�

If the application operation in a TTS is well-behaved with respect to one of the variants of
similarity and bisimilarity, then it is possible to define a quotient structure with a well-defined

application operation (see section 4.5). Consider a TTS T , a relation R which is one of the
variants of similarity or bisimilarity on T , and states s1, t1 ∈ T (σ → τ) and s2, t2 ∈ T (σ) such

that 〈s1, t1〉 ∈ R and 〈s2, t2〉 ∈ R . In this case, we can deduce that 〈s1 @s2, t1@s2〉 ∈ R and

〈s1@t2, t1@t2〉 ∈R , but not 〈s1@s2, t1@t2〉 ∈R (although, by transitivity of R , we do have that

if 〈s1@s2,s1@t2〉 ∈ R or 〈t1@s2, t1@t2〉 ∈ R , then 〈s1@s2, t1@t2〉 ∈ R). This is analogous to
the property that must hold for a qATS to be an ATS (or for a qNATS to be a NATS). However,
it is possible that the property holds for one of the variants of similarity and bisimilarity but not
another. For this reason applicative compatibility is defined with respect to a particular relation.

Definition 4.2.7 Consider a TTS T and a relation R which is one of the variants of similarity,

mutual similarity, or bisimilarity on T . The relation R is applicatively compatible for a state

s ∈ T (σ → τ) if, for all t,u ∈ T (σ), 〈t,u〉 ∈ R implies 〈s@t,s@u〉 ∈ R . The relation R is

applicatively compatible with respect to T if R is applicatively compatible for every state of
function type in T .

98 CHAPTER 4. TYPED TRANSITION SYSTEMS

Example 4.2.8 We define a finite TTS T for which convex bisimilarity is not applicatively
compatible. The states of T are defined by:

T (σ) def=

{�1,�2} if σ = unit

{ff , tt} if σ = bool

{s} if σ = unit → bool

/0 otherwise

The states �1 are �2 have no transitions because they have type unit = prod 〈〉. The transitions
of the other states are:

s
@�1−−→ ff

0−→ �1

s
@�2−−→ tt

1−→ �1

Then �T
CB is not applicatively compatible because �1�T

CB �2, but:

s@�1 = ff
�T
CBtt = s@�2

If the states of a TTS have the property that no distinct states have the same behaviour, then
the behaviour is called extensional. Behaviour is measured using the variants of mutual simi-
larity and bisimilarity, and so extensionality of an equivalence relation simply means that every
equivalence class contains exactly one state.

Definition 4.2.9 Consider a TTS T and a relation R which is one of the variants of mutual

similarity or bisimilarity on T . The relation R is extensional if, for all states s, t ∈ T (σ),

〈s, t〉 ∈ R implies s = t.

Convex bisimilarity for the TTS T in example 4.2.8 is not extensional because �1�T
CB �2. In

fact, it could not be extensional because extensionality implies applicative compatibility.

Lemma 4.2.10 Consider a TTS T and a relation R which is one of the variants of mutual

similarity or bisimilarity on T . If R is extensional, then it is also applicatively compatible.

Proof Consider s ∈ T (σ → τ) and t,u ∈ T (σ) such that 〈t,u〉 ∈ R . By extensionality, t = u,

so s@t = s@u. Therefore 〈s@t,s@u〉 ∈ R , because R is reflexive. �

In chapter 5 it is shown that the variants of mutual similarity and bisimilarity upon the TTSs
determined by (some of) the fragments of L are applicatively compatible but not extensional,
and so the converse of lemma 4.2.10 does not hold.

4.3. THE TTS S AND BISIMILARITY 99

4.3 The TTS S and Bisimilarity

In this section we define a syntax-free TTS S for which convex bisimilarity is extensional. The
construction of S relies upon the type system of L being well-founded because the set of states
for each type is defined in terms of the sets of states for smaller types. For example, S (σ → τ)
is the set-theoretic function space S (σ)→S (τ), and S (P⊥(σ)) is Pne(S (σ)⊥), the set of non-
empty subsets of S (σ)⊥. The TTS S resembles full set-theoretic Henkin models (see [Mit96])
and the ∈-TSWDs defined in section 2.2. In section 4.4, a number of examples are given in S
to show that the inclusions between the variants of similarity, mutual similarity, and bisimilarity
can be strict. Using an embedding result proved in section 4.5, these examples can be pulled
back to the TTSs arising from the fragments of L .

Definition 4.3.1 The states of the TTS S are defined by induction on types:

S (sum 〈σn | n < κ〉) def= {sum〈σn | n < κ〉}×
(
∑
n<κ

S (σn)
)

S (prod 〈σn | n < κ〉) def= {prod 〈σn | n < κ〉}×
(
∏
n<κ

S (σn)
)

S (σ → τ) def= {σ → τ}× (S (σ)→S (τ))

S (P⊥(σ)) def= {P⊥(σ)}×Pne(S (σ)⊥)

The purpose of the first component of each state is to ensure that the sets 〈S (σ) | σ a type〉 are
pairwise disjoint, and is omitted when it can be inferred from the context. A state A ∈ S may
diverge if and only if it has a computation type and ⊥ ∈ A. The labelled transition relation is
defined by:

〈m,A〉 ∈ S (sum〈σn | n < κ〉) m−→ A ∈ S (σm)

〈An | n < κ〉 ∈ S (prod〈σn | n < κ〉) m−→ Am ∈ S (σm) (m < κ)

f ∈ S (σ → τ) @A−−→ f (A) ∈ S (τ) (A ∈ S (σ))

A ∈ S (P⊥(σ))
⇓−→ B ∈ S (σ) (B ∈ A\{⊥})

We write � ∈ S (unit) for the unique element of the unit type, and ff , tt ∈ S (bool) for the

elements of the boolean type such that ff
0−→ � and tt

1−→ �.

In the remainder of this section, we consider properties of the variants of bisimilarity on S .
Convex bisimilarity is straightforward because it is extensional.

Lemma 4.3.2 Convex bisimilarity �S
CB on S is extensional, and hence applicatively compati-

ble.

Proof By induction on the type of states. We give the case for states of a computation type
P⊥(σ). Consider A,B ∈ S (P⊥(σ)) such that A�S

CB B. Now ⊥ ∈ A if and only ⊥ ∈ B, because
A ⇑may if and only if B ⇑may. For C ∈ A such that C
=⊥, there exists D ∈ B such that D
= ⊥ and

C�S
CB D. By the induction hypothesis, C = D, so A ⊆ B. Similarly, B ⊆ A. Therefore A = B.

Applicative compatibility follows by lemma 4.2.10. �

100 CHAPTER 4. TYPED TRANSITION SYSTEMS

In contrast, neither lower bisimilarity and upper bisimilarity are extensional or applicatively
compatible with respect to S . The failure of extensionality is due to identifications that are
almost identical to those considered in section2.6 for the ∈-LTSWD for Pne(ω⊥). For example,
the states {⊥},{⊥,�},{�} ∈ S (P⊥(unit)) satisfy:

{⊥}
�S
LB {⊥,�}�S

LB {�}
{⊥}�S

UB {⊥,�}
�S
UB {�}

More generally, for all A ⊆ne S (σ), we have A�S
LB A∪{⊥}. Also, for all A,B ⊆ S (σ), we

have A∪{⊥}�S
UB B∪{⊥}. In contrast to the ∈-LTSWD for Pne(ω⊥), these are not the only

identifications, because other computation types may appear in σ. For example, the states
{{⊥,�}},{{�}} ∈ S (P⊥(P⊥(unit))) do not fit the schema above, but {{⊥,�}}�S

LB {{�}}.

The examples above can also be used to demonstrate the failure of applicative compatibility. For
lower bisimilarity, consider the function f : S (P⊥(unit))→S (P⊥(unit)) that maps {⊥} and
{⊥,�} to {⊥}, and {�} to {�}. The function f is a state of type S (P⊥(unit) → P⊥(unit)) and

lower bisimilarity is not applicatively compatible for f because of the states {⊥,�}�S
LB {�} that

are mapped to {⊥}
�S
LB {�}. A similar function can be used to show that upper bisimilarity is

not applicatively compatible.

It is possible to construct a TTS for which both lower bisimilarity and upper bisimilarity are
extensional by modifying the definition of the set of states at a computation type. Using the
approach taken in section 2.6, the states of a computation type P⊥(σ) are either {⊥} or a non-
empty subset of the set of states of σ. Of course, there are states of S , such as the function f
above, that do not correspond to any states in this TTS.

4.4 The TTS S and Similarity

In this section we investigate the variants of similarity and mutual similarity for the TTS S
defined in section 4.3. Extensionality and applicative compatibility fail for all variants of simi-
larity and mutual similarity because there are non-trivial equivalence classes. We give examples
at finite types to show that the general inclusions of lemma 4.2.4 can be strict, and investigate
when meets and joins exist with respect to lower similarity and upper similarity. The examples
are elementary but generic, and have analogues in the TTSs determined by the fragments of the
programming language L . This methodology has provided new examples to distinguish some
of the variants of similarity, mutual similarity, and bisimilarity for L , as well Lassen’s [Las98b]
non-deterministic λ-calculi.

The types P⊥(unit) and P⊥(P⊥(unit)) have P-orders of 1 and 2 respectively, and there are only
finitely many states with one of these types in S . With respect to either lower similarity or
upper similarity, the equivalence classes of the states S (P⊥(unit)) form chains of length 2:

{⊥}�S
LS {⊥,�}�S

LS{�}
{⊥}�S

US {⊥,�}�S
US {�}

4.4. THE TTS S AND SIMILARITY 101

Similarly, with respect to either lower similarity or upper similarity, the equivalence classes of
S (P⊥(P⊥(unit))) form chains of length 3.

Convex similarity and refinement similarity are more complex than lower similarity and upper
similarity. The partial orders on their equivalence classes are depicted in figures4.3 and 4.4
(only one representative from each equivalence class is given)1.

The partial orders on the equivalence classes of S (P⊥(bool)) with respect to all of the variants of
similarity are depicted in figure 4.5. Figure 4.6 contains the partial orders for S (P⊥(P⊥(bool)))
with respect to lower similarity and upper similarity, and figure 4.7 contains the considerably
more complex partial order for convex similarity equivalence classes.

The members of the equivalence classes in figures 4.5 and 4.6 have been chosen to illustrate
lemmas 4.2.5(3)(a) and 4.2.6, i.e., lower similarity is the converse of upper similarity and refine-
ment similarity when restricted to hereditarily total states, and there are representatives of the
maximal equivalence classes that are hereditarily total and/or hereditarily deterministic.

Lemma 4.2.5(2)(c) ensures that mutual convex similarity and mutual refinement similarity co-
incide with convex bisimilarity on states of type P⊥(unit) or P⊥(bool), because those types
have P-order 1. However, this property does not hold for the states of type P⊥(P⊥(unit)) or
P⊥(P⊥(bool)). The non-trivial equivalence classes of states of type P⊥(P⊥(unit)) with respect to
convex similarity and refinement similarity are:

1. Mutual convex similarity:

(a) {⊥,{⊥,�}}�S
CS {⊥,{⊥},{⊥,�}}

(b) {⊥,{�}}�S
CS {⊥,{⊥},{�}}�S

CS {⊥,{⊥,�},{�}}�S
CS {⊥,{⊥},{⊥,�},{�}}

(c) {{⊥},{�}}�S
CS {{⊥},{⊥,�},{�}}

2. Mutual refinement similarity:

(a) {⊥,{⊥,�}}�S
RS {⊥,{⊥,�},{⊥},{�}}�S

RS {⊥,{⊥,�},{⊥}}�S
RS {⊥,{⊥,�},{�}}

(b) {{⊥,�}}�S
RS {{⊥,�},{⊥},{�}}�S

RS {{⊥,�},{⊥}}�S
RS {{⊥,�},{�}}

Example 4.4.1 gives more general examples to show that the variants of bisimilarity are strictly
finer than the variants of mutual similarity.

Example 4.4.1 If A,B ∈ S (σ) are such that A�S
LS B and B
�S

LS A, then {A,B}�S
LS{B} and

{A,B}
�S
LB {B} at S (P⊥(σ)). Similarly, if A�S

US B and B
�S
US A, then {A}�S

US {A,B} and

{A}
�S
UB {A,B}. The assignment A = {⊥} and B = {�} satisfies both conditions for σ =

P⊥(unit). It is also possible to give assignments that rely only on non-determinism instead
of non-termination:

{{ff },{ff , tt}}�S
LS {{ff , tt}} and {{ff },{ff , tt}}
�S

LB {{ff , tt}}
{{ff , tt}}�S

US {{ff , tt},{ff }} and {{ff , tt}}
�S
UB {{ff , tt},{ff }}

1The diagrams in this section were generated using the Possum [Ear97] system.

102 CHAPTER 4. TYPED TRANSITION SYSTEMS

{⊥}

{⊥, �}

{�}

(a) S (P⊥(unit))

{{�}}

{{⊥, �}, {�}}

{{⊥, �}}{{⊥}, {�}}

{{⊥}, {⊥, �}}

{{⊥}}

{⊥, {�}}

{⊥, {⊥, �}}

{⊥, {⊥}}

{⊥}

(b) S (P⊥(P⊥(unit)))

Figure 4.3: Equivalence classes of S (P⊥(unit)) and S (P⊥(P⊥(unit))) w.r.t. �S
CS

{⊥, �}

{⊥} {�}

(a) S (P⊥(unit))

{⊥, {⊥, �}}

{⊥, {⊥}, {�}} {{⊥, �}}

{⊥, {⊥}} {⊥, {�}} {{⊥}, {�}}

{⊥} {{⊥}} {{�}}

(b) S (P⊥(P⊥(unit)))

Figure 4.4: Equivalence classes of S (P⊥(unit)) and S (P⊥(P⊥(unit))) w.r.t. �S
RS

ch-tts.4
ch-tts.5
ch-tts.18
ch-tts.14

4.4. THE TTS S AND SIMILARITY 103

{⊥}

{ff } {tt}

{ff , tt}

(a) .S
LS

{⊥}

{ff , tt}

{ff } {tt}

(b) .S
US

{⊥}

{⊥,ff } {⊥, tt}

{⊥,ff , tt}

{ff , tt}

{tt}{ff }

(c) .S
CS

{⊥,ff , tt}

{⊥,ff } {⊥, tt} {ff , tt}

{⊥} {ff } {tt}

(d) .S
RS

Figure 4.5: Equivalence classes of S (P⊥(bool)) w.r.t. �S
LS, �S

US, �S
CS, and �S

RS

ch-tts.7
ch-tts.8
ch-tts.9
ch-tts.13

104 CHAPTER 4. TYPED TRANSITION SYSTEMS

{⊥}

{{⊥}}

{{tt}}{{ff }}

{{ff }, {tt}}

{{ff , tt}}

(a) .S
LS

{⊥}

{{⊥}}

{{ff , tt}}

{{ff }, {tt}}

{{tt}}{{ff }}

(b).S
US

Figure 4.6: Equivalence classes of S (P⊥(P⊥(bool))) w.r.t. �S
LS and �S

US

Mutual refinement similarity behaves in the same way as upper similarity. If A�S
RS B and

B
�S
RS A, then {A}�S

RS {A,B} and {A}
�S
CB {A,B}. The assignment A = {ff , tt} and B = {ff } sat-

isfies the conditions. Finally, if A,B,C ∈ S (σ) are such that A�S
CS B�S

CSC and C
�S
CS B
�S

CS A,
then:

{A,B,C}�S
CS {A,C} and {A,B,C}
�S

CB{A,C}

A suitable assignment is A = {⊥}, B = {⊥,�}, and C = {�}.

The identifications made by mutual lower similarity and mutual upper similarity in example4.4.1
can be extended to lower and upper sets. The lower and upper sets turn out to be useful for prov-
ing the existence of certain meets and joins, with respect to lower similarity and upper similarity,
in S at computation types. First we show that the result of taking a lower set is related to the
original set by mutual lower similarity, and similarly for upper sets and mutual upper similarity.

Lemma 4.4.2 For A∈S (P⊥(σ)), extend the partial orders �S
LS and �S

US from S (σ) to S (σ)⊥
in the usual way, and then define ↓LS(A),↑US(A) ∈ S (P⊥(σ)) by:

↓LS(A) def= {C ∈ S (σ)⊥ | ∃B ∈ A.C�S
LS B}

↑US(A) def= {C ∈ S (σ)⊥ | ∃B ∈ A.B�S
USC}

Then A�S
LS ↓LS(A) and A�S

US ↑US(A).

ch-tts.10
ch-tts.11

4.4. THE TTS S AND SIMILARITY 105

Figure 4.7: Equivalence classes of S (P⊥(P⊥(bool))) w.r.t. �S
CS

ch-tts.12

106 CHAPTER 4. TYPED TRANSITION SYSTEMS

Proof We have A�S
LS ↓LS(A) because lower similarity is reflexive, and if C ∈ ↓LS(A) such that

C
=⊥, so there exists B
=⊥ such that C�S
LS B∈ A, then ↓LS(A)�S

LS A. Therefore A�S
LS ↓LS(A).

For upper similarity, first note that ⊥∈ A if and only if ⊥∈ ↑US(A). If ⊥∈ A, there is nothing to

prove, so suppose that ⊥
∈ A. The reflexivity of upper similarity implies ↑US(A)�S
US A. For the

other direction, consider C ∈ ↑US(A), so there exists B ∈ A such that B�S
USC, and we are done.

Therefore A�S
US ↑US(A). �

Lower similarity and upper similarity are partial orders on the images of the ↓LS(·) and ↑US(·)
functions, and they agree with the inclusion partial order and its dual respectively. These partial
orders are order-isomorphic to the partial orders induced by the preorders lower similarity and
upper similarity (respectively) on S (P⊥(σ)). To prove this it suffices to show that states of
computation type are related by lower similarity or upper similarity if their images under ↓LS(·)
or ↑US(·) are related by the inclusion order or its dual respectively.

Lemma 4.4.3 For all A1,A2 ∈ S (P⊥(σ)):

1. A1 �S
LS A2 if and only if ↓LS(A1) ⊆ ↓LS(A2).

2. A1 �S
US A2 if and only if ↑US(A1) ⊇ ↑US(A2).

Proof

1. Suppose A1 �S
LS A2 and C1 ∈ ↓LS(A1). If C1 = ⊥, we are done because every lower set

is non-empty and contains ⊥. Otherwise C1
= ⊥ and there exists B1 ∈ A1 such that
C1 �S

LS B1, so B1
=⊥. By A1 �S
LS A2, there exists B2 ∈ A2 such that B1 �S

LS B2 and B2
=⊥.

Hence, C1 �S
LS B2, which implies that C1 ∈ ↓LS(A2). For the other direction, suppose

↓LS(A1) ⊆ ↓LS(A2) and B1 ∈ A1 such that B1
= ⊥. By reflexivity of lower similarity,

B1 ∈ ↓LS(A1) ⊆ ↓LS(A2), so there exists B2 ∈ A2 such that B1 �S
LS B2 and B2
= ⊥. There-

fore A1 �S
LS A2.

2. Suppose A1 �S
US A2 and C2 ∈ ↑US(A2), so there exists B2 ∈ A2 such that B2 �S

USC2. If

⊥ ∈ A1, then C2 ∈ ↑US(A1), because ⊥�S
US C2, and we are done. Otherwise, ⊥
∈ A1.

By A1 �S
US A2, we have ⊥
∈ A2. Consequently, there exists B1 ∈ A1 such that B1 �S

US B2

and B1
= ⊥, so B1 �S
US C2. Therefore C2 ∈ ↑US(A1). For the other direction, suppose

↑US(A1) ⊇ ↑US(A2) and ⊥
∈ A1. By ↑US(A1) ⊇ ↑US(A2), we have ⊥
∈ A2. Now consider
B2 ∈ A2 such that B2
= ⊥, so B2 ∈ ↑US(A2) ⊆ ↑US(A1). Hence, there exists B1 ∈ A1 such

that B1 �S
US B2 and B1
= ⊥. Therefore A1 �S

US A2. �

4.4. THE TTS S AND SIMILARITY 107

Results on the existence of meets and joins at computation types with respect to lower similarity
and upper similarity are obtained via the inclusion partial order and its dual on the images of the
↓LS(·) and ↑US(·) functions.

Proposition 4.4.4 For all types σ:

1. The partial order induced by the preorder 〈S (P⊥(σ)),�S
LS〉 is a complete lattice.

2. The partial order induced by the preorder 〈S (P⊥(σ)),�S
US〉 has meets of all non-empty

subsets and joins of all subsets with an upper bound.

Proof We show that the partial orders:

〈{↓LS(A) | A ∈ S (P⊥(σ))},⊆〉 and 〈{↑US(A) | A ∈ S (P⊥(σ))},⊇〉
satisfy the same properties.

1. The meet of the empty set is S (P⊥(σ)) and the join of the empty set is {⊥}, both of
which map to themselves by ↓LS(·) and so are in the image of that function. Now consider
X ⊆ne S (P⊥(σ)). We claim that the meet and join of {↓LS(A) | A ∈ X} are

T{↓LS(A) |
A ∈ X} and

S{↓LS(A) | A ∈ X} respectively. Both sets are members of S (P⊥(σ)), and
in the image of ↓LS(·).They are the meet and join because intersection and union are the
meet and join operations respectively on the complete lattice 〈P(S (σ)⊥),⊆〉.

2. The meet of the empty set need not exist in general. The join of the empty set is S (P⊥(σ)),
which is equal to ↑US({⊥}). Now consider X ⊆ne S (P⊥(σ)). Using the fact that union
and intersection are the meet and join operations respectively on the complete lattice
〈P(S (σ)⊥),⊇〉, we need only show that

S{↑US(A) | A ∈ X} is always a member of
{↑US(A) | A ∈ S (P⊥(σ))}, and that

T{↑US(A) | A ∈ X} is a member of {↑US(A) | A ∈
S (P⊥(σ))} whenever X is bounded above. The first case is straightforward. For the sec-
ond case, suppose that X is bounded above, so there exists B∈S (P⊥(σ)) such that, for all
A ∈ X , ↑US(A) ⊇ ↑US(B). In this case,

T{↑US(A) | A ∈ X} ⊇ ↑US(B), so the candidate for
the join is a non-empty set, and we have

T{↑US(A) | A ∈ X} ∈ {↑US(A) | A ∈S (P⊥(σ))}.
�

Example 4.4.5 shows that the intersection of the lower and upper variants of similarity, mutual
similarity, and bisimilarity are strictly coarser than their convex variants. This completes the
series of examples that demonstrate that the inclusions in figure4.2 are strict in S .

Example 4.4.5 For A ∈ S (σ), consider the sets {⊥,{A}} and {⊥,{⊥,A}} that are states of
type P⊥(P⊥(σ)) in S . They are related by each of:

(�S
LB ∩�S

UB) ⊆ (�S
LS ∩�S

US) ⊆ (�S
LS ∩�S

US) and (�S
LS)

op ∩�S
US

but not by any of:

�S
CB ⊆ �S

CS ⊆ �S
CS or �S

RS ⊆ �S
RS

108 CHAPTER 4. TYPED TRANSITION SYSTEMS

We conclude with examples to show that there are no other general inclusions that could be
added to figure 4.2.

Example 4.4.6 In figure 4.8 each row contains examples that demonstrate that two relations
are incomparable. For example, the first row shows that mutual convex similarity and lower
bisimilarity are incomparable. The states related by mutual convex similarity in the first column
are not related by lower bisimilarity, and the states related by lower bisimilarity in the second
column are not related by mutual convex similarity.

{⊥,{ff , tt}}�S
CS {⊥,{⊥, ff },{ff , tt}} {�}�S

LB {⊥,�}
{{⊥},{{�}}}�S

CS {{⊥},{{⊥},{�}},{{�}}} {⊥,�}�S
UB {⊥}

{⊥}�S
CS {�} {�}�S

LS {⊥,�}
{⊥}�S

CS {�} {⊥,�}�S
US {⊥}

{�}�S
LB {⊥,�} {⊥,�}�S

UB {⊥}
{�}�S

LS{⊥,�} {⊥,�}�S
US {⊥}

{�}�S
LS{⊥,�} {⊥,�}�S

US {⊥}
{{ff , tt}}�S

RS {{ff , tt},{ff }} {�}�S
LB {⊥,�}

{{ff , tt}}�S
RS {{ff , tt},{ff }} {⊥,�}�S

UB {⊥}
{⊥,{⊥,�},{�}}�S

RS {⊥,{⊥},{⊥,�}} {⊥,{�}}�S
CS {⊥,{⊥},{�}}

{⊥,{⊥,�},{�}}�S
RS {⊥,{⊥},{⊥,�}} {⊥,{�}}�S

CS {⊥,{⊥},{�}}

Figure 4.8: Incomparable relations

4.5 A Category of TTSs

We investigate the relationship between TTSs and their associated convex bisimilarity relations
via a category PR of maps between TTSs. Maps are functions between the sets of states that
preserve and reflect the structure of TTSs, including the type of a state, labelled transitions, and
may divergence. The existence of a map φ∈ PR(T ,U) between TTSs T and U means that the
relation induced on states of T by pulling convex bisimilarity in U back along φ is finer than
convex bisimilarity in T . In particular, there is a map from a TTS to its extensional collapse
whenever convex bisimilarity is applicatively compatible with respect to the TTS. A map can
also arise when U contains “more” states than T . This leads to a large family of inclusion maps
derived by (carefully) removing states from TTSs. The TTSs determined by fragments of the
programming language L in chapter 5 have inclusion maps from smaller fragments to larger
fragments.

4.5. A CATEGORY OF TTSS 109

We also show that there is at least one map to the TTS S from a TTS where convex bisimilarity
is applicatively compatible and an additional constraint is satisfied. The constraint is satisfied by
every TTS obtained from a fragment of L .

The conditions upon functions that form the PR-maps are similar to, but more restrictive than,
those imposed on logical relations. They must be functions instead of relations, and the relation-
ship between states of, for example, natural number type are restricted because it is a coproduct
type not a base type. To illustrate this, suppose φ : T →U and there are states s ∈ T (nat),
t ∈ T (unit), a natural number m ∈ ω, and a labelled transition s

m−→T t. Then it must be the case

that φ(s) ∈ U (nat), φ(t) ∈ U (unit), and there is a labelled transition φ(s) m−→U φ(t).

Definition 4.5.1 Let T and U be TTSs with labelled transition relations −→T and −→U respec-
tively, and φ : T →U a function from the states of T to the states of U . Define a map φ from
the labels of T to those of U by:

φ(n) def= n (n ∈ ω)

φ(@t) def= @(φ(t)) (t ∈ T)

φ(⇓) def=⇓
The function φ preserves and reflects labelled transitions and may divergence if it satisfies all
of the following conditions:

1. The type of a state is preserved by φ, i.e., if s ∈ T (σ), then φ(s) ∈ U (σ).

2. For all states s, t ∈ T and labels a, if s
a−→T t, then φ(s)

φ(a)−−→U φ(t).

3. For all states s ∈ T , u ∈ U , and labels a, if φ(s)
φ(a)−−→U u, then there exists a state t ∈ T

such that s
a−→T t and φ(t) = u.

4. May divergence is preserved and reflected by φ, i.e., for all states s ∈ T of computation
type, s ⇑may if and only if φ(s) ⇑may.

It is straightforward to show that functions that preserve and reflect labelled transitions and may
divergence form a category. However, it is worth noting that composition is not well-defined if
definition 4.5.1(3) is weakened to require only that φ(t) and u are related by convex bisimilarity.

Definition 4.5.2 The objects of the category PR are TTSs. For TTSs T and U , the members
of the homset PR(T ,U) are functions from the states of T to the states of U that preserve and
reflect labelled transitions and may divergence.

Maps φ∈ PR(T ,U) have the following important property. If the images under φ of states of
T are related by convex bisimilarity in U , then the states of T must also be related by convex
bisimilarity in T . Intuitively, this holds because the existence of a map φ∈ PR(T ,U) forces
U to have at least as many states as T , and so U has at least as much discriminative power for

110 CHAPTER 4. TYPED TRANSITION SYSTEMS

states of function type as T does. In fact, U may have fewer states than T in some cases, but
this only arises when states of T that are in the same convex bisimilarity equivalence class are
identified in U .

Proposition 4.5.3 Consider φ∈ PR(T ,U). For states s, t ∈ T , if φ(s)�U
CB φ(t), then s�T

CB t.

Proof By coinduction. Define R ⊆ T ×T by:

R def= {〈s, t〉 ∈ T ×T | φ(s)�U
CB φ(t)}

The cases for states of a value type are straightforward because every state of a value type has at

most one transition for each label. For example, if s, t ∈T (σ→ τ), u∈T (σ), and φ(s)�U
CB φ(t),

then s
@u−−→T s@u and t

@u−−→T t@u. By the labelled transition preservation property of φ, we have

φ(s)
@φ(u)−−−−→U φ(s@u) and φ(t)

@φ(u)−−−−→U φ(t@u). However, φ(s) and φ(t) each have one transition
labelled with @φ(u) because U is a TTS, so φ(s@u) = φ(s)@φ(u) and φ(t@u) = φ(t)@φ(u).
Then φ(s@u)�U

CB φ(t@u), because φ(s)�U
CB φ(t). Therefore 〈s@u, t@u〉 ∈R , which completes

the case for states of function type. For computation types, consider states s1, t1 ∈ T (P⊥(σ))
such that φ(s1)�U

CB φ(t1). Combining the fact that φ preserves and reflects divergence with

φ(s1)�U
CB φ(t1) gives s1 ⇑may if and only if t1 ⇑may. Now consider any state s2 ∈ T (σ) such that

s1
⇓−→T s2, so φ(s1)

⇓−→U φ(s2). By φ(s1)�U
CB φ(t1), there exists u ∈ U (σ) such that φ(t1)

⇓−→U u

and φ(s2)�U
CB u. By the transition reflecting property of φ, there exists t2 ∈ T (σ) such that

t1
⇓−→T t2 and φ(t2) = u. Therefore 〈s2, t2〉 ∈ R , because φ(s2)�U

CB φ(t2). The other direction is
similar. �

There is a partial converse to proposition 4.5.3. It is partial because U may have states of type
σ that are not in the image of φ. Such states have no effect on T (σ → τ), but can be used to
distinguish their images in U (σ → τ).

Lemma 4.5.4 Consider φ∈ PR(T ,U). Let A be the set of types for which convex bisimilarity
in U pulled back in φcoincides with convex bisimilarity in T :

A
def= {σ | ∀s, t ∈ T (σ).s�T

CB t =⇒ φ(s)�U
CB φ(t)}

Then:

1. A is closed under the formation of coproducts, products, and computation types.

2. For all types σ and τ, if every state in U (σ) is in the image of φ, and τ ∈A, then σ→ τ ∈A.

Proof

1. We give the case for computation types. The cases for coproduct and product types are

similar. Consider a type σ ∈ A and states s1, t1 ∈ T (P⊥(σ)) such that s1�T
CB t1. We want

4.5. A CATEGORY OF TTSS 111

to show that φ(s1)�U
CB φ(t1). Using s1�T

CB t1 and the fact that φ preserves and reflects
divergence, we see that φ(s1) ⇑may if and only if φ(t1) ⇑may. Now consider u ∈U (σ) such

that φ(s1)
⇓−→U u. By the transition reflecting property of φ, there exists s2 ∈ T (σ) such

that s1
⇓−→T s2 and φ(s2) = u. By s1�T

CB t1, there exists t2 ∈ T (σ) such that t1
⇓−→T t2 and

s2�T
CB t2. It follows that φ(t1)

⇓−→U φ(t2), and φ(s2)�U
CB φ(t2) because σ ∈ A. The other

direction is similar. Therefore φ(s1)�U
CB φ(t1).

2. Consider s, t ∈T (σ→ τ) such that s�T
CB t. We want to show that φ(s)�U

CB φ(t). It suffices

to show that, for all u ∈ U (σ), φ(s)@u�U
CB φ(t)@u. By assumption, there exists a state

v ∈ T (σ) such that u = φ(v). Now s
@v−−→T s@v, so φ(s)

@φ(v)−−−−→U φ(s@v), but φ(s) has a
unique transition labelled with @φ(v) , so φ(s)@φ(v) = φ(s@v). Similarly, φ(t)@φ(v) =
φ(t @v). In addition, s@v�T

CB t @v, because s�T
CB t. With τ ∈ A, we get φ(s)@u =

φ(s@v)�U
CB φ(t@v) = φ(t)@u as required. �

We now define the extensional collapse of a TTS. The states of the extensional collapse are
equivalence classes of states with respect to convex bisimilarity. Convex bisimilarity must be
applicatively compatible with respect to the TTS so that the application transitions of the exten-
sional collapse are well-defined, for the same reason that it is not always possible to define the
quotients of a qATS or a qNATS.

Definition 4.5.5 Let T be a TTS such that convex bisimilarity is applicatively compatible. The
extensional collapse of T is a TTS denoted Ext(T). The states of Ext(T) are defined, for each
type σ, by:

Ext(T)(σ) def= {{t ∈ T (σ) | s�T
CB t} | s ∈ T (σ)}

A state A ∈ Ext(T) may diverge if and only if, for all s ∈ A, s ⇑may. To define the labelled
transition relation, consider states A,B ∈ Ext(T). If A has a coproduct, product, or computation

type, then A
a−→Ext(T) B if and only if, for all s ∈ A, there exists t ∈ B such that s

a−→T t. If A has a

function type, then A
@C−−→Ext(T) B if and only if, for all s ∈ A and u ∈C, s@u ∈ B.

Convex bisimilarity is extensional on the extensional collapse of a TTS and there is a map from
the extensional collapse to the original TTS. In addition, every state of the extensional collapse is
in the image of the map, so, by lemma 4.5.4, the images of states related by convex bisimilarity
in the original TTS are related by convex bisimilarity in the extensional collapse, i.e., they are
equal.

Proposition 4.5.6 Let T be a TTS such that convex bisimilarity is applicatively compatible.
Then Ext(T) is a TTS upon which convex bisimilarity is extensional. In addition, there is a
map φ∈ PR(T ,Ext(T)) such that states of T are related by convex bisimilarity in T if and
only if their images under φare related by convex bisimilarity in Ext(T).

112 CHAPTER 4. TYPED TRANSITION SYSTEMS

Proof It is straightforward to show that Ext(T) is a TTS. Applicative compatibility of convex
bisimilarity is necessary for the existence of transitions from states of Ext(T) with function type.
For A∈Ext(T)(σ→ τ) and C ∈Ext(T)(σ), we must show that there exists B∈Ext(T)(τ) such

that A
@C−−→Ext(T) B. Now A and C are non-empty, so there are states s1 ∈ A and u1 ∈C. For all

s2 ∈ A and u2 ∈C, applicative compatibility implies that s1@u1�T
CB s2@u2. Therefore we take

B to be the convex bisimilarity equivalence class of s1@u1, and we have that Ext(T) is a TTS.
Now define the function φ : T →Ext(T), for s ∈ T (σ), by:

φ(s) def= {t ∈ T (σ) | s�T
CB t}

Clearly every state of Ext(T) is in the image of φ. We first show that φ∈ PR(T ,Ext(T)). The
function φ preserves the type of states, and preserves and reflects may divergence. Preservation
and reflection of labelled transitions by φ is straightforward, making use of the applicative com-
patibility of convex bisimilarity on T and the fact that every state of Ext(T) is the image of a
state of T . Combining the latter fact with proposition 4.5.3 and lemma 4.5.4 implies that, for
all types σ and states s, t ∈ T (σ), s�T

CB t if and only if φ(s)�Ext(T)
CB φ(t). Moreover, s�T

CB t is
equivalent to φ(s) = φ(t), so convex bisimilarity is extensional in Ext(T). �

In general, there need not be a map from Ext(T) to T because definition4.5.1(3) requires that

φ(t) = u rather than φ(t)�U
CB u.

Example 4.5.7 We define a TTS T such that convex bisimilarity is applicatively compatible,
but for which there are no maps from Ext(T) to T . The states of type unit are �1 and �2.
The unique state of type P⊥(unit) is s, and there are no other states. The state s has two tran-

sitions, s
⇓−→T

�1 and s
⇓−→T

�2. Convex bisimilarity is trivially applicatively compatible with
respect to the TTS T because there are no states of function type. The extensional collapse
Ext(T) has one state {�1,�2} of type unit, one state {s} of type P⊥(unit), and a single transi-

tion {s} ⇓−→Ext(T){�1,�2}. For a contradiction, suppose that there is a map φ∈ PR(Ext(T),T)
and, without loss of generality, that φ({�1,�2}) = �1. Such a map does not reflect labelled tran-

sitions, because φ({s}) = s
φ(⇓)−−→T

�2 and �2
∈ Im(φ). Therefore the homset PR(Ext(T),T) is
empty.

We now consider a restriction operation upon TTSs. The restriction operation is motivated by the
family of TTSs determined by the fragments of the programming language L (see chapter5),
and the mismatch between applicative similarity for PCF and its directed-complete partial order
model caused by the non-definability of parallel elements (see [Gun92]). A TTS is obtained
from a TTS T by restricting to a set of states X ⊆ T that is closed under labelled transitions of
T , with the exception of function application transitions that are labelled with elements not in X .
Convex bisimilarity for T is always finer, sometimes strictly finer, than convex bisimilarity upon
the TTS obtained by restriction, and we formalise this by showing that the inclusion function
from the states of the restricted TTS is a map.

Definition 4.5.8 Let T be a TTS and X ⊆ T a set of states such that, for all states s∈ X , t ∈T ,
and labels a, such that s

a−→T t, either t ∈ X , or there exists a state u ∈ T \X such that a = @u .

4.5. A CATEGORY OF TTSS 113

The restriction of T to X is a TTS denoted T � X . The states of T � X are defined, for each
type σ, by:

(T �X)(σ) def= T (σ)∩X

The may divergence predicate for T �X is the restriction to X of the may divergence predicate
for T . For states s, t ∈ T �X , and a label a, there is a labelled transition s

a−→T �X t if and only if

s
a−→T t and there does not exist u ∈ T \X such that a = @u .

Proposition 4.5.9 Let T be a TTS and X ⊆ T a set of states such that, for all states s ∈ X ,
t ∈ T , and labels a, such that s

a−→T t, either t ∈ X , or there exists a state u ∈ T \X such that
a = @u . Then T �X is a TTS and the inclusion function φfrom the states of T �X to the states
of T is a map φ∈ PR(T �X ,T).

Proof For T �X to be a TTS it suffices to show that T �X has enough transitions to satisfy
definition 4.1.1(5). For a state s ∈T �X of coproduct, product, or computation type, the closure
conditions on X ensure that if there is a state t ∈T and a label a such that s

a−→T t, then s
a−→T �X t.

If s ∈ (T �X)(σ → τ) and u ∈ (T �X)(σ), then there exists t ∈ T (τ) such that s
@u−−→T t. The

closure conditions on X imply that t ∈ X and s
@u−−→T �X t, because u ∈ X . Therefore T � X

is a TTS. The inclusion function φ is easily seen to preserve types, preserve and reflect may
divergence, and preserve labelled transitions. The closure conditions on X also imply that la-
belled transitions are reflected by φ. For example, if s ∈ (T �X)(σ → τ), u ∈ (T �X)(σ), and

t ∈ T (τ) such that s
@u−−→T t, then t ∈ X because u ∈ X , so s

@u−−→T �X t and φ(t) = t. Therefore
φ∈ PR(T �X ,T). �

Example 4.5.10 shows that convex bisimilarity on the restriction of a TTS can be extensional
when it is not extensional upon the original TTS, because a duplicate state in an equivalence
class can be removed.

Example 4.5.10 Consider the TTS T described in example 4.2.8, and let X ⊆ T be the set of
states {�1, ff , tt,s}. Then convex bisimilarity on T �X is extensional although it is not on T .

Conversely, convex bisimilarity may not be extensional on T � X even though convex bisim-
ilarity is extensional on T . This is because a state u ∈ T (σ) that can distinguish the states
s, t ∈ (T �X)(σ → τ) may not be in T �X .

Example 4.5.11 We define a TTS T with an extensional convex bisimilarity. There is a restric-
tion of T where convex bisimilarity is not extensional. The states of T are defined by:

T (σ) def=

{�} if σ = unit

{ff , tt} if σ = bool

{s, t} if σ = bool → bool

/0 otherwise

114 CHAPTER 4. TYPED TRANSITION SYSTEMS

The transitions are determined by:

ff
0−→ � s

@ff−−→ ff s
@tt−−→ ff

tt
1−→ � t

@ff−−→ ff t
@tt−−→ tt

Then �T
CB is extensional on T , but if X ⊆ T is {�, ff ,s, t}, then �T �X

CB is not extensional on

T �X because s�T �X
CB t and s
= t. Note that s
�T

CB t.

Proposition 4.5.12 shows that the maps of PR are essentially identifications composed with
inclusions. Every map φ∈PR(T ,U) factors through the restriction U � Im(φ) and the inclusion
map from U � Im(φ) to U . Moreover, U � Im(φ) has no more discriminative power than T .

Proposition 4.5.12 Consider TTSs T and U , and a map φ∈ PR(T ,U). Then Im(φ) ⊆ U is

a set of states such that, for all states s ∈ Im(φ), t ∈ U , and labels a such that s
a−→U t, either t ∈

Im(φ) or there exists u ∈ U \ Im(φ) such that a = @u . The map φ factors through U � Im(φ) as
φ= φ1;φ2, where φ1 ∈ PR(T ,U � Im(φ)), and φ2 ∈ PR(U � Im(φ),U) is the inclusion function.

Moreover, for all states s, t ∈ T , s�T
CB t if and only if φ1(s)�U �Im(φ)

CB φ1(t).

Proof Without loss of generality, consider s ∈ T (so φ(s) ∈ Im(φ)), t ∈ U , and a label a

such that φ(s) a−→U t. If there exists a label b from T such that a = φ(b), then by the labelled

transition reflecting property of φ, there exists v∈T such that s
b−→T v and t = φ(v), so t ∈ Im(φ).

Otherwise there must be a state u ∈ U such that a = @u and u
∈ Im(φ), and we are done with
the first part. Now define φ1 = φ, so φ1 : T →U � Im(φ), and let φ2 : U � Im(φ)→U be the
inclusion map. We have φ= φ1;φ2. The function φ1 preserves and reflects labelled transitions
and may divergence because φ does, so φ1 ∈ PR(T ,U � Im(φ)). By definition, every state of

U � Im(φ) is in the image of φ, so by lemma 4.5.4, for all states s, t ∈ T , s�T
CB t if and only if

φ1(s)�U �Im(φ)
CB φ1(t). �

We now consider the special role of the TTS S (see sections 4.3 and 4.4) in the category PR.
There is a family of TTSs each of which has an applicatively compatible convex bisimilarity and
a map to S . This reinforces the idea that S contains as many states as possible with different
behaviours whilst retaining an extensional convex bisimilarity. However, example4.5.13 shows
that there is a TTS with no maps to S where convex bisimilarity is applicatively compatible.

Example 4.5.13 We define a TTS T with extensional convex bisimilarity and a single state
s ∈ T (unit → sum〈〉). Note that no TTS can have a state of sum〈〉, so s ∈ T (unit → sum〈〉)
implies that there are no states of type unit in T . Now S (unit) = {�}, and so S (unit→ sum〈〉)
is empty. Therefore there are no maps in PR(T ,S), because s cannot be mapped to any state
of S .

The problem demonstrated in example 4.5.13 is that a TTS with an applicatively compatible
convex bisimilarity may have states of function type even though S has no states of the same
type. Theorem 4.5.15 shows that for every TTS (with an applicatively compatible convex bisim-
ilarity) that has no states of a given type whenever S has no states of that type, there is a map

4.5. A CATEGORY OF TTSS 115

to S . Before proving this, we define a partial function ξ that picks out one state of S for each
type whenever there is a state of that type.

Lemma 4.5.14 Define a partial function ξ that maps each type σ to a state of S (σ) by induc-
tion:

ξ(sum〈σn | n < κ〉) def=

undefined if ∀n < κ.ξ(σn) is undefined

〈m,ξ(σm)〉 if m < κ is the least natural number
such that ξ(σm) is defined

ξ(prod 〈σn | n < κ〉) def=

{
undefined if ∃m < κ.ξ(σm) is undefined

〈ξ(σn) | n < κ〉 otherwise

ξ(σ → τ) def=

undefined if ξ(σ) is defined and

ξ(τ) is undefined
{〈A,ξ(τ)〉 | A ∈ S (σ)} otherwise

ξ(P⊥(σ)) def= {⊥}

Then, whenever ξ(σ) is defined, ξ(σ)∈S (σ), and whenever ξ(σ) is undefined, S (σ) is empty.

Proof The result must be proved by induction on types with the definition to show that the case
for function types is well-defined. Consider sum 〈σn | n < κ〉. If ξ(sum〈σn | n < κ〉) is defined
and is equal to 〈m,ξ(σm)〉, then ξ(σm) is defined, and so by the induction hypothesis, ξ(σm) ∈
S (σm). Therefore 〈m,ξ(σm)〉 ∈ S (sum〈σn | n < κ〉). If ξ(sum〈σn | n < κ〉) is undefined,
then suppose 〈m,A〉 ∈S (sum 〈σn | n < κ〉), where m < κ. In this case, A∈S (σm) and ξ(σm) is
undefined, which contradicts the induction hypothesis. Therefore S (sum〈σn | n < κ〉) is empty.
The case for product types is similar, and the case for computation types is trivial. Finally,
consider the function type σ → τ. If ξ(σ → τ) is defined, then either ξ(τ) is defined or ξ(σ)
is undefined. In the former case, by the induction hypothesis, ξ(τ) ∈ S (τ), and ξ(σ → τ) is a
constant function from S (σ) to S (τ). In the latter case, S (σ) is empty, and so f is the unique
function from S (σ) to S (τ). In either case, ξ(σ → τ) ∈ S (σ → τ). If ξ(σ → τ) is undefined,
suppose for a contradiction that f ∈ S (σ → τ). By the induction hypothesis, ξ(σ) ∈ S (σ),
so f (ξ(σ)) ∈ S (τ), which contradicts the induction hypothesis at τ. Therefore S (σ → τ) is
empty. �

Now we can show that maps to S exist. For a map from a TTS T to S , a state of T with a
function type σ → τ is mapped to a function f : S (σ)→S (τ). The function f maps a state of
S (σ) to ξ(σ) if it is not the image of a state from T (σ). This causes the restriction of S to the
image of the map from T to S to have an extensional convex bisimilarity.

Theorem 4.5.15 Consider a TTS T with an applicatively compatible convex bisimilarity and
such that, for all types σ and τ, if ξ(σ → τ) is undefined (equivalently S (σ → τ) is empty) then
T (σ → τ) is empty. Then there exists a map φ∈ PR(T ,S) such that, for all states s, t ∈ T ,

s�T
CB t if and only if φ(s)�S

CB φ(t). In addition, convex bisimilarity is extensional in S � Im(φ).

Proof The function φ is defined by induction on the type of states. Simultaneously, we argue
that φpreserves and reflects labelled transitions and may divergence, and, for all states s, t ∈ T ,

116 CHAPTER 4. TYPED TRANSITION SYSTEMS

s�T
CB t if and only if φ(s)�S

CB φ(t). At states of coproduct, product, or computation type, φ is
defined by:

• If s ∈ T (sum〈σn | n < κ〉) and there exists m < κ and t ∈ T (σm) such that s
m−→ t, then

φ(s) def= 〈m,φ(t)〉.

• If s ∈ T (prod 〈σn | n < κ〉), then φ(s) def= 〈φ(s@n) | n < κ〉.

• If s ∈ T (P⊥(σ)), then φ(s) def= {⊥ | s ⇑may}∪{φ(t) | s
⇓−→ t}.

It is straightforward to show that for all states of coproduct, product, or function type, φ pre-
serves and reflects labelled transitions and may divergence. Moreover, the arguments of propo-
sition 4.5.3 and lemma 4.5.4(1) show that s�T

CB t if and only if φ(s)�S
CB φ(t) for states s, t ∈ T

of those types. For function types, consider σ → τ. If ξ(σ) is defined and ξ(τ) is undefined,
then ξ(σ → τ) is undefined, and, by hypothesis, T (σ → τ) is empty, so we are done. Other-
wise, we must define φ(s) for every state s ∈ T (σ → τ). If ξ(σ) is undefined, then S (σ) is
empty by lemma 4.5.14, and so φ(s) can be defined as the unique function from the empty set to
S (τ). The remaining case is that both ξ(σ) and ξ(τ) are defined, so S (σ → τ) is non-empty.
We have to define φ(s) : S (σ)→S (τ), so consider A ∈ S (σ). If A
∈ Im(φ) (the action of
φ is already defined upon T (σ) and φ preserves types), then define φ(s)(A) = ξ(τ) ∈ S (τ).
Otherwise, there exists t ∈ T (σ) such that φ(t) = A, and we define φ(s)(A) = φ(s@t) ∈ S (τ).
For this to be well-defined, we must show that φ(t) = φ(u) implies φ(s@t) = φ(s@u), for all

t,u ∈ S (σ). Suppose φ(t) = φ(u), so φ(t)�S
CB φ(u), and, by the induction hypothesis at σ,

t�T
CB u. By applicative compatibility of convex bisimilarity with respect to T , s@t�T

CB s@u.

Applying the induction hypothesis at τ gives φ(s@t)�S
CB φ(s@u). However, S has an exten-

sional convex bisimilarity, so φ(s@t) = φ(s@u) as required. Therefore φ is well-defined at
states of function type. By construction, φ preserves and reflects labelled transitions. We also

need to show that, for all states s, t ∈ T (σ → τ), s�T
CB t if and only if φ(s)�S

CB φ(t). For the

forward direction, consider s, t ∈ T (σ → τ) such that s�T
CB t, so ξ(σ) is undefined or ξ(τ) is

defined. We want to show that φ(s)�S
CB φ(t). If ξ(σ) is undefined, then S (σ) is empty, and

so φ(s) = φ(t) is the unique function from S (σ) to S (τ). Otherwise, both ξ(σ) and ξ(τ) are

defined. Consider A ∈ S (σ). We have to show that φ(s)(A)�S
CB φ(t)(A). If A
∈ Im(φ), then

φ(s)(A) = ξ(τ) = φ(t)(A). Otherwise, there exists a state u ∈ T (σ) such that φ(u) = A, and so

φ(s)(A) = φ(s@u) and φ(t)(A) = φ(t@u). Using s�T
CB t, we have s@u�T

CB t@u. Then, by the

induction hypothesis at τ, φ(s@u)�S
CB φ(t@u). Therefore s�T

CB t implies φ(s)�S
CB φ(t). The

reverse direction follows by the same argument used for proposition4.5.3.

Finally we claim that convex bisimilarity on S � Im(φ) is extensional. It suffices to prove by in-

duction on a type σ that, for all s, t ∈T (σ), φ(s)�S �Im(φ)
CB φ(t) implies φ(s) = φ(t). We consider

the case for function types, the other cases are straightforward. Suppose that s, t ∈ T (σ → τ)
and φ(s)�S �Im(φ)

CB φ(t). To prove φ(s) = φ(t), we need to show that, for all A ∈S (σ), φ(s)(A) =
φ(t)(A). Consider A∈S (σ). If A
∈ Im(φ), then φ(s)(A) = ξ(τ)= φ(t)(A). Otherwise A∈ Im(φ),

4.5. A CATEGORY OF TTSS 117

and the definition of bisimilarity for S � Im(φ) implies that φ(s)(A)�S �Im(φ)
CB φ(t)(A). Applying

the induction hypothesis at τ gives φ(s)(A) = φ(t)(A). Therefore φ(s) = φ(t), and convex bisim-
ilarity on S � Im(φ) is extensional. �

The TTS S is a weakly terminal object but not a terminal object in the full subcategory of PR
with TTSs satisfying the hypotheses of theorem4.5.15. This is because there may be states other
than the ones picked out by ξ that can be used as the image of non-definable elements.

Example 4.5.16 We define a TTS T with extensional convex bisimilarity that has more than
one map to S .

T (σ) def=

{�} if σ = unit

{ff } if σ = bool

{s} if σ = bool → bool

/0 otherwise

The transitions are determined ff
0−→ � and s

@ff−−→ ff . Then � and ff have fixed interpretations
in S , but s can be mapped to either one of the functions f : S (bool)→S (bool) such that
f (ff) = ff .

In chapter 5 we show that many TTSs determined by fragments of L satisfy the hypotheses of
theorem 4.5.15, proving that they are closely related to restrictions of S .

118 CHAPTER 4. TYPED TRANSITION SYSTEMS

Chapter 5

Programming Language TTSs

In this chapter we define a family of TTSs based upon the family of fragments of the program-
ming language L . The TTS structure provides definitions of the variants of similarity, mutual
similarity, and bisimilarity upon the programs of each fragment, and they coincide with the usual
definitions for non-deterministic λ-calculi. The majority of results from chapter4 apply to TTSs
derived from L . Here we show that the lower, upper, and convex variants of similarity are com-
patible and satisfy the Scott induction principle for all fragments, and that the other relations are
compatible on a restricted, but useful, collection of fragments. We investigate relative definabil-
ity of different forms of erratic non-determinism with respect to convex bisimilarity, and show
that the relative definability equivalence classes induce different convex bisimilarity relations,
i.e., extending a fragment with a new form of erratic non-determinism can allow more terms
from the original fragment to be distinguished.

Section 5.1 defines the family of TTSs based upon the programming language. Section5.2 stud-
ies the similarity and bisimilarity operations on the family of TTSs and discusses how examples
for the TTS S in sections 4.3 and 4.4 can be reconstructed in the programming language and
its fragments. Section 5.3 considers operations upon relations on open terms that are used in
section 5.4 to establish the compatibility results. The proofs are based upon Howe and Ong’s
techniques, and use Lassen’s relational presentation to prove results that apply to collections of
fragments. Section 5.5 identifies a sequence of relative definability equivalence classes of pro-
grams of type P⊥(nat) and establishes a relationship with Turing degrees. Section5.6 describes
elementary properties of the variants of similarity, mutual similarity, and bisimilarity, and then
shows that each member of the sequence of relative definability equivalence classes has a more
discriminating convex bisimilarity than that of the preceding member. Section5.7 proves the
Scott induction principle for the variants of similarity.

5.1 L0 and L0(E)

The programming language L determines a TTS with programs as states (using the same type
assignment system). We define the TTS based on L and consider restrictions to fragments of

119

120 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

the programming language. Throughout this chapter, E ranges over sets of well-typed terms of
the programming language L .

The labelled transitions between programs capture aspects of the may convergence relation and
decompositions of the canonical programs resulting from evaluation. They are based upon Gor-
don’s [Gor94, Gor95a, Gor95b] labelled transition relations for functional languages, which in
turn draw upon Abramsky’s [Abr90] ATS for the lazy λ-calculus (see the discussion on page87).
The labelled transitions for programs of computation type correspond to Gordon’s definitions for
programs of active type. The distinction between active and passive types is not important for
TTSs at value types because programs of value types always terminate. Note that the labelled
transition relation for L0 does not incorporate silent τ-transitions for individual reduction steps,
unlike the LTSs proposed for concurrent higher-order languages (see [FHJ95, Jef95]).

Definition 5.1.1 The states of the TTS L0 are the programs of the programming language L
with the same type assignment system, i.e., M ∈ L0(σ) if and only if � M : σ. The may
divergence predicate for the TTS L0 is the may divergence predicate defined in section 3.5 for
the programming language. The labelled transitions of the TTS L0 are defined by:

1. M ∈ L0(sum 〈σn | n < κ〉) =⇒
∀m < κ.∀N ∈ L0.M

m−→ N ⇐⇒ M ⇓may injmof N

2. M ∈ L0(prod 〈σn | n < κ〉) =⇒
∀〈Nn ∈ L0 | n < κ〉.(∀m < κ.M

m−→ Nm) ⇐⇒ M ⇓may tuple〈Nn | n < κ〉

3. M ∈ L0(σ → τ) =⇒
∀N ∈ L .(∀L ∈ L0(σ).M @L−−→ N[L/x]) ⇐⇒ M ⇓may λx.N

4. M ∈ L0(P⊥(σ)) =⇒
∀N ∈ L0.M

⇓−→ N ⇐⇒ M ⇓may [N]

For each set of terms E ⊆ L , the TTS L0(E) is defined to be the restriction L0 �L (E) of the

TTS L0 to the programs of the fragment L (E). We write L0(M1, . . . ,Mn) for L0({M1, . . . ,Mn}).

A summary of the notation may be useful at this point:

1. (a) L is the set of all well-typed terms.

(b) L is also used to refer to the programming language defined in chapter 3, which
includes the set of well-typed terms and the operational semantics.

2. (a) L0 is the subset of L consisting of all well-typed programs.

(b) L0 is the largest TTS defined in definition 5.1.1. The states of L0 are well-typed
programs, and as with other TTSs, L0 is used for the set of all states of that TTS.
This usage coincides with 2(a).

5.1. L0 AND L0(E) 121

3. (a) L0(E) is the set of programs in the smallest fragment L (E) containing the set of

well-typed terms E .

(b) L0(E) is a TTS defined by restriction in definition 5.1.1. States are programs from

the fragment L (E).

4. L0(σ) and L0(E)(σ) are the sets of states of type σ from the TTSs L0 and L0(E)
respectively.

Lemma 5.1.2 L0 is a TTS and, for all E ⊆ L , L0(E) is a TTS.

Proof It is straightforward to prove that L0 is a TTS, because the may convergence relation is
a function at value types by lemma 3.4.4, lemma 3.5.2, and proposition 3.6.3. For L0(E) to be

a TTS, we must establish the conditions of definition 4.5.8, i.e., if M ∈L0(E), N ∈L0, and a is

a label, such that M
a−→ N, either N ∈ L0(E) or there exists L ∈ L0 \L0(E) such that a = @L .

This holds when M does not have function type because L0(E) is closed under evaluation by

lemma 3.7.2 and is closed under taking subterms by definition. When M ∈ L0(E)(σ → τ) and

N ∈L0(E)(σ), we also make use of the fact that L0(E) is closed under substitution. Therefore

L0(E) is a TTS. �

Defining the family of TTSs by restriction creates a rich collection of relationships between the

TTSs, because every TTS L0(E) is a restriction of L0. More generally, if L (E1) ⊆ L (E2),
then the TTS L0(E1) is a restriction of the TTS L0(E2):

L0(E1) = L0(E2) �L (E1)

With these relationships, we can deduce inclusions between the variants of convex bisimilarity
for L0(E1) and L0(E2).

The generic projection and application operations that are available in all TTSs (see defini-
tion 4.1.1) do not coincide with syntactic projection and application because of the may conver-
gence clauses in the definition of the transitions of L0. However, the resulting programs do have
the same may convergence and may divergence behaviour.

Lemma 5.1.3

1. For a program M ∈ L0(E)(prod〈σn | n < κ〉), m < κ, and a canonical program K ∈
L0(E)(σm):

M@m ⇓may K ⇐⇒ projmof M ⇓may K
M@m ⇑may ⇐⇒ projmof M ⇑may

122 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. For programs M ∈ L0(E)(σ → τ) and N ∈ L0(E)(σ), and a canonical program K ∈
L0(τ):

M@N ⇓may K ⇐⇒ M N ⇓may K
M@N ⇑may ⇐⇒ M N ⇑may

Proof Follows from the may convergence and may divergence rules for projection and func-
tion application. �

It is useful to know when states are hereditarily deterministic or total because lemma 4.2.5
then gives identifications between variants of similarity, mutual similarity, and bisimilarity.
Lemma 5.1.4 identifies conditions under which all states of a TTS derived from a language
fragment will be hereditarily deterministic.

Lemma 5.1.4 If E contains no instances of erratic choice constructors, then every state of the

TTS L0(E) is hereditarily deterministic.

Proof Straightforward because the restrictions to L (E) of the reduction relation � and the

deterministic reduction relation �det coincide. �

However, a program may be hereditarily deterministic in one TTS but not in a larger TTS be-
cause of the behaviour of functions.

Example 5.1.5 The program � λx.x : P⊥(bool) → P⊥(bool) is hereditarily deterministic as a
state of L0(/0), but not as a state of L0(?〈false,true〉) because:

λx.x
?〈false,true〉−−−−−−−→L0(?〈false,true〉) ?〈false,true〉

and ?〈false,true〉 is not hereditarily deterministic.

For any TTS of the form L0(E), every computation type P⊥(σ) has a program Ω that is not
hereditarily total. There may be types with P-order greater than one where all states of that type
are hereditarily total, because fragments need not be closed under infinitary product constructors.

5.2 Similarity and Bisimilarity

The TTSs derived from the programming language L and its fragments inherit definitions of
the variants of similarity, mutual similarity, and bisimilarity. In this section we give an elemen-
tary description of the variants of similarity and bisimilarity for language fragments, prove the
existence of maps in the category PR from the TTSs for certain language fragments to S , and
consider how the examples from sections 4.3 and 4.4 can be reconstructed in TTSs derived from
the language fragments. We start by defining the space of relations on programs.

5.2. SIMILARITY AND BISIMILARITY 123

� M1 R N1 : sum〈σn | n < κ〉 ⇐⇒
∃m < κ.∃M2,N2.

(M1 ⇓may injmof M2)∧ (N1 ⇓may injmof N2) ∧
(� M2 R N2 : σm)

� M R N : prod 〈σn | n < κ〉 ⇐⇒
∃〈M′

n | n < κ〉,〈N ′
n | n < κ〉.

(M1 ⇓may tuple〈M′
n | n < κ〉)∧ (N1 ⇓may tuple〈N ′

n | n < κ〉)∧
(∀m < κ. � M′

m R N ′
m : σm)

� M1 R N1 : σ → τ ⇐⇒
∃M2,N2.

(M1 ⇓may λx.M2)∧ (N1 ⇓may λx.N2)∧
(∀L ∈ L0(E)(σ). � M2[L/x]R N2[L/x] : τ)

Figure 5.1: Unfoldings of similarity and bisimilarity for L0(E) at value types

Definition 5.2.1 The set Rel0(E) consists of all sets of pairs R ⊆ L0(E)×L0(E) where

〈M,N〉 ∈ R implies there exists a type σ such that M,N ∈ L0(E)(σ). The complete lattice

〈Rel0(E),⊆〉 has meets defined as intersection for non-empty sets. The meet of the empty set
is:

{〈M,N〉 | ∃σ.M,N ∈ L0(E)(σ)} ∈ Rel0(E)

We write Rel0(M1, . . . ,Mn) for Rel0({M1, . . . ,Mn}). When R ∈ Rel0(E), we write � M R N : σ

or � 〈M,N〉 ∈ R : σ for M,N ∈ L0(E)(σ) and 〈M,N〉 ∈ R .

The variants of similarity and bisimilarity for TTSs derived from L and its fragments can be
characterised directly in terms of the operational semantics. If R ∈ Rel0(E) is a variant of sim-
ilarity, mutual similarity, or bisimilarity, then the characterisations in figure 5.1 hold at value

types for programs of L0(E). The characterisations in figure 5.2 hold for the relations at com-
putation types (cf. figure 4.1).

The TTS L0 derived from the programming language can be related to the TTS S described
in sections 4.3 and 4.4 using theorem 4.5.15. To do this, we need to know that L0(σ → τ) is
empty whenever ξ(σ → τ) is undefined (see lemma 4.5.14 for the definition of the function ξ).
Lemma 5.2.2 establishes a more general result for open terms.

Lemma 5.2.2 Consider an environment Γ = x1:σ1, . . . ,xn:σn. If ξ(σ1), . . . ,ξ(σn) are defined
and there exists a term Γ � M : σ, then ξ(σ) is also defined.

Proof By induction on the derivation of Γ � M : σ. The cases for terms of a computation type
are trivial because every computation type is in the domain of ξ. We give three representative
cases:

124 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

� M1 �L0(E)
LS N1 : P⊥(σ) ⇐⇒

∀M2.M1 ⇓may [M2] =⇒∃N2.N1 ⇓may [N2]∧ � M2 �L0(E)
LS N2 : σ

� M1 �L0(E)
US N1 : P⊥(σ) ⇐⇒

M1 ⇓must=⇒
(N1 ⇓must ∧∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2 �L0(E)

US N2 : σ)

� M1 �L0(E)
CS N1 : P⊥(σ) ⇐⇒

(∀M2.M1 ⇓may [M2] =⇒∃N2.N1 ⇓may [N2]∧ � M2 �L0(E)
CS N2 : σ)∧

(M1 ⇓must=⇒
(N1 ⇓must ∧∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2 �L0(E)

CS N2 : σ))

� M1 �L0(E)
RS N1 : P⊥(σ) ⇐⇒

(M1 ⇓must=⇒ N1 ⇓must)∧
(∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2 �L0(E)

RS N2 : σ)

� M1�L0(E)
LB N1 : P⊥(σ) ⇐⇒

(∀M2.M1 ⇓may [M2] =⇒∃N2.N1 ⇓may [N2]∧ � M2�L0(E)
LB N2 : σ)∧

(∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2�L0(E)
LB N2 : σ)

� M1�L0(E)
UB N1 : P⊥(σ) ⇐⇒

(M1 ⇑may ∧N1 ⇑may)∨
((M1 ⇓must ∧N1 ⇓must)∧

(∀M2.M1 ⇓may [M2] =⇒∃N2.N1 ⇓may [N2]∧ � M2�L0(E)
UB N2 : σ)∧

(∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2�L0(E)
UB N2 : σ))

� M1�L0(E)
CB N1 : P⊥(σ) ⇐⇒

(M1 ⇓must⇐⇒ N1 ⇓must)∧
(∀M2.M1 ⇓may [M2] =⇒∃N2.N1 ⇓may [N2]∧ � M2�L0(E)

CB N2 : σ)∧
(∀N2.N1 ⇓may [N2] =⇒∃M2.M1 ⇓may [M2]∧ � M2�L0(E)

CB N2 : σ)

Figure 5.2: Unfoldings of similarity and bisimilarity for L0(E) at P⊥(σ)

5.3. RELATIONS ON OPEN TERMS 125

1. Γ � caseM of 〈xn.Nn | n < κ〉 : τ
By the induction hypothesis for Γ � M : sum 〈σn | n < κ〉, we have that ξ(sum〈σn | n < κ〉)
is defined, and so there exists m < κ such that ξ(σm) is defined. Then the induction
hypothesis for Γ,xm : σm � Nm : τ implies that ξ(τ) is defined.

2. Γ � λx:σ.M : σ → τ
If ξ(σ) is undefined, then ξ(σ→ τ) is defined, and we are done. Otherwise ξ(σ) is defined.
The induction hypothesis for Γ,x : σ� M : τ implies that ξ(τ) is also defined, and therefore
ξ(σ → τ) is defined.

3. Γ � M N : τ
By the induction hypothesis, both ξ(σ → τ) and ξ(σ) are defined. Therefore ξ(τ) is also
defined. �

If convex bisimilarity is applicatively compatible on a TTS L0(E), then programs from L0(E)
can be related to states of the TTS S . This (functional) relationship does not constitute a
denotational semantics because its definition is not compositional, i.e., the image of a term M is
not defined in terms of the images of the immediate subterms of M.

Corollary 5.2.3 If L (E) is a language fragment such that �L0(E)
CB is applicatively compatible,

then there is a map φ∈ PR(L0(E),S).

Proof The hypotheses of theorem 4.5.15 hold by assumption and lemma 5.2.2. �

Convex bisimilarity is shown to be applicatively compatible for certain language fragments in
section 5.4.

The majority of examples for the TTS S from sections4.3 and 4.4 have analogues in sufficiently
expressive language fragments. For types with no function type constructors, it is only necessary

to show that states of S used in examples are in the image of φ∈ PR(L0(E),S). For exam-
ple, figure 5.3 compares convex similarity upon programs with type P⊥(P⊥(unit)) with convex
similarity upon the states of S with type P⊥(P⊥(unit)). A minor benefit of using Moggi’s com-
putational λ-calculus is that the example programs are simple because the unit term constructor
can be used instead of λ-abstraction.

5.3 Relations on Open Terms

The definitions and results in this section concern relations on open terms, and are used in
the proofs of compatibility (section 5.4) and fixed-point properties (section 5.7). Following
Lassen [Las98b], a few key operators on relations (closed restriction, open extension, relational
substitution, and compatible refinement) provide a layer of abstraction from terms, which makes
it easier to construct proofs that apply to different programming languages obtained as fragments
of L .

The non-standard notation introduced below has been chosen to emphasise the parameter E , be-
cause it plays an important role in the definition of the open extension and compatible refinement

126 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

{{�}}

{{⊥, �}, {�}}

{{⊥, �}}{{⊥}, {�}}

{{⊥}, {⊥, �}}

{{⊥}}

{⊥, {�}}

{⊥, {⊥, �}}

{⊥, {⊥}}

{⊥}

(a) S (P⊥(P⊥(unit)))

[[�]]

[Ω ∪ [�]] ∪ [[�]]

[Ω ∪ [�]][Ω] ∪ [[�]]

[Ω] ∪ [Ω ∪ [�]]

[Ω]

Ω ∪ [[�]]

Ω ∪ [Ω ∪ [�]]

Ω ∪ [Ω]

Ω

(b) L0(P⊥(P⊥(unit)))

Figure 5.3: Equivalence classes in S and L0 at P⊥(P⊥(unit)) w.r.t. �S
CS and �L0

CS

ch-tts.5
ch-tts.17

5.3. RELATIONS ON OPEN TERMS 127

operators by restricting universal quantifications to L (E). Most of the proofs in this section are
brief or omitted altogether because they are straightforward or appear in the literature. However,

care is required because some usual properties fail for certain choices of E (see example5.3.7).

To accommodate the definition of open extension in the presence of the empty type sum〈〉,
the space of relations on open terms must include information about the environments in which
terms are related and must not enforce strengthening (see exercise 3.6.5 of [Cro93]). In addition,
definition 5.3.1 forces relations on open terms to be closed under weakening and renaming of
variables in the environment.

Definition 5.3.1 The set Rel(E) consists of all sets of triples:

R ⊆ {Γ | Γ an environment}×L (E)×L (E)

such that:

1. 〈Γ,M,N〉 ∈ R implies there exists a (necessarily unique) type σ such that Γ � M : σ and
Γ � N : σ.

2. 〈Γ,M,N〉 ∈ R and Γ ⊆ ∆ implies 〈∆,M,N〉 ∈ R .

3. 〈(Γ,x : σ),M,N〉 ∈ R and y
∈ Dom(Γ) implies 〈(Γ,y : σ),M[y/x],N[y/x]〉 ∈ R .

The complete lattice 〈Rel(E),⊆〉 has meets defined as intersection for non-empty sets. The meet
of the empty set is:

{〈Γ,M,N〉 | ∃σ.Γ � M ∈ L (E) : σ∧Γ � N ∈ L (E) : σ} ∈ Rel(E)

We write Rel(M1, . . . ,Mn) for Rel({M1, . . . ,Mn}). When R ∈ Rel(E), we write Γ � M R N : σ

or Γ � 〈M,N〉 ∈ R : σ for Γ � M : σ, Γ � N : σ, and 〈Γ,M,N〉 ∈ R .

The dual R op ∈ Rel(E) of a relation R ∈ Rel(E) is defined by:

〈Γ,M,N〉 ∈ R op ⇐⇒ 〈Γ,N,M〉 ∈ R

This induces a monotone function with respect to inclusion on Rel(E).

Relations on open terms R ,S ∈ Rel(E) can be composed as follows. For terms L, N and an
environment Γ:

〈Γ,L,N〉 ∈ R ;S ⇐⇒∃M.〈Γ,L,M〉 ∈ R ∧〈Γ,M,N〉 ∈ S

The identity relation Id(L (E)) ∈ Rel(E) is an identity for composition.

Id(L (E)) def= {〈Γ,M,M〉 | ∃σ.Γ � M ∈ L (E) : σ}

128 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

In addition, composition is associative, and monotone with respect to (point wise) inclusion.
The properties of reflexivity, symmetry, and transitivity are defined upon elements of Rel(E) in
the usual way in terms of inclusion, the identity, and the dual and composition operators.

The closed restriction and open extension operators are functions between the relations on closed
terms Rel0(E) and the relations on open terms Rel(E). Relational substitution is useful for
describing properties of Howe’s congruence candidate (see section5.4).

Definition 5.3.2

1. For R ∈ Rel(E), the closed restriction of R , Cls(R) ∈ Rel0(E), is defined by:

Cls(R) def= {〈M,N〉 | 〈 /0,M,N〉 ∈ R }

2. For R ∈ Rel0(E), the open extension of R with respect to E , Opn(E ,R) ∈ Rel(E), is
defined, for terms M, N and an environment Γ = x1 : σ1, . . . ,xn : σn, by:

Γ � 〈M,N〉 ∈ Opn(E ,R) : σ ⇐⇒
Γ � M ∈ L (E) : σ∧
Γ � N ∈ L (E) : σ∧
∀L1 ∈ L0(E)(σ1), . . . ,Ln ∈ L0(E)(σn). � 〈M[�L/�x],N[�L/�x]〉 ∈ R : σ

where�L = L1, . . . ,Ln.

3. For R ,S ∈ Rel(E), the relational substitution of S into R , written R [S] ∈ Rel(E), is
defined, for terms L1, L2 and an environment Γ, by:

Γ � 〈L1,L2〉 ∈ R [S] : τ ⇐⇒
∃M,N, �M,�N.

L1 = M[�M/�x]∧L2 = N[�N/�x]∧
Γ,∆ � 〈M,N〉 ∈ R : τ∧
∀1 ≤ i ≤ n.Γ � 〈Mi,Ni〉 ∈ S : σi

where ∆ = x1 : σ1, . . . ,xn : σn, �M = M1, . . . ,Mn, and �N = N1, . . . ,Nn.

It can be verified that the open extension and relational substitution are always elements of

Rel(E). In addition, all three operators are monotone with respect to inclusion.

Lemma 5.3.3

1. If R ,S ∈ Rel(E) and R ⊆ S then Cls(R) ⊆ Cls(S).

2. If R ,S ∈ Rel0(E) and R ⊆ S then Opn(E ,R) ⊆ Opn(E ,S).

3. If R 1,R 2,S 1,S 2 ∈ Rel(E), R 1 ⊆ S 1, and R 2 ⊆ S 2, then R 1[R 2] ⊆ S 1[S 2].

Proof Straightforward. �

5.3. RELATIONS ON OPEN TERMS 129

The operators also satisfy the following basic properties that are analogous to results in [Las98b].

Lemma 5.3.4

1. If R ∈ Rel0(E) and Id(L0(E)) ⊆ R , then Id(L (E)) ⊆ Opn(E ,R).

2. If R ∈ Rel0(E) and Id(L0(E)) ⊆ R , then Opn(E ,R)[Id(L (E))] = Opn(E ,R).

3. If R ,S ∈ Rel0(E), then Opn(E ,R);Opn(E ,S) ⊆ Opn(E ,R ;S).

4. If R 1,R 2,S 1,S 2 ∈ Rel(E), then (R 1;R 2)[S 1;S2] ⊆ R 1[S 1];R 2[S 2].

5. If R ∈ Rel(E) and S ∈ Rel0(E), then R ⊆ Opn(E ,S) if and only if

Cls(R [Id(L (E))]) ⊆ S .

Proof Straightforward. (2) makes use of lemma 3.3.4. �

Howe [How89] introduces a now standard compatible refinement operator on relations between
terms in order to prove compatibility of applicative similarity (see section5.4). Terms are related
by the compatible refinement of R ∈ Rel(E) if they have the same outermost constructor and

the immediate subterms are pointwise related by R .

Definition 5.3.5 The compatible refinement Cmp(E ,R) ∈ Rel(E) of a relation R ∈ Rel(E)

with respect to E is the least set closed under the rules of figure5.4.

Note that the notation used here for the compatible refinement Cmp(E ,R) differs from the

standard notation R̂ .

Lemma 5.3.6 For R ,S ∈ Rel(E):

1. If R ⊆ S , then Cmp(E ,R) ⊆ Cmp(E ,S).

2. If Id(L (E)) ⊆ R , then Id(L (E)) ⊆ Cmp(E ,R).

3. If R ⊆ Id(L (E)), then Cmp(E ,R) ⊆ Id(L (E)).

4. Cmp(E ,R);Cmp(E ,S) ⊆ Cmp(E ,R ;S)

5. Cmp(E ,R)[S] ⊆ S ∪Cmp(E ,R [S])

6. Cmp(E ,R op) = (Cmp(E ,R))op

130 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Γ � 〈x,x〉 ∈ Cmp(E ,R) : σ (Γ(x) = σ)

Γ � 〈M,N〉 ∈ R : σm

Γ � 〈injmof M, injmof N〉 ∈ Cmp(E ,R) : sum〈σn | n < κ〉
Γ � 〈L1,L2〉 ∈ R : sum〈σn | n < κ〉

{Γ,xn : σn � 〈Mn,Nn〉 ∈ R : τ | n < κ}
Γ � 〈caseL1 of 〈xn.Mn | n < κ〉,caseL2 of 〈xn.Nn | n < κ〉〉 ∈ Cmp(E ,R) : τ

{Γ � 〈Mn,Nn〉 ∈ R : σn | n < κ}
Γ � 〈tuple〈Mn | n < κ〉,tuple〈Nn | n < κ〉〉 ∈ Cmp(E ,R) : prod 〈σn | n < κ〉

Γ � 〈M,N〉 ∈ R : prod 〈σn | n < κ〉
Γ � 〈projmof M,projmof N〉 ∈ Cmp(E ,R) : σm

Γ,x : σ � 〈M,N〉 ∈ R : τ

Γ � 〈λx:σ.M,λx:σ.N〉 ∈ Cmp(E ,R) : σ → τ
Γ � 〈M1,N1〉 ∈ R : σ → τ Γ � 〈M2,N2〉 ∈ R : σ

Γ � 〈M1 M2 ,N1 N2 〉 ∈ Cmp(E ,R) : τ
Γ � 〈M,N〉 ∈ R : σ

Γ � 〈[M], [N]〉 ∈ Cmp(E ,R) : P⊥(σ)

Γ � 〈M1,N1〉 ∈ R : P⊥(σ) Γ,x : σ � 〈M2,N2〉 ∈ R : P⊥(τ)

Γ � 〈letx:σ ⇐ M1 inM2, letx:σ ⇐ N1 inN2〉 ∈ Cmp(E ,R) : P⊥(τ)
Γ,x : P⊥(σ) � 〈M,N〉 ∈ R : P⊥(σ)

Γ � 〈fixx:P⊥(σ).M,fixx:P⊥(σ).N〉 ∈ Cmp(E ,R) : P⊥(σ)

{Γ � 〈Mn,Nn〉 ∈ R : σ | n < κ}
Γ � 〈?〈Mn | n < κ〉,?〈Nn | n < κ〉〉 ∈ Cmp(E ,R) : P⊥(σ)

In addition, each rule schema has implicit side conditions Γ � M ∈ L (E) : σ and

Γ � N ∈ L (E) : σ whenever the conclusion is Γ � 〈M,N〉 ∈ Cmp(E ,R) : σ.

Figure 5.4: Compatible refinement

5.3. RELATIONS ON OPEN TERMS 131

Proof (1)-(3) are straightforward case analyses. For (4), the conclusions of the compatible
refinement schema do not overlap, so if 〈L,M〉 ∈ Cmp(E ,R) and 〈M,N〉 ∈ Cmp(E ,R) then
both are instances of just one rule schema, and L, M, N have the same outermost constructor. (5)
is a case analysis on terms M, N related by Cmp(E ,R). If M and N are the same variable, then

the results of substituting S -related terms into M and N are related by S. Otherwise the results

are related by Cmp(E ,R [S]). (6) follows easily from the definition of compatible refinement. �

Example 5.3.7 The inclusion that is the opposite of lemma5.3.6(4):

Cmp(E ,R ;S) ⊆ Cmp(E ,R);Cmp(E ,S)

does not hold for arbitrary fragments, including some of the fragments that we are most in-
terested in. For example, consider E = {?〈0,1〉} and R = Opn(E ,{〈0,2〉,〈1,3〉}) ∈ Rel(E).

Then, because R ;R op = Opn(E ,{〈0,0〉,〈1,1〉}), we have:

� 〈?〈0,1〉,?〈0,1〉〉 ∈ Cmp(E ,R ;R op) : P⊥(nat)

However, because ?〈2,3〉
∈ L (E):

〈?〈0,1〉,?〈0,1〉〉
∈ Cmp(E ,R);Cmp(E ,R op)

The inclusion is desirable because it greatly simplifies the proof of compatibility for variants of
bisimilarity. An alternative is proposed in section5.4.

Analogous inclusions do hold in other settings when there are no inconsistencies concerning
term formation as there are in proper fragments of L such as L (?〈0,1〉). One way to resolve
this problem is to impose stronger closure conditions upon fragments. For example, the smallest
fragment L (?〈0,1〉) containing ?〈0,1〉 can be required to contain every term of the form ?〈M,N〉
when Γ � M ∈ L (E) : nat and Γ � N ∈ L (E) : nat. However, it is difficult to extend this
approach in a way that permits fragments containing ?ω but not ?A, where A ⊆ne ω is a non-
recursively enumerable set.

Alternatively, the term ?〈0,1〉 can be treated as a distinct term constructor of arity 0, and com-
patible refinement can be extended with a new rule schema (with no premises):

Γ � 〈?〈0,1〉,?〈0,1〉〉 ∈ Cmp(E ,R) : P⊥(nat)

Unfortunately, this approach becomes complex when a fragment does contain every term of the
form ?〈M,N〉, where Γ � M ∈ L (E) : nat and Γ � N ∈ L (E) : nat, because then the original
rule schema for compatible refinement should be used.

Howe’s compatibility proof relies on a relation, the congruence candidate, that is the least fixed-
point of a function defined in terms of the compatible refinement operator. The form of the
function ensures that the least fixed-point is the unique fixed-point, and hence it is also the
greatest fixed-point. This fact is recorded in the following lemma, along with an easy corollary
stating that the identity relation is the unique fixed-point of compatible refinement. In section5.4
it is used to rephrase Howe’s argument as a proof by coinduction that avoids explicit mention of
terms.

132 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Lemma 5.3.8

1. For a relation R ∈ Rel(E):

µS .Cmp(E ,S);R = νS .Cmp(E ,S);R

2. The identity relation on the fragment generated by E is both a least and a greatest fixed-
point, i.e.:

Id(L (E)) = µS .Cmp(E ,S) = νS .Cmp(E ,S)

Proof

1. Define a monotone function F : Rel(E)→ Rel(E) by F(S) def= Cmp(E ,S);R . Using
lemma 2.3.11, it suffices to exhibit a well-founded relation < ⊆ (νS.F(S))× (νS.F(S))
such that, for all 〈Γ,M1,N1〉 ∈ νS.F(S), there exists T ⊆ νS.F(S) such that 〈Γ,M1,N1〉 ∈
F(T) and T < 〈Γ,M1,N1〉, i.e., for all 〈∆,M2,N2〉 ∈ T , 〈∆,M2,N2〉 < 〈Γ,M1,N1〉. Define
the well-founded relation for all triples by 〈∆,M2,N2〉 < 〈Γ,M1,N1〉 if and only if M2 is a
proper subterm of M1. For 〈Γ,M1,N1〉 ∈ νS.F(S), set:

T
def= {〈∆,M2,N2〉 | 〈∆,M2,N2〉 < 〈Γ,M1,N1〉}

We want to show 〈Γ,M1,N1〉 ∈ F(T). We have that:

〈Γ,M1,N1〉 ∈ νS.F(S) = F(νS.F(S)) = Cmp(E ,νS.F(S));R

Thus there exists L1 such that 〈Γ,M1,L1〉 ∈ Cmp(E ,νS.F(S)) and 〈Γ,L1,N1〉 ∈ R . How-

ever, 〈Γ,M1,L1〉 ∈ Cmp(E ,T), because the terms in the premises of every rule schema for
compatible refinement are always proper subterms of the terms in the conclusion. There-
fore 〈Γ,M1,N1〉 ∈ F(T). By lemma 2.3.11, we conclude that the least and greatest fixed
points of F coincide.

2. By lemma 5.3.6(2,3), Id(L (E)) is a fixed-point of Cmp(E , ·). The result follows from

(1) by taking R = Id(L (E)).
�

Lemma 5.3.9 expresses the behaviour of 〈R 〉L0(E)
LS and 〈R 〉L0(E)

US in terms of compatible refine-
ment, open extension, and may and must convergence. The compatible refinement of the open
extension of R replaces the type specific definitions found in figures5.1 and 5.2.

Lemma 5.3.9 For a relation R ∈ Rel0(E) and programs M,N ∈ L0(E)(σ):

1. � 〈M,N〉 ∈ 〈R 〉L0(E)
LS : σ ⇐⇒

∀K1.M ⇓may K1 =⇒∃K2.N ⇓may K2 ∧ � 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,R)) : σ

5.4. COMPATIBILITY 133

2. � 〈M,N〉 ∈ 〈R 〉L0(E)
US : σ ⇐⇒

M ⇓must =⇒
(N ⇓must ∧
∀K2.N ⇓may K2 =⇒∃K1.M ⇓may K1 ∧ � 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,R)) : σ)

Proof Both (1) and (2) are proven by case analysis of the type σ. The cases for value types
are the same for (1) and (2) because:

� 〈M,N〉 ∈ 〈R 〉L0(E)
LS : σ ⇐⇒� 〈M,N〉 ∈ 〈R 〉L0(E)

US : σ

The case for computation types is straightforward. We illustrate with the forward direction of
the case for function types. Suppose that � 〈M,N〉 ∈ 〈R 〉L0(E)

LS : σ → τ and there is a term M1

such that M ⇓may λx.M1. The term N has a value type and so always converges to a unique term

λx.N1, for some N1. To prove � 〈λx.M1,λx.N1〉 ∈ Cmp(E ,Opn(E ,R)) : σ → τ it suffices to

show x : σ� 〈M1,N1〉 ∈ Opn(E ,R) : τ, i.e., for all L∈L0(E)(σ), � 〈M1[L/x],N1[L/x]〉 ∈R : τ.

However, M ⇓may λx.M1 implies M
@L−−→ M1[L/x]. From 〈M,N〉 ∈ 〈R 〉L0(E)

LS , we have that

N
@L−−→ N@L and 〈M1[L/x],N@L〉 ∈ R , but N@L = N1[L/x] because N ⇓may λx.N1. Therefore

� 〈M1[L/x],N1[L/x]〉 ∈ R : τ, as required. �

5.4 Compatibility

This section establishes compatibility of the open extensions of the variants of similarity, mutual
similarity, and bisimilarity. Lower, upper, and convex similarity are dealt with first. Next, a new
idea is used for lower, upper, and convex similarity bisimilarity. Finally, we introduce a second
novel technique for refinement similarity.

We start by defining what it means for a relation on open terms to be compatible.

Definition 5.4.1 A relation on open terms R ∈ Rel(E) is compatible with respect to E if

Cmp(E ,R) ⊆ R .

It is easier to prove that terms are related by an equivalence relation (often capturing a notion
of behavioural equality) if equivalent terms can be used interchangeably as subterms of a larger
term. Compatibility ensures that such compositional reasoning is permissible. From a differ-
ent perspective, compatibility can be used to show that term constructors induce well-defined
functions on equivalence classes of terms, which is useful, if not essential, for constructing
denotational models. Applicative compatibility serves a similar role for TTSs (recall that a re-
lation must be applicative compatible for the extensional collapse of definition4.5.5 to exist).
Lemma 5.4.2 shows that compatibility implies applicative compatibility.

Lemma 5.4.2 Let R ∈ Rel0(E) be a variant of similarity, mutual similarity, or bisimilarity. If

Opn(E ,R) is compatible with respect to E , then R is applicatively compatible upon the TTS

L0(E).

134 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Proof Consider types σ, τ and programs L ∈ L0(E)(σ → τ) and M,N ∈ L0(E)(σ) such

that 〈M,N〉 ∈ R . We want to show 〈L@M,L@N〉 ∈ R . With lemma 5.1.3 it can be shown

that L@M�L0(E)
CB LM and LN �L0(E)

CB L@N. We have � 〈L,L〉 ∈ Opn(E ,R) : σ → τ, because

Id(L (E))⊆ Opn(E ,R), and � 〈M,N〉 ∈ Opn(E ,R) : σ. Compatibility of Opn(E ,R) implies

that � 〈LM ,LN 〉 ∈ Opn(E ,R) : σ, and so 〈LM ,LN 〉 ∈ R . Convex bisimilarity is the finest
of the variants of similarity, mutual similarity, and bisimilarity, and each one is transitive, so
�L0(E)

CB ;R ;�L0(E)
CB ⊆ R . Therefore 〈L@M,L@N〉 ∈ R . �

It is non-trivial to prove that the open extensions of the variants of similarity, mutual similarity,
and bisimilarity are compatible, because substitution is used in the operational semantics yet
substituting related terms into related terms may produce unrelated terms. In other words, if
R ∈ Rel0(E) is the variant of similarity, mutual similarity, and bisimilarity then we do not know
that:

Opn(E ,R)[Opn(E ,R)] ⊆ Opn(E ,R)

There are two well known methods for establishing compatibility. Abramsky [Abr90] proves
that applicative similarity (lower similarity in the terminology used here) for the lazy λ-calculus
is compatible using domain-theoretic methods, and offers the following challenge:

Our proof will make essential use of domain logic, despite the fact that the statement
of the result does not mention domains at all. The reader who may be sceptical of
our approach is invited to attempt a direct proof.

Howe [How89] responds with a syntactic proof involving inductions on terms and operational
semantics derivations. The compatibility result applies to lower similarity upon a family of
languages including the lazy λ-calculus and non-deterministic λ-calculi.

Howe’s method makes use of a compatible relation, called the congruence candidate, that does
satisfy the relational substitution closure property above.

Definition 5.4.3 (Howe) The congruence candidate Cand(E ,R) ∈ Rel(E) of a relation on

programs R ∈ Rel0(E) with respect to E is defined by:

Cand(E ,R) def= µS .Cmp(E ,S);Opn(E ,R)

The congruence candidate contains the open extension of the original variant of similarity, mu-
tual similarity, or bisimilarity by construction. Coinduction can then be used to show that the
open extension contains the congruence candidate and so the open extension is also compatible.

Ong [Ong92a] extends Howe’s method to convex similarity for a non-deterministic λ-calculus,
and the same technique would apply to upper similarity. Howe [How96] independently uses
an extension that is similar to Ong’s. In addition, Howe introduces another idea to show that
variants of bisimilarity are compatible, and then proves that lower similarity, lower bisimilarity,

5.4. COMPATIBILITY 135

and convex bisimilarity are compatible, but the techniques also apply to the lower, upper, and
convex variants of similarity, mutual similarity, and bisimilarity. However, both Ong and Howe’s
arguments for upper and convex variants require that the programming language exhibits only
finite non-determinism, because the must convergence rank of a program is assumed to be finite.

Lassen and the author [Las97, Las98b, LP98] independently observe that Ong and Howe’s argu-
ments can be modified for infinite erratic non-determinism by rephrasing the definition of must
convergence and applying well-founded induction.

The techniques discussed above can be applied to the lower, upper, and convex variants of simi-
larity and mutual similarity upon the language fragments, but not to the variants of bisimilarity.
We prove compatibility of the variants of bisimilarity for a restricted collection of language frag-
ments by modifying the standard arguments. In addition, a new technique is introduced to prove
the compatibility of refinement similarity and mutual refinement similarity, again for a restricted
collection of language fragments, in response to a question posed by Lassen.

Lower, Upper, and Convex Similarity

We first examine properties of the congruence candidate. By an earlier result, the congruence
candidate is a unique fixed-point because of the placement of the compatible refinement operator,
and the fact that terms in the premises of each compatible refinement rule are strictly smaller than
terms in the conclusion. This means that coinduction can be used to reason about the congruence
candidate, serving the same role as an induction on the left-hand term of a pair of terms related
by the congruence candidate.

Lemma 5.4.4 The congruence candidate is also the greatest fixed-point:

Cand(E ,R) = νS .Cmp(E ,S);Opn(E ,R)

Proof Apply lemma 5.3.8(1). �

Lemma 5.4.5 proves analogues of results in Howe’s original paper [How89].

Lemma 5.4.5 For a preorder R ∈ Rel0(E):

1. Id(L (E)) ⊆ Cand(E ,R)

2. Opn(E ,R) ⊆ Cand(E ,R)

3. Cand(E ,R);Opn(E ,R) = Cand(E ,R)

4. Cmp(E ,Cand(E ,R)) ⊆ Cand(E ,R)

5. Cand(E ,R)[Cand(E ,R)] ⊆ Cand(E ,R)

Proof

136 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

1. By coinduction it suffices to show Id(L (E)) ⊆ Cmp(E , Id(L (E)));Opn(E ,R). This
follows from lemmas 5.3.6(2) and 5.3.4(1).

2. By coinduction it suffices to show Opn(E ,R) ⊆ Cmp(E ,Opn(E ,R));Opn(E ,R). This
follows from lemmas 5.3.6(2), 5.3.4(1), and 5.3.6(1):

Opn(E ,R)

= Id(L (E));Opn(E ,R)

= Cmp(E , Id(L (E)));Opn(E ,R)

⊆ Cmp(E ,Opn(E ,R));Opn(E ,R)

3. Use the transitivity of Opn(E ,R) and the fact that Cand(E ,R) is a fixed-point:

Cand(E ,R);Opn(E ,R)

= (Cmp(E ,Cand(E ,R));Opn(E ,R));Opn(E ,R)

= Cmp(E ,Cand(E ,R));Opn(E ,R)

= Cand(E ,R)

4. Use the reflexivity of Opn(E ,R) and the fact that Cand(E ,R) is a fixed-point:

Cmp(E ,Cand(E ,R))

= Cmp(E ,Cand(E ,R)); Id(L (E))

⊆ Cmp(E ,Cand(E ,R));Opn(E ,R)

= Cand(E ,R)

5. By strong coinduction (see lemma 2.3.4) it suffices to show:

Cand(E ,R)[Cand(E ,R)]

⊆ Cand(E ,R)∪Cmp(E ,Cand(E ,R)[Cand(E ,R)]);Opn(E ,R)

This is proven by:

Cand(E ,R)[Cand(E ,R)]

= (Cmp(E ,Cand(E ,R));Opn(E ,R))[(Cand(E ,R); Id(L (E)))]

⊆ (Cmp(E ,Cand(E ,R))[Cand(E ,R)]);(Opn(E ,R)[Id(L (E))]) (5.3.4(4))

⊆ (Cand(E ,R)∪Cmp(E ,Cand(E ,R)[Cand(E ,R)]));Opn(E ,R) (5.3.6(5), 5.3.4(2))

= (Cand(E ,R);Opn(E ,R))∪ (Cmp(E ,Cand(E ,R)[Cand(E ,R)]);Opn(E ,R))

= Cand(E ,R)∪Cmp(E ,Cand(E ,R)[Cand(E ,R)]);Opn(E ,R) (5.4.5(3))
�

5.4. COMPATIBILITY 137

Proposition 5.4.6 is an amalgamation of the results due to Howe and Ong, and the extension
to infinite erratic non-determinism. It allows pre-fixed-point properties of the closed restriction
of the congruence candidate to be inferred from pre-fixed-point properties of the underlying
relation. Fortunately, only two cases are necessary because all of the variants of similarity and
bisimilarity are defined in terms of the simulation functions 〈·〉L0(E)

LS and 〈·〉L0(E)
US . Note that the

induction in the second part of the proof makes use of the fact that the must convergence rules
for programs of value type are not axioms.

Proposition 5.4.6 For a preorder R ∈ Rel0(E):

1. If R ⊆ 〈R 〉L0(E)
LS then Cls(Cand(E ,R)) ⊆ 〈Cls(Cand(E ,R))〉L0(E)

LS .

2. If R ⊆ 〈R 〉L0(E)
US then Cls(Cand(E ,R)) ⊆ 〈Cls(Cand(E ,R))〉L0(E)

US .

Proof

1. Assume R ⊆ 〈R 〉L0(E)
LS . We show that for all types σ and programs M,M′ ∈ L0(E)(σ)

such that 〈M,M′〉 ∈ Cls(Cand(E ,R)), we have:

〈M,M′〉 ∈ 〈Cls(Cand(E ,R))〉L0(E)
LS

By lemma 5.3.9(1), 〈M,M′〉 ∈ 〈Cls(Cand(E ,R))〉L0(E)
LS if and only if, for all K such that

M ⇓may K, there exists K′ such that M′ ⇓may K′ and:

� 〈K,K ′〉 ∈ Cmp(E ,Opn(E ,Cls(Cand(E ,R)))) : σ

The latter condition can be simplified. By lemmas 5.3.3(3) and 5.4.5(1,5):

Cand(E ,R)[Id(L (E))] ⊆ Cand(E ,R)[Cand(E ,R)] ⊆ Cand(E ,R)

By forming the closed restrictions of both sides (a monotone operation) and applying
lemma 5.3.4(5):

Cand(E ,R) ⊆ Opn(E ,Cls(Cand(E ,R)))

Therefore, by monotonicity of compatible refinement, it suffices to show:

� 〈K,K ′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

We prove this by induction on the derivation of M ⇓may K. In each case, 〈M,M′〉 ∈
Cls(Cand(E ,R)), so there exists M′′ ∈ L0(E)(σ) such that:

� 〈M,M′′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

and:

� 〈M′′,M′〉 ∈ Opn(E ,R) : σ

138 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

If we can find K′′ such that M′′ ⇓may K′′ and:

� 〈K,K ′′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

then 〈M′′,M′〉 ∈ R ⊆ 〈R 〉L0(E)
LS , and so, by lemma 5.3.9(1), there exists K′ such that

M′ ⇓may K′ and:

� 〈K′′,K′〉 ∈ Cmp(E ,Opn(E ,R)) : σ

But, by lemmas 5.3.6(4) and 5.4.5(3):

Cmp(E ,Cand(E ,R));Cmp(E ,Opn(E ,R))

⊆ Cmp(E ,Cand(E ,R);Opn(E ,R))

= Cmp(E ,Cand(E ,R))

so � 〈K,K′〉 ∈ Cmp(E ,Cand(E ,R)) : σ, as required. We illustrate finding K′′ with the
cases for sequential composition and fixed-point programs. Suppose L ⇓may [M] and
N[M/x] ⇓may K, so letx ⇐ L inN ⇓may K, and that:

� 〈letx ⇐ L inN, letx ⇐ L′′ inN ′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(τ)

Hence � 〈L,L′′〉 ∈ Cand(E ,R) : P⊥(σ) and x : σ � 〈N,N′′〉 ∈ Cand(E ,R) : P⊥(τ). By

applying the induction hypothesis to L ⇓may [M], we deduce there exists M′′ such that

L′′ ⇓may [M′′] and � 〈[M], [M′′]〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ). Therefore � 〈M,M′′〉 ∈
Cand(E ,R) : σ. By lemma 5.4.5(5):

� 〈N[M/x],N ′′[M′′/x]〉 ∈ Cand(E ,R) : P⊥(τ)

Applying the induction hypothesis to N[M/x] ⇓may K yields K′′ such that N′′[M′′/x] ⇓may

K′′ and � 〈K,K′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(τ). Therefore letx ⇐ L′′ inN ′′ ⇓may K′′,
and this completes the case for sequential composition. For fixed-point programs, suppose
fixx.M ⇓may K and:

� 〈fixx.M,fixx.M′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ)

Hence x : P⊥(σ) � 〈M,M′′〉 ∈ Cand(E ,R) : P⊥(σ). In addition, the congruence candidate
is compatible by lemma 5.4.5(4), so:

� 〈fixx.M,fixx.M′′〉 ∈ Cand(E ,R) : P⊥(σ)

By lemma 5.4.5(5):

� 〈M[fixx.M/x],M′′[fixx.M′′/x]〉 ∈ Cand(E ,R) : P⊥(σ)

By applying the induction hypothesis to M[fixx.M/x] ⇓may K, we obtain K′′ such that

M′′[fixx.M′′/x]⇓may K′′ and � 〈K,K′′〉 ∈Cmp(E ,Cand(E ,R)) : P⊥(σ). Thus fixx.M′′ ⇓may

K′′, and this completes the case for fixed-point programs.

5.4. COMPATIBILITY 139

2. Assume R ⊆ 〈R 〉L0(E)
US . We show that for all types σ and programs M,M′ ∈ L0(E)(σ)

such that 〈M,M′〉 ∈ Cls(Cand(E ,R)), we have:

〈M,M′〉 ∈ 〈Cls(Cand(E ,R))〉L0(E)
US

By lemma 5.3.9(2), 〈M,M′〉 ∈ 〈Cls(Cand(E ,R))〉L0(E)
US if and only if M ⇓must implies

M′ ⇓must and, for all K′ such that M′ ⇓may K′, there exists K such that M ⇓may K, and:

� 〈K,K ′〉 ∈ Cmp(E ,Opn(E ,Cls(Cand(E ,R)))) : σ

By the same argument as in (1), it suffices to show:

� 〈K,K ′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

We prove this by well-founded induction on the derivation of M ⇓must. In each case,

〈M,M′〉 ∈ Cls(Cand(E ,R)), so there exists M′′ ∈ L0(E)(σ) such that:

� 〈M,M′′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

and:

� 〈M′′,M′〉 ∈ Opn(E ,R) : σ

Suppose M ⇓must. If we can show that M′′ ⇓must, then, by lemma 5.3.9(2) and 〈M′′,M′〉 ∈
R ⊆ 〈R 〉L0(E)

US , M′ ⇓must and, for all K′ such that M′ ⇓may K′, there exists K′′ such that

M′′ ⇓may K′′ and:

� 〈K′′,K′〉 ∈ Cmp(E ,Opn(E ,R)) : σ

If we can also find a program K such that M ⇓may K and:

� 〈K,K ′′〉 ∈ Cmp(E ,Cand(E ,R)) : σ

then as in (1), � 〈K,K′〉 ∈Cmp(E ,Cand(E ,R)) : σ, as required. Again, we give the cases

for sequential composition and fixed-point programs. Suppose letx ⇐ L inN ⇓must and:

� 〈letx ⇐ L inN, letx ⇐ L′′ inN ′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(τ)

Hence � 〈L,L′′〉 ∈ Cand(E ,R) : P⊥(σ) and x : σ � 〈N,N′′〉 ∈ Cand(E ,R) : P⊥(τ). By

applying the induction hypothesis to L ⇓must, we have that L′′ ⇓must and, for all M′′ such
that L′′ ⇓may [M′′], there exists M such that L ⇓may [M] and:

� 〈[M], [M′′]〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ)

140 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Consider M′′ such that L′′ ⇓may [M′′]. We now want to show that N′′[M′′/x] ⇓must. By
the induction hypothesis as above, there exists M such that L ⇓may [M] and � 〈M,M′′〉 ∈
Cand(E ,R) : σ. By lemma 5.4.5(5):

� 〈N[M/x],N ′′[M′′/x]〉 ∈ Cand(E ,R) : P⊥(τ)

By applying the induction hypothesis to N[M/x] ⇓must we have that N′′[M′′/x] ⇓must and,
for all K′′ such that N′′[M′′/x] ⇓may K′′, there exists K such that N[M/x] ⇓may K and �
〈K,K ′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(τ). In conjunction with the first use of the induction

hypothesis, we deduce that, for all K′′ such that letx ⇐ L′′ inN ′′ ⇓may K′′, there exists K

such that letx⇐ L inN ⇓may K and � 〈K,K′′〉 ∈Cmp(E ,Cand(E ,R)) : P⊥(τ), as required.
This completes the case for sequential composition. For fixed-point programs, suppose
fixx.M ⇓must and:

� 〈fixx.M,fixx.M′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ)

Then as in (1):

� 〈M[fixx.M/x],M′′[fixx.M′′/x]〉 ∈ Cand(E ,R) : P⊥(σ)

Applying the induction hypothesis to M[fixx.M/x] ⇓must we find that M′′[fixx.M′′/x] ⇓must

and, for all K′′ such that M′′[fixx.M′′/x] ⇓may K′′, there exists a program K such that

M[fixx.M/x] ⇓may K and � 〈K,K′′〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ). Therefore, for all
K′′ such that fixx.M′′ ⇓may K′′, there exists K such that fixx.M ⇓may K and � 〈K,K′′〉 ∈
Cmp(E ,Cand(E ,R)) : P⊥(σ). This completes the case for fixed-point programs. �

The following lemma is used in the three compatibility theorems to deduce that the open ex-

tension R of a variant of similarity or bisimilarity coincides with a relation S that is either

the congruence candidate or its transitive closure. It follows that the open extension of R is
compatible because the congruence candidate is.

Lemma 5.4.7 Consider relations R ∈ Rel0(E) and S ∈ Rel(E) such that:

1. Opn(E ,R) ⊆ S

2. Cls(S) ⊆ R

3. S [Id(L (E))] ⊆ S

Then Opn(E ,R) = S.

Proof By (1), it suffices to show S ⊆ Opn(E ,R). By monotonicity of closed restriction and

(2), (3) we have Cls(S [Id(L (E))]) ⊆ Cls(S)⊆ R. Then S ⊆ Opn(E ,R) by lemma 5.3.4(5). �

5.4. COMPATIBILITY 141

With the results thus far we can prove compatibility of the open extensions of the lower, upper,
and convex variants of similarity.

Theorem 5.4.8

1. The open extensions Opn(E ,�L0(E)
LS), Opn(E ,�L0(E)

US), Opn(E ,�L0(E)
CS) of the lower,

upper, and convex variants of similarity are compatible.

2. The open extensions Opn(E ,�L0(E)
LS), Opn(E ,�L0(E)

US), Opn(E ,�L0(E)
CS) of the lower,

upper, and convex variants of mutual similarity are compatible.

Proof

1. If the hypotheses of lemma 5.4.7 can be shown to hold when R is one of the vari-

ants of similarity �L0(E)
LS , �L0(E)

US , �L0(E)
CS and S = Cand(E ,R), then Opn(E ,R) =

Cand(E ,R). Consequently, Opn(E ,R) is compatible by lemma 5.4.5(4). We estab-

lish the hypotheses of lemma 5.4.7 for convex similarity, i.e., R = �L0(E)
CS . Hypothesis

(1), Opn(E ,�L0(E)
CS) ⊆ Cand(E ,�L0(E)

CS), is an instance of lemma 5.4.5(2). Hypothe-

sis (3), Cand(E ,�L0(E)
CS)[Id(L (E))] ⊆ Cand(E ,�L0(E)

CS), follows from lemmas 5.3.3(3)

and 5.4.5(1,5). For hypothesis (2), Cls(Cand(E ,�L0(E)
CS)) ⊆ �L0(E)

CS , recall that:

�L0(E)
CS

def= νT .〈T 〉L0(E)
LS ∩〈T 〉L0(E)

US

By coinduction, hypothesis (2) holds if:

Cls(Cand(E ,�L0(E)
CS))

⊆ 〈Cls(Cand(E ,�L0(E)
CS))〉L0(E)

LS ∩〈Cls(Cand(E ,�L0(E)
CS))〉L0(E)

US

But this follows from proposition 5.4.6 because:

�L0(E)
CS = 〈�L0(E)

CS 〉L0(E)
LS ∩〈�L0(E)

CS 〉L0(E)
US

Therefore, lemma 5.4.7 applies and Opn(E ,�L0(E)
CS) = Cand(E ,�L0(E)

CS), so the open
extension of convex similarity is compatible. The arguments for the lower and upper
variants of similarity are similar.

2. We prove compatibility of mutual convex similarity. The other cases are similar. First
note that, for all R,S ∈ Rel0(E), Opn(E ,R ∩S) = Opn(E ,R)∩Opn(E ,S). Using (1)
and the monotonicity of open extension and compatible refinement, we deduce:

Cmp(E ,Opn(E ,�L0(E)
CS))

⊆ Cmp(E ,Opn(E ,�L0(E)
CS))∩Cmp(E ,Opn(E ,(�L0(E)

CS)op))

= Cmp(E ,Opn(E ,�L0(E)
CS))∩ (Cmp(E ,Opn(E ,�L0(E)

CS)))op

⊆ Opn(E ,�L0(E)
CS)∩ (Opn(E ,�L0(E)

CS))op

= Opn(E ,�L0(E)
CS)∩Opn(E ,(�L0(E)

CS)op)

= Opn(E ,�L0(E)
CS)

142 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Therefore the open extension Opn(E ,�L0(E)
CS) of convex similarity is compatible.

�

Lower, Upper, and Convex Bisimilarity

The congruence candidate cannot be used directly to establish that refinement similarity and
the variants of bisimilarity are compatible. The problem lies in the (essential) asymmetry of
the definition of the congruence candidate. The placement of compatible refinement on the
LHS of the sequential composition permits arguments by induction on the size of the left-hand
term (rephrased here as a coinduction). However, for refinement similarity and the variants of
bisimilarity, the argument has to proceed from LHS to RHS and vice-versa. The latter requires
crossing the open extension of the refinement similarity or variant of bisimilarity. There is no
guarantee that this produces a strictly smaller term, so an inductive argument fails.

Howe [How96] resolved this problem for bisimilarity by using the transitive closure of the con-
gruence candidate instead of the congruence candidate itself. Pre-fixed-point properties of the
congruence candidate can be lifted to the transitive closure with lemma5.4.9.

Lemma 5.4.9 Consider a TTS T and a relation R ∈ T ×T :

1. If R ⊆ 〈R 〉TLS then R + ⊆ 〈R +〉TLS.

2. If R ⊆ 〈R 〉TUS then R + ⊆ 〈R +〉TUS.

Proof We prove (2), the argument for (1) is similar. First note that the relation 〈R+〉TUS is

transitive because, by lemma 4.2.2 and the monotonicity of 〈·〉TUS:

〈R +〉TUS;〈R +〉TUS ⊆ 〈R +;R +〉TUS ⊆ 〈R +〉TUS

Hence R + ⊆ 〈R +〉TUS holds if R ⊆ 〈R +〉TUS. The latter follows from the hypothesis R ⊆ 〈R 〉TUS

and the monotonicity of 〈·〉TUS, because R ⊆ 〈R 〉TUS ⊆ 〈R +〉TUS. �

The transitive closure of the congruence candidate is compatible when term constructors are
finitary (but see the discussion below). With compatibility, the transitive closure of the congru-
ence candidate of a variant of bisimilarity is symmetric, and so we can deduce the RHS to LHS
property from the LHS to RHS property, which is in turn established by an inductive argument
similar to that used for the variants of similarity.

Lemma 5.4.10 Consider an equivalence relation R ∈ Rel0(E). If Cand(E ,R)+ is compatible,
then it is symmetric and hence an equivalence relation.

5.4. COMPATIBILITY 143

Proof We want to show Cand(E ,R)+ ⊆ (Cand(E ,R)+)op. The relation on the right-hand

side is transitive, so it suffices to show that Cand(E ,R) ⊆ (Cand(E ,R)+)op. This follows by
induction from:

Cmp(E ,(Cand(E ,R)+)op);Opn(E ,R) ⊆ (Cand(E ,R)+)op

By assumption, Cand(E ,R)+ is compatible, so:

Cmp(E ,(Cand(E ,R)+)op)

= Cmp(E ,Cand(E ,R)+)op

⊆ (Cand(E ,R)+)op

In addition, because R is an equivalence relation:

Opn(E ,R) = Opn(E ,R)op ⊆ Cand(E ,R)op

Hence:

Cmp(E ,(Cand(E ,R)+)op);Opn(E ,R)

⊆ (Cand(E ,R)+)op;Cand(E ,R)op

= (Cand(E ,R);Cand(E ,R)+)op

⊆ (Cand(E ,R)+)op

Therefore Cand(E ,R)+ is symmetric. �

Unfortunately, it is non-trivial to show that the transitive closures of the congruence candidates
of variants of bisimilarity are compatible in fragments of L for two reasons. The first is a
consequence of example 5.3.7. For example, although terms may be related by:

Cmp(E ,Cand(E ,R);Cand(E ,R))

it does not follow that they are related by:

Cmp(E ,Cand(E ,R));Cmp(E ,Cand(E ,R))

This is because the intermediate term in the latter relation may not be in the language fragment
L (E). Of course, the programming language L does not suffer from this problem because it
is closed under every term constructor.

The second reason is that the usual proof of compatibility relies upon the following property
of the compatible refinement of a reflexive relation S ∈ Rel(E) (note that the left-hand term is

equal to Cmp(E ,S +)):

Cmp(E ,
[

{S m | m ≥ 1}) =
[

{Cmp(E ,S m) | m ≥ 1}

144 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

The equality holds when all terms have a finite collection of immediate subterms, but may fail
for term constructors with infinitely many immediate subterms. For example, define S ∈ Rel(E)

by (although S is not reflexive, it does illustrate the problem):

S = {〈Γ,n,n+ 1〉 | Γ an environment∧n ∈ ω}

Then, for all n ∈ ω, yn : unit � 〈0,n+ 1〉 ∈ Sn+1 : nat. Hence:

x : nat � 〈casexof 〈yn.0 | n < κ〉,casexof 〈yn.n+ 1 | n < κ〉〉 ∈ Cmp(E ,S+) : nat

But there is no natural number m ∈ ω such that:

x : nat � 〈casexof 〈yn.0 | n < κ〉,casexof 〈yn.n+ 1 | n < κ〉〉 ∈ Cmp(E ,Sm) : nat

Therefore the terms are not related by
S{Cmp(E ,S m) | m ≥ 1}. The programming language L

and all of the fragments suffer from this problem.

The partial solution proposed here is to use the existing compatibility results for variants of
mutual similarity to force through the cases for problematic term constructors (erratic choice
and infinitary coproducts and products). If the types of the immediate subterms of problematic
term constructors have P-orders less than or equal to 1, then they are related by a variant of
bisimilarity if and only if they are related by the corresponding variant of mutual similarity, and
so the existing compatibility result can be applied. Thus the argument places restrictions upon
the types of immediate subterms of problematic term constructors in a language fragment.

Definition 5.4.11 A fragment L (E) is said to be bounded by an ordinal A if the following hold:

1. If Γ � injmof M ∈ L (E) : sum〈σn | n < ω〉, then POrd(σm) ≤ A.

2. If Γ � caseM of 〈xn.Nn | n < ω〉 ∈ L (E) : τ and Γ � M ∈ L (E) : sum 〈σn | n < ω〉, then
POrd(sum 〈σn | n < ω〉) ≤ A and POrd(τ) ≤ A.

3. If Γ � tuple〈Mn | n < ω〉 ∈ L (E) : prod 〈σn | n < ω〉, then, for all n ∈ ω, POrd(σn) ≤ A.

4. If Γ � projmof M ∈ L (E) : σm and Γ � M ∈ L (E) : prod〈σn | n < ω〉, then
POrd(prod 〈σn | n < ω〉) ≤ A.

5. If Γ �?〈Mn | n < κ〉 ∈ L (E) : P⊥(σ), then POrd(σ) ≤ A.

Under these conditions and with A = 1, it can be shown that the transitive closures of the
congruence candidates of the variants of bisimilarity are compatible, and hence symmetric by
lemma 5.4.10.

Proposition 5.4.12 Let R ∈ Rel0(E) be one of the variants of bisimilarity �L0(E)
LB , �L0(E)

UB ,

�L0(E)
CB . If the language fragment L (E) is bounded by 1, then Cand(E ,R)+ is compatible.

5.4. COMPATIBILITY 145

Proof By case analysis of the compatible refinement rule schema. We start with the rule
schema for finite term constructors, with the exception of erratic choice. These cases do not
depend upon the bound for the language fragment, because they have a finite collection of terms
in the premises and every fragment is closed under these term constructors. We illustrate with
the case for the sequential composition constructor. Suppose:

Γ � 〈letx ⇐ M1 inM2, letx ⇐ N1 inN2〉 ∈ Cmp(E ,Cand(E ,R)+) : P⊥(τ)

So Γ � 〈M1,N1〉 ∈ Cand(E ,R)+ : P⊥(σ) and Γ,x : σ � 〈M2,N2〉 ∈ Cand(E ,R)+ : P⊥(τ). There

must exist natural numbers i, j ≥ 1 as well as terms M0
1,M

1
1 , . . . ,M

i
1 and M0

2,M
1
2 , . . . ,M

j
2 such

that M1 = M0
1, Mi

1 = N1, M2 = M0
2, M j

2 = N2, and:

1. For all 0 ≤ k ≤ i, Γ � Mk
1 ∈ L (E) : P⊥(σ).

2. For all 0 ≤ k ≤ j, Γ,x : σ � Mk
2 ∈ L (E) : P⊥(τ).

3. For all 0 ≤ k < i, Γ � 〈Mk
1,M

k+1
1 〉 ∈ Cand(E ,R) : P⊥(σ).

4. For all 0 ≤ k < j, Γ,x : σ � 〈Mk
2,M

k+1
2 〉 ∈ Cand(E ,R) : P⊥(τ).

The closure conditions upon fragments ensure that, for all k1,k2 such that 0 ≤ k1 ≤ i and 0 ≤
k2 ≤ j, we have Γ � letx ⇐ Mk1

1 inMk2
2 ∈ L (E) : P⊥(τ). Now consider the list of terms:

letx ⇐ M1
1 inM1

2
letx ⇐ M2

1 inM1
2

...
letx ⇐ Mi

1 inM1
2

letx ⇐ Mi
1 inM2

2
...

letx ⇐ Mi
1 inM j

2

Each consecutive pair of terms is related by Cmp(E ,Cand(E ,R)) ⊆ Cand(E ,R) because one

pair of immediate subterms are related by Cand(E ,R) and the other pair by Id(L (E)) ⊆
Cand(E ,R). Therefore:

Γ � 〈letx ⇐ M1
1 inM1

2 , letx ⇐ Mi
1 inM j

2〉 ∈ Cand(E ,R)+ : P⊥(τ)

This completes the case for sequential composition.

We now consider the remaining coproduct and product cases (when κ = ω) and the erratic
choice case. Let S ∈ Rel0(E) be the variant of mutual similarity corresponding to the vari-

ant of bisimilarity R , e.g., if R = �L0(E)
CB then S = �L0(E)

CS . By theorem 5.4.8(2), the open

extension Opn(E ,S) of S is compatible. Using the compatibility and transitivity of Opn(E ,S),

146 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

it can be shown by induction that Cand(E ,S) = Opn(E ,S) and so Cand(E ,S)+ = Opn(E ,S).

In addition, a simple induction shows that Cand(E ,R) ⊆ Cand(E ,S) because Cand(E ,S) is

compatible and Opn(E ,R) ⊆ Opn(E ,S). Now consider a type σ such that POrd(σ) ≤ 1, and

programs M, N such that Γ � M ∈ L (E) : σ and Γ � N ∈ L (E) : σ. Using lemma 4.2.5(1,2)

it can be shown that Γ � 〈M,N〉 ∈ Opn(E ,S) : σ if and only if Γ � 〈M,N〉 ∈ Opn(E ,R) : σ.
Therefore:

Γ � 〈M,N〉 ∈ Cand(E ,R)+ : σ
=⇒ Γ � 〈M,N〉 ∈ Cand(E ,S)+ : σ
⇐⇒ Γ � 〈M,N〉 ∈ Opn(E ,S) : σ
⇐⇒ Γ � 〈M,N〉 ∈ Opn(E ,R) : σ
=⇒ Γ � 〈M,N〉 ∈ Cand(E ,R) : σ

Now when terms are related by Cmp(E ,Cand(E ,R)+), their immediate subterms are related

by Cand(E ,R)+. If the types of the immediate subterms have P-orders less than or equal to 1,

then the argument above holds, and so the immediate subterms are related by Cand(E ,R). This
implies that the original terms are related by:

Cmp(E ,Cand(E ,R)) ⊆ Cand(E ,R) ⊆ Cand(E ,R)+

By assumption, the language fragment L (E) is bounded by 1, and this ensures that the imme-
diate subterms of the remaining cases always have types with P-order less than or equal to 1.
For example, consider:

Γ � 〈?〈Mn | n < κ〉,?〈Nn | n < κ〉〉 ∈ Cmp(E ,Cand(E ,R)+) : P⊥(σ)

We know that POrd(σ) ≤ 1 and, for all n < κ, Γ � 〈Mn,Nn〉 ∈ Cand(E ,R)+ : σ. This implies

that, for all n < κ, Γ � 〈Mn,Nn〉 ∈ Cand(E ,R) : σ. Hence:

Γ � 〈?〈Mn | n < κ〉,?〈Nn | n < κ〉〉 ∈ Cmp(E ,Cand(E ,R)) : P⊥(σ)

Finally we deduce:

Γ � 〈?〈Mn | n < κ〉,?〈Nn | n < κ〉〉 ∈ Cand(E ,R)+ : P⊥(σ)

The arguments for coproduct and product cases when κ = ω are similar. �

It can be verified that L (/0) is bounded by 0, because there are no erratic choice terms and
the arithmetic operators (and their subterms) decompose and produce terms of type nat only.
Similarly, language fragments such as L (?〈false,true〉) and L (?ω) are also bounded by 0.
In addition, the language fragment L (?〈Ω, [false], [true]〉) is bounded by 1 (this fragment is
used in section 5.6). More generally, we can define a substantial language fragment M that is
bounded by 1, includes the most common forms of erratic non-determinism, includes analogues
of the examples given in sections 4.3 and 4.4, and suffices for the results in sections 5.5 and 5.6.
However, there are no ordinals strictly less than ω1 that bound the programming language L .

5.4. COMPATIBILITY 147

Definition 5.4.13 Define the language fragment M to be the smallest language fragment that is
closed under the following rule schema when the premises have types with P-orders less than or
equal to 1:

Γ � M ∈ M : σm

Γ � injmof M ∈ M : sum〈σn | n < ω〉
Γ � M ∈ M : sum〈σn | n < ω〉 {Γ,xn : σn � Nn ∈ M : τ | n < ω}

Γ � caseM of 〈xn.Nn | n < ω〉 ∈ M : τ

{Γ � Mn ∈ M : σn | n < ω}
Γ � tuple〈Mn | n < ω〉 ∈ M : prod 〈σn | n < ω〉

Γ � M ∈ M : prod 〈σn | n < ω〉
Γ � projmof M ∈ M : σm

{Γ � Mn ∈ M : σ | n < κ}
Γ �?〈Mn | n < κ〉 ∈ M : P⊥(σ)

The set of programs in M is denoted M0.

Now that compatibility and symmetry of the transitive closure of the congruence candidate have
been established for some language fragments, we are in a position to use Howe’s technique to
prove compatibility of the variants of bisimilarity.

Note that if we know that the transitive closure of the congruence candidate is compatible, then
we have that it is symmetric by lemma 5.4.10. We use the weaker condition in the statement of
the result.

Theorem 5.4.14 Let R ∈ Rel0(E) be the lower �L0(E)
LB , upper �L0(E)

UB , or convex �L0(E)
CB vari-

ant of bisimilarity. If Cand(E ,R)+ is symmetric, then Opn(E ,R) is compatible.

Proof We prove the case for lower bisimilarity. Assume that Cand(E ,�L0(E)
LB)+ is symmet-

ric. As with theorem 5.4.8, we want to apply lemma 5.4.7, but in this case R = �L0(E)
LB and

S = Cand(E ,�L0(E)
LB)+. Hypothesis (1) is Opn(E ,�L0(E)

LB) ⊆ Cand(E ,�L0(E)
LB)+ which fol-

lows from lemma 5.4.5(2). Hypothesis (2) is Cls(Cand(E ,�L0(E)
LB)+) ⊆ �L0(E)

LB . Note that

Cls(Cand(E ,�L0(E)
LB)+) = Cls(Cand(E ,�L0(E)

LB))+ and both are symmetric. By coinduction, it
suffices to show that:

Cls(Cand(E ,�L0(E)
LB))+ ⊆ 〈Cls(Cand(E ,�L0(E)

LB))+〉L0(E)
LS ∩

(〈(Cls(Cand(E ,�L0(E)
LB))+)op〉L0(E)

LS)op

Consider the first part of the inclusion:

Cls(Cand(E ,�L0(E)
LB))+ ⊆ 〈Cls(Cand(E ,�L0(E)

LB))+〉L0(E)
LS

148 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By lemma 5.4.9(1), this holds if:

Cls(Cand(E ,�L0(E)
LB)) ⊆ 〈Cls(Cand(E ,�L0(E)

LB))〉L0(E)
LS

And, returning to proposition 5.4.6(1), this holds if:

�L0(E)
LB ⊆ 〈�L0(E)

LB 〉L0(E)
LS

This follows immediately from the definition of lower bisimilarity. For the second part of the
inclusion, we want to show that:

Cls(Cand(E ,�L0(E)
LB))+ ⊆ (〈(Cls(Cand(E ,�L0(E)

LB))+)op〉L0(E)
LS)op

Or equivalently:

(Cls(Cand(E ,�L0(E)
LB))+)op ⊆ 〈(Cls(Cand(E ,�L0(E)

LB))+)op〉L0(E)
LS

But Cls(Cand(E ,�L0(E)
LB))+ is symmetric, so this is the same as the first inclusion. Hence,

hypothesis (2) of lemma 5.4.7 holds. Hypothesis (3) is:

Cand(E ,�L0(E)
LB)+[Id(L (E))] ⊆ Cand(E ,�L0(E)

LB)+

Without loss of generality, consider environments Γ,∆ = x1 : σ1, . . . ,xn : σn such that:

Γ,∆ � 〈M,N〉 ∈ Cand(E ,�L0(E)
LB)+ : τ

and, for all i such that 1 ≤ i ≤ n:

Γ � Li ∈ L (E) : σi

So, with�L = L1, . . . ,Ln:

Γ � 〈M[�L/�x],N[�L/�x]〉 ∈ Cand(E ,�L0(E)
LB)+[Id(L (E))] : τ

There exists k ≥ 1 such that:

Γ,∆ � 〈M,N〉 ∈ Cand(E ,�L0(E)
LB)k : τ

and, for all i such that 1 ≤ i ≤ n:

Γ � 〈Li,Li〉 ∈ Id(L (E))k : σi

By induction and lemma 5.3.4(4) we have:

Cand(E ,�L0(E)
LB)k[Id(L (E))k] ⊆ (Cand(E ,�L0(E)

LB)[Id(L (E))])k

Another induction and lemmas 5.3.3(3) and 5.4.5(1,5) shows that:

(Cand(E ,�L0(E)
LB)[Id(L (E))])k ⊆ Cand(E ,�L0(E)

LB)k ⊆ Cand(E ,�L0(E)
LB)+

Therefore:

Γ � 〈M[�L/�x],N[�L/�x]〉 ∈ Cand(E ,�L0(E)
LB)+ : τ

and hypothesis (3) of lemma 5.4.7 holds.

By applying lemma 5.4.7 we find that Opn(E ,�L0(E)
LB) = Cand(E ,�L0(E)

LB)+. But then:

Opn(E ,�L0(E)
LB) ⊆ Cand(E ,�L0(E)

LB) ⊆ Cand(E ,�L0(E)
LB)+ = Opn(E ,�L0(E)

LB)

Therefore Opn(E ,�L0(E)
LB) = Cand(E ,�L0(E)

LB), and so Opn(E ,�L0(E)
LB) is compatible. �

5.4. COMPATIBILITY 149

Refinement Similarity

Refinement similarity requires a different technique because the argument cannot be completed
by symmetry as it was for the variants of bisimilarity (refinement similarity is not symmetric).
Again, we seek a relation S ∈ Rel(E) for which we can prove Cls(S) ⊆ �L0(E)

RS by coinduction:

Cls(S) ⊆ (〈Cls(S)op〉L0(E)
LS)op ∩〈Cls(S)〉L0(E)

US

The first part of the inclusion is problematic when Cls(S) is not symmetric. The solution used in

theorem 5.4.18 is to set S to be the transitive closure of the congruence candidate of refinement
similarity and then move the dual operation inside the congruence candidate, which allows the
argument to proceed as for bisimilarity. However, attempting this move reverses the positions of
the open extension and compatible refinement operators inside the least fixed-point as shown in
lemma 5.4.15.

Lemma 5.4.15 If R ∈ Rel0(E) then:

Cand(E ,R op) = (µT .Opn(E ,R);Cmp(E ,T))op

Proof By definition:

Cand(E ,R op) = µT .Cmp(E ,T);Opn(E ,R op)

Taking the dual commutes with open extension and compatible refinement, so by lemma2.3.7:

µT .Cmp(E ,T);Opn(E ,R op)

= µT .(Cmp(E ,T)op)op;Opn(E ,R)op

= µT .(Opn(E ,R);Cmp(E ,T op))op

= (µT .Opn(E ,R);Cmp(E ,T))op

�

The transitive closure of the reversed least fixed-point can be related to the transitive closure of
the congruence candidate, but only when both are known to be compatible.

Lemma 5.4.16 Let R ∈ Rel0(E) be a preorder such that both of the following relations are
compatible:

S1
def= Cand(E ,R)+ = (µT .Cmp(E ,T);Opn(E ,R))+ ∈ Rel(E)

S2
def= (µT .Opn(E ,R);Cmp(E ,T))+ ∈ Rel(E)

Then:

1. S1 = S2

150 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. Cand(E ,R op)+ = (Cand(E ,R)+)op

Proof

1. We show that S1 ⊆ S2. The other direction is similar. By transitivity of S2 it suffices to

show Cand(E ,R) ⊆ S2 . This follows by induction from:

Cmp(E ,S2);Opn(E ,R) ⊆ S2

But S2 is compatible, Opn(E ,R) ⊆ S2 , and S2 is transitive, so:

Cmp(E ,S2);Opn(E ,R) ⊆ S2 ;S2 ⊆ S2

Therefore S1 ⊆ S2 .

2. By lemma 5.4.15 and (1):

Cand(E ,R op)+

= ((µT .Opn(E ,R);Cmp(E ,T))op)+

= S2
op

= S1
op

= (Cand(E ,R)+)op

Therefore Cand(E ,R op)+ = (Cand(E ,R)+)op.
�

To establish the compatibility hypothesis of lemma 5.4.16 when R is refinement similarity we
face the same problem as for the variants of bisimilarity. In addition, there are no compatible re-
lations that coincide with refinement similarity when states have a type with P-order 1, although
any of the other variants of similarity will suffice when the P-order is 0. Therefore the suffi-
cient condition for compatibility that we prove in lemma5.4.17 is that the language fragment is
bounded by 0.

Proposition 5.4.17 If the language fragment L (E) is bounded by 0, then the hypothesis of

lemma 5.4.16 is satisfied when R is refinement similarity �L0(E)
RS .

Proof The argument in proposition 5.4.12 can be modified to show that both of the relations
Cand(E ,�L0(E)

RS)+ and Cand(E ,(�L0(E)
RS)op)+ are compatible. The only change is to use the

coincidence (see lemma 4.2.5(1)) between, for example, lower similarity and refinement simi-
larity for terms with a type of P-order of 0. If S1 and S2 are defined as in lemma 5.4.16, then this

5.4. COMPATIBILITY 151

shows that S1 is compatible. Using lemma 5.4.15 we can deduce that S2 is compatible:

Cmp(E ,S2)

= Cmp(E ,(Cand(E ,(�L0(E)
RS)op)op)+)

= Cmp(E ,Cand(E ,(�L0(E)
RS)op)+)op

⊆ (Cand(E ,(�L0(E)
RS)op)+)op

= (((µT .Opn(E ,�L0(E)
RS);Cmp(E ,T))op)+)op

= (µT .Opn(E ,�L0(E)
RS);Cmp(E ,T))+

= S2

Therefore S1 and S2 are compatible. �

Finally, we prove compatibility of the open extensions of refinement similarity and mutual re-
finement similarity for a collection of language fragments, including those bounded by 0.

Theorem 5.4.18 If the hypothesis of lemma 5.4.16 is satisfied with R = �L0(E)
RS , then the open

extensions Opn(E ,�L0(E)
RS) and Opn(E ,�L0(E)

RS) of refinement similarity and mutual refinement
similarity are compatible.

Proof We consider refinement similarity first. Again, we want to apply lemma 5.4.7 with
R = �L0(E)

RS and S = Cand(E ,�L0(E)
RS)+. Hypothesis (1) is:

Opn(E ,�L0(E)
RS) ⊆ Cand(E ,�L0(E)

RS)+

and follows by lemma 5.4.5(2). Hypothesis (3) is:

Cand(E ,�L0(E)
RS)+[Id(L (E))] ⊆ Cand(E ,�L0(E)

RS)+

and can be proven with the argument used in theorem5.4.14. Hypothesis (2) is:

Cls(Cand(E ,�L0(E)
RS)+) ⊆ �L0(E)

RS

Note that Cls(Cand(E ,�L0(E)
RS)+) = Cls(Cand(E ,�L0(E)

RS))+. By coinduction, it suffices to
show that:

Cls(Cand(E ,�L0(E)
RS))+ ⊆ (〈(Cls(Cand(E ,�L0(E)

RS))+)op〉L0(E)
LS)op ∩

〈Cls(Cand(E ,�L0(E)
RS))+〉L0(E)

US

Both inclusions use an argument similar to that for bisimilarity. In addition, the first inclusion
uses lemma 5.4.16(2) to shuffle the dual operation into the congruence candidate. For the first
part of the inclusion, we want to show that:

Cls(Cand(E ,�L0(E)
RS))+ ⊆ (〈(Cls(Cand(E ,�L0(E)

RS))+)op〉L0(E)
LS)op

152 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Or equivalently:

(Cls(Cand(E ,�L0(E)
RS))+)op ⊆ 〈(Cls(Cand(E ,�L0(E)

RS))+)op〉L0(E)
LS

And, by lemma 5.4.16(2), this is equivalent to:

Cls(Cand(E ,(�L0(E)
RS)op))+ ⊆ 〈Cls(Cand(E ,(�L0(E)

RS)op))+〉L0(E)
LS

As before, lemma 5.4.9(1) can be used to remove the transitive closure operation, so the inclusion
above holds if:

Cls(Cand(E ,(�L0(E)
RS)op)) ⊆ 〈Cls(Cand(E ,(�L0(E)

RS)op))〉L0(E)
LS

By proposition 5.4.6(1), this holds if:

(�L0(E)
RS)op ⊆ 〈(�L0(E)

RS)op〉L0(E)
LS

This follows from the definition of refinement similarity. For the second inclusion, we want to
show:

Cls(Cand(E ,�L0(E)
RS))+ ⊆ 〈Cls(Cand(E ,�L0(E)

RS))+〉L0(E)
US

By lemma 5.4.9(2), this holds if:

Cls(Cand(E ,�L0(E)
RS)) ⊆ 〈Cls(Cand(E ,�L0(E)

RS))〉L0(E)
US

And, by proposition 5.4.6(2), this holds if:

�L0(E)
RS ⊆ 〈�L0(E)

RS 〉L0(E)
US

Which follows immediately from the definition of refinement similarity. Thus hypothesis (2) of
lemma 5.4.7 holds.

By applying lemma 5.4.7 we find that Opn(E ,�L0(E)
RS) = Cand(E ,�L0(E)

RS)+. The latter is com-

patible by assumption, and therefore Opn(E ,�L0(E)
RS) is compatible. Compatibility of mutual

refinement similarity can be deduced from the compatibility of refinement similarity by the ar-
gument used in theorem 5.4.8. �

To summarise, we have shown that the open extensions of the lower, upper, and convex variants
of similarity and mutual similarity are compatible. If a language fragment is bounded by 1,
the open extensions of the lower, upper, and convex variants of bisimilarity are compatible. If
a language fragment is bounded by 0, the open extensions of refinement similarity and mutual
similarity are compatible.

5.5 Relative Definability

By definition, the language fragments consist of overlapping but different sets of terms. It is
useful to know when a term, or one with equivalent behaviour, is a member of a particular

5.5. RELATIVE DEFINABILITY 153

fragment, because it may affect the variants of similarity, mutual similarity, and bisimilarity for
that fragment. For example, in section 5.6 it is shown that adding countable non-determinism
to a finite non-deterministic fragment allows more terms to be discriminated by the upper and
convex variants of similarity, mutual similarity, and bisimilarity. In this section, we examine the
more general notion of relative definability between terms with respect to convex bisimilarity.

Definition 5.5.1 Consider types σ and τ, and programs M ∈ M0(τ) and N ∈ M0(σ). The pro-
gram M is relatively definable in terms of N with respect to convex bisimilarity on M0, denoted
M≤M0

CB N, if there exists a program L ∈ L0(/0)(σ → τ) such that M�M0

CB LN . The notation

M=M0

CB N means M≤M0

CB N and N≤M0

CB M.

Only deterministic, recursive programs can be used to define one program in terms of another
because L ranges over L0(/0). This definition of relative definability can be generalised by re-
placing the TTS M0 (see definition 5.4.13) with others such as L0, and replacing L0(/0) with a
distinguished set of states of function type from the new TTS. In addition, other equivalence rela-
tions could be used instead of convex bisimilarity. However, the extra generality (and notational
complexity) is not required here, because the TTS M0 contains all of the non-deterministic and
non-recursive elements that we wish to compare, yet convex bisimilarity is still compatible on
M0 by theorem 5.4.14.

Note that the program N is passed by name and so may be evaluated more than once. This is
important when N is non-deterministic.

As with other forms of relative definability (see [Rog67]), the relation ≤M0

CB is a preorder and

the corresponding partial order forms an upper semilattice. In addition, ≤M0

CB contains convex
bisimilarity, and programs from L0(/0) are minimal elements.

Lemma 5.5.2

1. The relative definability relation ≤M0

CB is a preorder on M0.

2. For all M,N ∈ M0, the program tuple〈M,N〉 is a join of M and N with respect to the pre-

order ≤M0

CB , i.e., M≤M0

CB tuple〈M,N〉, N≤M0

CB tuple〈M,N〉, and, for all L ∈ M0, M≤M0

CB L

and N≤M0

CB L implies tuple〈M,N〉≤M0

CB L.

3. For all M,N ∈ M0, M�M0

CB N implies M≤M0

CB N.

4. For all M ∈ L0(/0) and N ∈ M0, M≤M0

CB N.

Proof

1. If M ∈ M0(σ), then λx.x ∈ L0(/0)(σ → σ) and M�M0

CB (λx.x)M . Therefore M≤M0

CB M

and ≤M0

CB is reflexive. Now suppose M1 ∈ M0(σ1), M2 ∈ M0(σ2), and M3 ∈ M0(σ3)

satisfy M1≤M0

CB M2 and M2≤M0

CB M3. Then there exist L1 ∈ L0(/0)(σ2 → σ1) and L2 ∈

154 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

L0(/0)(σ3 → σ2) such that M1�M0

CB L1 M2 and M2�M0

CB L2 M3 . By compatibility of convex

bisimilarity, L1 M2 �M0

CB L1 (L2 M3) , so:

M1�M0

CB (λx.L1 (L2 x))M3

We have λx.L1 (L2 x) ∈ L0(/0)(σ3 → σ1). Therefore M1≤M0

CB M3, and ≤M0

CB is transitive.

2. Consider M ∈ M0(σ1) and N ∈ M0(σ2). Then we have M≤M0

CB tuple〈M,N〉, because

λx.proj0of x ∈ L0(/0)(σ1 ×σ2) and M�M0

CB (λx.proj0of x)(tuple 〈M,N〉) . Similarly, we

have N≤M0

CB tuple〈M,N〉. Now suppose that L∈M0(τ) is such that M≤M0

CB L and N≤M0

CB L.

There must exist L1 ∈L0(/0)(τ → σ1) and L2 ∈ L0(/0)(τ → σ2) such that M�M0

CB L1 L and

N�M0

CB L2 L . By compatibility of convex bisimilarity, tuple〈M,N〉�M0

CB tuple〈L1 L ,L2 L〉,
and so:

tuple〈M,N〉�M0

CB (λx.tuple〈L1 x ,L2 x〉)L

We have λx.tuple〈L1 x ,L2 x〉 ∈ L0(/0)(τ → σ1 ×σ2). Therefore tuple〈M,N〉≤M0

CB L.

3. Consider M,N ∈ M0(σ) such that M�M0

CB N. Then M≤M0

CB N, because of the identity

function λx.x ∈ L0(/0)(σ → σ) and M�M0

CB (λx.x)N .

4. Consider M ∈L0(/0)(σ) and N ∈M0(τ). Then M≤M0

CB N, because of the constant function

λx.M ∈ L0(/0)(τ → σ) and M�M0

CB (λx.M)N .
�

We examine relative definability upon the programs of M0 with type P⊥(nat). The convex
bisimilarity equivalence classes of such programs are in bijection with the non-empty subsets of
ω⊥. With the previous lemma, every program of type P⊥(nat) is in the same relative definability
equivalence class as a program of a certain form.

Lemma 5.5.3 If M ∈ M0(P⊥(nat)), then there exists κ > 0 and a strictly increasing sequence

of natural numbers 〈an | n < κ〉 such that M=M0

CB Ω∪?〈an | n < κ〉 or M=M0

CB ?〈an | n < κ〉.
Proof By lemma 5.5.2(3), it suffices to prove the statement for convex bisimilarity in place

of =M0

CB . However, we first have to exclude the case when M has no convergent behaviour, i.e.,

M�M0

CB Ω. In this case, we can use Ω=M0

CB ?〈0〉, which follows from lemma 5.5.2(4). Now
suppose that M has at least one convergent behaviour. For all canonical programs K such that
M ⇓may K, it can be shown that there exists m ∈ ω such that K�M0

CB [m]. Let ?〈an | n < κ〉 be the

strictly increasing sequence of all such natural numbers. It follows that M�M0

CB Ω∪?〈an | n < κ〉,
when M ⇑may, and otherwise M�M0

CB ?〈an | n < κ〉. �

5.5. RELATIVE DEFINABILITY 155

There are identifications between the programs in lemma 5.5.3. Lemma 5.5.4 shows that there
are only four equivalence classes when κ is finite.

Lemma 5.5.4 For m,n ≥ 2, consider strictly increasing sequences of natural numbers a1, . . . ,am

and b1, . . . ,bn. Then we have the following equivalences:

1. ?〈a1〉=M0

CB ?〈b1〉

2. Ω∪?〈a1〉=M0

CB Ω∪?〈b1〉

3. Ω∪?〈a1, . . . ,am〉=M0

CB Ω∪?〈b1, . . . ,bn〉

4. ?〈a1, . . . ,am〉=M0

CB ?〈b1, . . . ,bn〉

And the following strict inequivalences:

5. ?〈a1〉≤M0

CB Ω∪?〈b1〉

6. Ω∪?〈a1〉≤M0

CB Ω∪?〈b1, . . . ,bn〉

7. Ω∪?〈a1, . . . ,am〉≤M0

CB ?〈b1, . . . ,bn〉
Proof

1. Use lemma 5.5.2(3,4) and ?〈a1〉�M0

CB [a1]=
M0

CB [b1]�M0

CB ?〈b1〉.

2. The inequivalence Ω∪?〈a1〉≤M0

CB Ω∪?〈b1〉 follows from:

Ω∪?〈a1〉�M0

CB (λx. lety ⇐ x in [a1])(Ω∪?〈b1〉)

The other direction is similar.

3. We show Ω∪?〈a1, . . . ,am〉=M0

CB Ω∪?〈0,1〉, and the result follows by transitivity. For the

inequivalence Ω∪?〈0,1〉≤M0

CB Ω∪?〈a1, . . . ,am〉, use the function:

λx. lety ⇐ x in letz ⇐ x in if lt(y,z)then [0]else [1]

For Ω∪?〈a1, . . . ,am〉≤M0

CB Ω∪?〈0,1〉, use:

λx. lety1 ⇐ x in . . . letym−1 ⇐ x in
if eq (y1,0)then [a1]else
if eq (y2,0)then [a2]else

...
if eq (ym−1,0)then [am−1]else
[am]

156 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

4. Show ?〈a1, . . . ,am〉=M0

CB ?〈0,1〉 using the functions from (3).

5. Use lemma 5.5.2(3,4) and ?〈a1〉�M0

CB [a1]. Now, if M ∈ L0(/0)(P⊥(nat) → P⊥(nat)) then

M (?〈a1〉)�M0

CB M [a1] either diverges or converges, but not both, so:

Ω∪?〈b1〉
�M0

CB M (?〈a1〉)
Therefore the inequivalence is strict.

6. Use the function from (2) for the inequivalence. To see that the inequivalence is strict,
first note that Ω∪ [0]=M0

CB Ω∪?〈a1〉. Consider the set of programs:

X
def= {M[Ω∪ [0]/x] | x : P⊥(nat) � M ∈ L (/0) : P⊥(nat)}

We claim that every program in X converges to at most one canonical program. Consider
M[Ω ∪ [0]/x] ∈ X , where M ∈ L (/0). By lemmas 3.4.6 and 3.4.10(2), M is canonical,
makes a reduction independently of the substitutions, or is blocked on x. If M is canon-
ical we are done. If M � N, then M �det N because M ∈ L (/0). By lemma 3.4.10(1),

M[Ω∪ [0]/x]�det N[Ω∪ [0]/x]. Otherwise M � x, and by lemma 3.4.11(2):

M[Ω∪ [0]/x] = M[x &→Ω∪ [0]][Ω∪ [0]/x]

By lemmas 3.4.11(3) and 3.4.10(1), M[x &→Ω∪ [0]][Ω∪ [0]/x] may reduce in several steps
to either M[x &→ Ω][Ω ∪ [0]/x] or M[x &→ [0]][Ω ∪ [0]/x], and every reduction sequence

passes through one of these terms. The former program M[x &→ Ω][Ω ∪ [0]/x]�M0

CB Ω
always diverges. For the latter, M[x &→ [0]][Ω ∪ [0]/x] ∈ X because M[x &→ [0]] ∈ L (/0).
Therefore every program in X has at most one convergent reduction sequence, although it
may have one or more divergent reduction sequences.

7. For the inequivalence, by (4), it suffices to show Ω∪?〈a1, . . . ,am〉≤M0

CB ?〈a1, . . . ,am〉 using
the function:

λx. lety ⇐ x in letz ⇐ x in if lt(y,z)thenΩ else [y]

For strictness, use the technique from (6) to show that every term from L (/0) with a
closing substitution of Ω∪?〈a1, . . . ,am〉 for a variable x either has exactly one reduction
to another such term, or has at least one reduction to a program that always diverges.
Therefore ?〈a1, . . . ,am〉 cannot be defined.

�

Therefore we can choose representatives from each equivalence class to obtain the following
chain:

?〈0〉≤M0

CB Ω∪?〈0〉≤M0

CB Ω∪?〈0,1〉≤M0

CB ?〈0,1〉

For the infinite case, it is natural to start with Ω∪?ω and ?ω. The former program lies in the
same relative definability equivalence class as Ω∪?〈0,1〉, and so is strictly less expressive than
?〈0,1〉. On the other hand, ?ω is strictly more expressive than ?〈0,1〉, and so extends the above
chain.

5.5. RELATIVE DEFINABILITY 157

Lemma 5.5.5

1. Ω∪?〈0,1〉=M0

CB Ω∪?ω

2. ?〈0,1〉≤M0

CB ?ω and this inequivalence is strict.

Proof For Ω∪?〈0,1〉≤M0

CB Ω∪?ω and ?〈0,1〉≤M0

CB ?ω use the function:

λx. lety ⇐ x in let z ⇐ x in if lt(y,z)then [0]else [1]

1. For Ω∪?ω≤M0

CB Ω∪?〈0,1〉, use the function:

λw.fixx. lety ⇐ w in if eq(y,0)then [0]else letz ⇐ x in [plus(z,1)]

2. Strictness follows from lemma 3.4.8(2).
�

Now we can show that Ω∪?ω and ?ω are the least expressive of the infinitely non-deterministic
terms of type P⊥(nat). In particular, we have that the equivalence class of ?ω is the unique
successor of the equivalence class of ?〈0,1〉 with respect to relative definability. The equivalence
classes of Ω∪?ω and ?ω consist of all recursively enumerable sets of natural numbers with and
without divergence respectively, following theorem 5.3 of [AP86].

Lemma 5.5.6 Suppose that A ⊆ne ω is an infinite set. Then:

1. Ω∪?ω≤M0

CB Ω∪?A

2. ?ω≤M0

CB ?A

In addition, the opposite inequivalences hold if and only if A is recursively enumerable:

3. Ω∪?A≤M0

CB Ω∪?ω

4. ?A≤M0

CB ?ω

Proof We use the same function for (1) and (2). First define a term:

w : P⊥(nat) � choose ∈ L (/0) : P⊥(nat)

by:

choose
def= ffix f :nat → P⊥(nat).

λx:nat.
if eq (x,0)then [0]else

lety ⇐ w in letz ⇐ w in if lt(y,z)then f (minus(x,1)) else [x]

158 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Suppose that M is a non-deterministic program of type P⊥(nat) that can converge to at least two
programs representing different natural numbers. Then, for any natural number n, the program
choose[M/w]n converges to canonical programs that, up to convex bisimilarity, are of the form
[m], where 0 ≤ m ≤ n. If M cannot diverge, then choose[M/w]n cannot diverge. Then the
function λw. letx ⇐ w inchoosex can be used to define Ω∪?ω and ?ω in terms of Ω∪?A and ?A
respectively, because A is infinite and hence unbounded.

We consider (3) and (4) together. Suppose that A is recursively enumerable. We assume the
existence of a program M ∈ L0(/0)(nat → P⊥(nat)) such that, for all m ∈ ω, M m ⇓must and:

A = {n ∈ ω | ∃m ∈ ω.∃N.M m ⇓may [N]∧N�M0

CB n}

That is, A is the image of a deterministic and total function M. The function λx. lety ⇐ x inM y
can be used to define Ω∪?A and ?A in terms of Ω∪?ω and ?ω respectively. For the other direc-
tion, suppose that Ω∪?A≤M0

CB Ω∪?ω, so there exists a program L ∈ L0(/0)(P⊥(nat) → P⊥(nat))

such that Ω∪?A�M0

CB L(Ω∪?ω) . We can encode terms of L (Ω∪?ω) as natural numbers so that
it is decidable whether an encoded reduction is valid or not. Therefore we can recursively enu-
merate the natural numbers that L(Ω∪?ω) produces (converges to the lift of a convex bisimilar

program), and A is recursively enumerable. The same argument applies to ?A≤M0

CB ?ω. �

This leaves the non-recursively enumerable sets which are only known to be strictly more ex-
pressive than Ω∪?ω or ?ω, depending on whether or not divergence is possible. Note that any
program of the form ?A, where A ⊆ne ω, can be defined in terms of ?ω and an infinite case
statement (not necessarily recursive).

It is appealing to relate ≤M0

CB on programs of type P⊥(nat) with reducibility concepts found in
the literature (see [Rog67, Odi89]). For example, for sets A,B ⊆ ω, A is Turing reducible to
B, written A ≤T B, if the characteristic function of A is definable in terms of the characteristic
function of B.

Programs of type P⊥(nat) can be used as “unhelpful” characteristic functions that may give a
correct positive answer or no information at all. For example, for a non-empty set A ⊆ne ω,
define the program M ∈ M0(nat → P⊥(bool)) by:

M
def= λx. lety ⇐?A in [eq (x,y)]

When M is applied, it chooses a number from the set A and compares it to its argument. If we
define, for all n ∈ ω, a program Nn by:

Nn
def=

{
?〈false〉 if n
∈ A

?〈false,true〉 if n ∈ A

then:

M�M0

CB λx.casexof 〈yn.Nn | n < ω〉

This property is insufficient to relate ≤M0

CB on M0(P⊥(nat)) with Turing reducibility because it is
not possible to distinguish a negative answer from an answer with no information. However, if

5.5. RELATIVE DEFINABILITY 159

we consider the join of ?A and ?(ω\A), then we may receive positive and negative answers, and
so obtain a a relationship with Turing reducibility. We first show that finite joins of non-divergent
elements exist in M0(P⊥(nat)).

Lemma 5.5.7 If A,B ⊆ne ω, then there exists C ⊆ne ω such that tuple〈?A,?B〉=M0

CB ?C.

Proof Without loss of generality, assume that A and B are infinite. Define C by:

C
def= {2m | m ∈ A}∪{2m+ 1 | m ∈ B}

We assume the existence of a program split ∈ L0(/0)(nat → P⊥(nat+ nat)) such that, for all

m ∈ ω, split2m �M0

CB [inj0of m] and split2m+ 1 �M0

CB [inj1of m]. For ?C≤M0

CB tuple〈?A,?B〉, use
the function:

λp:P⊥(nat)×P⊥(nat).
letx ⇐ proj0of p in lety ⇐ proj0of p in

if lt(x,y)then [mult(2,x)]else letz ⇐ proj1of p in [plus(mult(2,z),1)]

In the other direction, fix m ∈ A and n ∈ B. Then, for tuple〈?A,?B〉≤M0

CB ?C, use the function:

λx:P⊥(nat).
tuple〈lety ⇐ x incasesplity of 〈z0.[z0],z1.[m]〉,

lety ⇐ x incasesplity of 〈z0.[n],z1.[z1]〉〉
Each component of the pair chooses a number from ?C and uses split to find out whether it is in
A or B. If the component requires a member A but received a member of B, or vice-versa, then
it returns the appropriate fixed number. �

Now, if A is Turing reducible to B and B is infinite, ?A can be defined in terms of ?B and ?(ω\B).

Proposition 5.5.8 Consider A,B �ne ω such that A ≤T B and B is infinite. If ?C is a join of ?A

and ?(ω\A), and ?D is a join of ?B and ?(ω\B), then ?C≤M0

CB ?D.

Proof We claim that there exists a term M such that M[?D/w] tests whether n ∈ A for some
natural number n. There are three possible outcomes, “no”, “yes”, and “maybe”, which we
represent using the type unit+unit+unit. We require:

w : P⊥(nat) � M ∈ L (/0) : nat → P⊥(unit+unit+unit)

The term M is obtained by modifying the algorithm that defines the characteristic function of A
in terms of the characteristic function of B. Wherever the characteristic function of B is invoked
in the original algorithm, we should use ?D to get ?B and ?(ω\B), and then test membership in
those sets as described on page 158. If either test produces a positive result, then the algorithm
can continue, otherwise the algorithm immediately returns “maybe”. Thus the behaviour of M
is described by, for all n ∈ ω:

M[?D/w]n �M0

CB

{
?〈inj0of �, inj2of �〉 if n
∈ A

?〈inj1of �, inj2of �〉 if n ∈ A

160 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By fixing m ∈ A, we can now define ?A by choosing a natural number n and using M to test
whether n ∈ A. If n ∈ A, then we return n. If n
∈ A, or we receive a “maybe” result, then we
return m. By lemma 5.5.6, we know that ?ω can be defined in terms of ?D because B is infinite

and ?B≤M0

CB ?D, so we may use the following function to show that ?A≤M0

CB ?D:

λw. letx ⇐?ωin lety ⇐ M x incasesplity of 〈z0.[m],z1.[x],z2.[m]〉

Similarly, by choosing m ∈ ω\A, we can show that ?(ω\A)≤M0

CB ?D using:

λw. letx ⇐?ωin lety ⇐ M x incasesplity of 〈z0.[x],z1.[m],z2.[m]〉

Therefore ?C≤M0

CB ?D. �

5.6 Theory of the Language

There are variants of similarity, mutual similarity, and bisimilarity for each language fragment
and it is useful to understand the inclusions and differences between these relations. For exam-
ple, we might ask whether the restriction of �L0(?ω)

CB to L0(/0) coincides with the restriction of

�L0(?〈0,1〉)
CB to L0(/0), i.e., are there deterministic programs that can be distinguished using count-

ably non-deterministic programs, such as ?ω, but not by finitely non-deterministic programs,
such as ?〈0,1〉. In this section, we show that such programs do exist. Consequently, there can
be no single model that is sound and complete for convex bisimilarity on both L0(?〈0,1〉) and
L0(?ω).

We begin by considering inclusions between the relations. Lemma4.2.4 describes the inclusions
between the variants of similarity, mutual similarity, and bisimilarity on a fixed language frag-
ment, and these inclusions trivially extend to the open extensions for that fragment. Lemma5.6.1
shows that the smaller of two comparable fragments has coarser variants of the open extensions
of similarity, mutual similarity, and bisimilarity than the larger fragment. The case for convex
bisimilarity could also be inferred from propositions 4.5.3 and 4.5.9.

Lemma 5.6.1 Consider sets of well-typed terms E1 and E2 such that L0(E1) ⊆ L0(E2). Sup-

pose that R1 ∈ Rel0(E1) and R2 ∈ Rel0(E2) are the same variant of similarity, mutual similarity,

or bisimilarity on L0(E1) and L0(E2) respectively, e.g., R1 = �L0(E1)
CB and R2 = �L0(E2)

CB . If

M,N ∈ L (E1) and Γ � 〈M,N〉 ∈ Opn(E2 ,R2) : σ, then Γ � 〈M,N〉 ∈ Opn(E1 ,R1) : σ.

Proof If Γ = x1 : σ1, . . . ,xn : σn, consider programs Li ∈ L0(E1)(σi), for 1 ≤ i ≤ n. We know

〈M[�L/x],N[�L/x]〉 ∈ R2 and want to show 〈M[�L/x],N[�L/x]〉 ∈ R1 , where �L = L1, . . . ,Ln. This
can be established using a simple coinduction (or induction because the type system is well-
founded). The inclusion L0(E1)⊆ L0(E2) is used to show that R2 is finer than R1 on programs
of function type because there are more programs to use as tests. �

5.6. THEORY OF THE LANGUAGE 161

Therefore Opn(L ,�L0

CB) is the finest relation amongst the variants of similarity, mutual similar-
ity, and bisimilarity on the language fragments, and so the majority of rules in lemma5.6.2 can
be used to deduce properties of the other relations. However, as discussed in section5.4, the
open extension of convex bisimilarity upon L0 is not known to be compatible. Note also that
results for refinement similarity can be used to deduce properties of lower similarity and upper
similarity because:

Opn(L ,�L0

RS) ⊆ Opn(L ,�L0

LS)op ∩Opn(L ,�L0

US)

Lemma 5.6.2

1. Consider M ∈L0(P⊥(σ)) and suppose that 〈Nn | n < κ〉 is such that, for all K, M ⇓may K if

and only if there exists n < κ such that K = [Nn]. If M ⇑may, then M�L0

CB Ω∪?〈Nn | n < κ〉.
Otherwise, M ⇓must and M�L0

CB ?〈Nn | n < κ〉.
2. The rule schema illustrated in figures 5.5 and 5.6 are valid, where term variables range

over L . Side conditions are presented as premises for brevity.

Proof A straightforward analysis of the may convergence and may divergence properties of
both sides after performing a closing substitution. �

Restrictions of convex bisimilarity for L (E) to L0(/0) may differ according to the relative

definability equivalence classes of the programs in L0(E). We now show that there are strict
inclusions corresponding to each equivalence class in the chain:

?〈0〉≤M0

CB Ω∪?〈0〉≤M0

CB Ω∪?〈0,1〉≤M0

CB ?〈0,1〉≤M0

CB ?ω

In fact, convex bisimilar programs are used instead of Ω∪?〈0〉 and Ω∪?〈0,1〉 to sidestep the
closure conditions on fragments that would force ?〈0,1〉 into the corresponding fragments, so
the chain becomes:

?〈0〉≤M0

CB letx ⇐?〈Ω, [0]〉 inx≤M0

CB letx ⇐?〈Ω, [0], [1]〉 inx≤M0

CB ?〈0,1〉≤M0

CB ?ω

Lemma 5.6.3 is used in proposition 5.6.4 to show that the second and third programs cannot be
used to distinguish other programs.

Lemma 5.6.3 Consider a term M such that:

x : P⊥(P⊥(nat)) � M ∈ L (/0) : P⊥(nat)

Then:

1. If M[?〈Ω, [0]〉/x] reduces to any canonical program, then there exists n ∈ ω such that, for

all N, M[?〈Ω, [0]〉/x] ⇓may [N] implies N�L0

CB n.

162 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Γ � M�det N : σ

Γ � 〈M,N〉 ∈ Opn(L ,�L0

CB) : σ

Γ � M � N : σ

Γ � 〈M,N〉 ∈ Opn(L ,�L0

RS) : σ

Γ � M : sum 〈σn | n < κ〉
Γ � 〈caseM of 〈xn.injnof xn | n < κ〉,M〉 ∈ Opn(L ,�L0

CB) : sum〈σn | n < κ〉
Γ � M : prod 〈σn | n < κ〉

Γ � 〈tuple〈projnof M | n < κ〉,M〉 ∈ Opn(L ,�L0

CB) : prod 〈σn | n < κ〉
Γ � M : σ → τ x
∈ Dom(Γ)

Γ � 〈λx:σ.(M x),M〉 ∈ Opn(L ,�L0

CB) : σ → τ

Γ � M : P⊥(σ) x
∈ Dom(Γ)

Γ � 〈letx ⇐ M in [x],M〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

Γ � L : P⊥(σ) Γ,x : σ � M : P⊥(τ) Γ,y : τ � N : P⊥(ρ)
Γ � 〈lety ⇐ (letx ⇐ L inM) inN,

letx ⇐ L in(lety ⇐ M inN)〉 ∈ Opn(L ,�L0

CB) : P⊥(ρ)

Γ � L : P⊥(σ) Γ � M : P⊥(τ) Γ,x : σ,y : τ � N : P⊥(ρ)
Γ � 〈letx ⇐ L in(lety ⇐ M inN),

lety ⇐ M in(letx ⇐ L inN)〉 ∈ Opn(L ,�L0

CB) : P⊥(ρ)

Figure 5.5: Reduction, η, and sequential composition rules

5.6. THEORY OF THE LANGUAGE 163

Γ � M : P⊥(σ)

Γ � 〈M∪M,M〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

Γ � M : P⊥(σ) Γ � N : P⊥(σ)

Γ � 〈M∪N,N∪M〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

Γ � L : P⊥(σ) Γ � M : P⊥(σ) Γ � N : P⊥(σ)

Γ � 〈(L∪M)∪N,L∪ (M∪N)〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

{Γ � Mi : P⊥(σ) | 1 ≤ i ≤ n} x
∈ Dom(Γ)

Γ � 〈M1 ∪M2 ∪ . . .∪Mn, letx ⇐?〈M1,M2, . . . ,Mn〉 inx〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

{Γ � Mn : σ | n < κ1}
{Γ � Nn : σ | n < κ2}

{Mn | n < κ1} = {Nn | n < κ2}
Γ � 〈?〈Mn | n < κ1〉,?〈Nn | n < κ2〉〉 ∈ Opn(L ,�L0

CB) : P⊥(σ)

{Γ � Mn : σ | n < κ1}
{Γ � Nn : σ | n < κ2}

{Mn | n < κ1} ⊇ {Nn | n < κ2}
Γ � 〈?〈Mn | n < κ1〉,?〈Nn | n < κ2〉〉 ∈ Opn(L ,�L0

RS) : P⊥(σ)

Γ � M : P⊥(σ)

Γ � 〈Ω∪M,Ω〉 ∈ Opn(L ,�L0

RS) : P⊥(σ)

Γ � M : P⊥(σ)

Γ � 〈Ω∪M,M〉 ∈ Opn(L ,�L0

RS) : P⊥(σ)

Γ � M : P⊥(σ)

Γ � 〈Ω∪M,M〉 ∈ Opn(L ,�L0

LB) : P⊥(σ)

Γ � M : P⊥(σ)

Γ � 〈Ω∪M,Ω〉 ∈ Opn(L ,�L0

UB) : P⊥(σ)

Γ � 〈M,N〉 ∈ Opn(L ,�L0

LS) : P⊥(σ)

Γ � 〈M∪N,N〉 ∈ Opn(L ,�L0

LS) : P⊥(σ)

Γ � 〈M,N〉 ∈ Opn(L ,�L0

US) : P⊥(σ)

Γ � 〈M,M∪N〉 ∈ Opn(L ,�L0

US) : P⊥(σ)

Γ � 〈L,M〉 ∈ Opn(L ,�L0

CS) : P⊥(σ) Γ � 〈M,N〉 ∈ Opn(L ,�L0

CS) : P⊥(σ)

Γ � 〈L∪M∪N,L∪N〉 ∈ Opn(L ,�L0

CS) : P⊥(σ)

Figure 5.6: Erratic choice rules

164 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. Suppose there exist terms N1, N2 and natural numbers n1
= n2 such that N1�L0

CB n1, N2�L0

CB n2,
and:

M[?〈Ω, [0], [1]〉/x] ⇓may [N1] and M[?〈Ω, [0], [1]〉/x] ⇓may [N2]

Then M[?〈Ω, [0], [1]〉/x] ⇑may.

Proof More generally, consider a term M such that:

Γ � M ∈ L (/0) : P⊥(nat)

where Γ = x:P⊥(P⊥(nat)),x1:P⊥(nat), . . . ,xm:P⊥(nat). By lemma 3.4.6, M is canonical, there

exists a unique term N such that M � N, or M is blocked on a variable appearing in Γ. If M is
canonical, then there exists n ∈ ω such that:

Γ � 〈M, [n]〉 ∈ Opn(L ,�L0

CB) : P⊥(nat)

The type system prevents variables from Γ from being used in the reduction sequence from the
immediate subterm of M, although they may appear as free variables of M. If there exists a
unique term N such that M � N, then lemma 3.4.10(1) allows substitution of closed terms, such
as ?〈Ω, [0]〉 or ?〈Ω, [0], [1]〉, into both sides. If M � x, then M
= x because they have different
types. Therefore there must exist a fresh variable y and terms M′ and N such that M′ � y and:

M = M′[y &→ letxm+1 ⇐ x inN]

Then:

M[?〈Ω, [0]〉/x]
= M′[y &→ letxm+1 ⇐ x inN][?〈Ω, [0]〉/x]
= M′[y &→ letxm+1 ⇐ x inN][x&→?〈Ω, [0]〉][?〈Ω, [0]〉/x]
= M′[y &→ letxm+1 ⇐?〈Ω, [0]〉 inN][?〈Ω, [0]〉/x]

� M′[y &→ letxm+1 ⇐ [Ω] inN][?〈Ω, [0]〉/x]

�detM
′[y &→N[Ω/xm+1]][?〈Ω, [0]〉/x]

= M′[y &→N][?〈Ω, [0]〉/x][Ω/xm+1]

Similarly:

M[?〈Ω, [0]〉/x]�+ M′[y &→N][?〈Ω, [0]〉/x][[0]/xm+1]

All of the reduction sequences of length two or more from M[?〈Ω, [0]〉/x] pass through instances
of M′[y &→N][?〈Ω, [0]〉/x], where xm+1 is substituted with either Ω or [0]. In addition:

Γ,xm+1 : P⊥(nat) � M′[y &→N] ∈ L (/0) : P⊥(nat)

Thus, although reductions are non-deterministic, we do know the general form of the results. A
similar argument holds for M[?〈Ω, [0], [1]〉/x]. Now suppose M � xi, where 1 ≤ i ≤ m. If Ω is
substituted for xi in M, then the result always diverges. If ∆ = Γ \ 〈xi,P⊥(nat)〉 then:

∆ � M[[0]/xi] ∈ L (/0) : P⊥(nat)

∆ � M[[1]/xi] ∈ L (/0) : P⊥(nat)

5.6. THEORY OF THE LANGUAGE 165

Now we can complete both arguments. For M[?〈Ω, [0]〉/x], we iteratively reduce and discard
substitutions for new variables that are introduced from ?〈Ω, [0]〉 until we reach a term that is
blocked on a variable xi. Note that all reductions must be instances of this term. The branch
of the reduction tree where Ω is substituted for the blocked variable may be discarded because
it never leads to a canonical program, so it is only necessary to consider the branch where [0]
is substituted for xi. Therefore all reduction sequences are constrained to either diverge or to
lead to canonical programs that are convex bisimilar to one another because the substitutions
are no longer relevant. This completes the argument for (1). For M[?〈Ω, [0], [1]〉/x], we assume
it can converge to at least two canonical programs that are not related by convex bisimilarity
and so there must be a branch in the reduction tree. The branch must arise when [0] and [1] are
substituted for some blocked variable xi, but then Ω can also be substituted for xi and so the term
may diverge. Therefore M[?〈Ω, [0], [1]〉/x] may diverge, as required for (2). �

Proposition 5.6.4 Define programs L1, L2, L3, L4, L5 by:

L1
def=?〈0〉

L2
def= letx ⇐?〈Ω, [0]〉 inx

L3
def= letx ⇐?〈Ω, [0], [1]〉 inx

L4
def=?〈0,1〉

L5
def=?ω

The restrictions of the following relations to L0(/0) form a strict chain with respect to inclusion:

�L0(L5)
CB �L0(L4)

CB �L0(L3)
CB �L0(L2)

CB �L0(L1)
CB

Proof The inclusions follow easily from the relative definability results of section5.5. In each
case, we give examples to show that the inclusions are strict. Note that in each fragment the
open extension of convex bisimilarity is compatible.

For �L0(L1)
CB and �L0(L2)

CB define M and N by:

� M
def= λx. lety ⇐ x in [[0]] : P⊥(nat) → P⊥(P⊥(nat))

� N
def= λx. lety ⇐ x in [letz ⇐ x in [0]] : P⊥(nat) → P⊥(P⊥(nat))

We prove M�L0(L1)
CB N and M
�L0(L2)

CB N. For M�L0(L1)
CB N, it suffices to show that, for all L ∈

L0(L1)(P⊥(nat)), M L �L0(L1)
CB N L . Now L1 =?〈0〉�L0(L1)

CB [0], and so we obtain a program

L′ ∈ L0(/0) such that L�L0(L1)
CB L′ by replacing all occurrences of L1 with [0] and using com-

patibility. Then M L �L0(L1)
CB M L′ and N L �L0(L1)

CB N L′ . But L′ is deterministic, and so, by
examining the possible reductions of both programs and using compatibility, it can be shown
that M L′ �L0(L1)

CB N L′ . Therefore M�L0(L1)
CB N. For M
�L0(L2)

CB N, we observe M L2
�L0(L2)
CB N L2 .

By examining reductions and using compatibility, we can show that M L2 �L0(L2)
CB Ω ∪ [[0]] and

N L2 �L0(L2)
CB Ω∪ [Ω∪ [0]], but Ω∪ [[0]]
�L0(L2)

CB Ω∪ [Ω∪ [0]]. Therefore M
�L0(L2)
CB N.

166 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

For �L0(L2)
CB and �L0(L3)

CB define M and N by:

� M
def= λx. lety ⇐ x in [plus(y,y)] : P⊥(nat) → P⊥(nat)

� N
def= λx. lety ⇐ x in letz ⇐ x in [plus(y,z)] : P⊥(nat) → P⊥(nat)

We prove M�L0(L2)
CB N and M
�L0(L3)

CB N. For M�L0(L2)
CB N, it suffices to show that, for all L ∈

L0(L2)(P⊥(nat)), M L �L0(L2)
CB N L . Clearly, M L ⇑may if and only if N L ⇑may. Also, there must

exist a term L′ such that L = L′[?〈Ω,0〉/x] and:

x : P⊥(P⊥(nat)) � L′ ∈ L0(/0) : P⊥(nat)

If L may converge at all, by lemma 5.6.3(1), there is a unique natural number n such that, for all
K, L ⇓may K implies K�L0(L2)

CB [n]. By compatibility, it follows that if:

lety ⇐ L in [plus(y,y)] ⇓may [plus(N1,N1)]

lety ⇐ L in letz ⇐ L in [plus(y,z)] ⇓may [plus(N2,N3)]

Then [plus(N1,N1)]�L0(L2)
CB [plus(N2,N3)]. Therefore M�L0(L2)

CB N. For M
�L0(L3)
CB N, we observe

M L3
�L0(L3)
CB N L3 . By examining reductions and using compatibility, we have:

M L3 �L0(L3)
CB Ω∪?〈plus(0,0),plus(1,1)〉

N L3 �L0(L3)
CB Ω∪?〈plus(0,0),plus (0,1),plus(1,0),plus(1,1)〉

They are not related by convex bisimilarity, and therefore M
�L0(L3)
CB N.

For �L0(L3)
CB and �L0(L4)

CB define M and N by:

� M
def= λx. lety ⇐ x in [0] : P⊥(nat) → P⊥(nat)

� N
def= λx. lety ⇐ x in letz ⇐ x in if eq(y,z)then [0]elseΩ : P⊥(nat) → P⊥(nat)

We prove M�L0(L3)
CB N and M
�L0(L4)

CB N. For M�L0(L3)
CB N, it suffices to show that, for all L ∈

L0(L3)(P⊥(nat)), M L �L0(L3)
CB N L . It is clear that both M L and N L may converge to [0] if

and only if L may converge, and neither one can converge to another canonical program. Now
M L ⇑may if and only if L ⇑may. Also, L ⇑may implies N L ⇑may. Thus we only have to show
N L ⇑may implies L ⇑may. The only case to consider is when the conditional reduces to Ω in
the else branch because L may converge to programs representing two different numbers. By
lemma 5.6.3(2), L ⇑may and we are done. Therefore M�L0(L3)

CB N. For M
�L0(L4)
CB N, we observe

M L4
�L0(L4)
CB N L4 . By examining reductions, we have:

M L4 �L0(L4)
CB [0]

N L4 �L0(L4)
CB Ω∪ [0]

5.6. THEORY OF THE LANGUAGE 167

They are not related by convex bisimilarity, and therefore M
�L0(L4)
CB N.

For �L0(L4)
CB and �L0(L5)

CB define M and N by:

� M
def= λx. lety ⇐ x in [0] : P⊥(nat) → P⊥(nat)

� N
def= λx.((ffix f .λy. let z ⇐ x in if lt(y,z)then f z else [0])0) : P⊥(nat) → P⊥(nat)

We prove M�L0(L4)
CB N and M
�L0(L5)

CB N. For M�L0(L4)
CB N, it suffices to show that, for all L ∈

L0(L4)(P⊥(nat)), M L �L0(L4)
CB N L . Now M L ⇑may if and only if L ⇑may, M L ⇓may [0] if and

only if there exists K such that L ⇓may K, and M L cannot converge to any other program. If
L ⇑may then N L ⇑may, and if L cannot converge to any program, then neither can N L . If L can
converge to at least one program, then N L ⇓may [0]. This leaves the possibility that N L ⇑may

and L ⇓must. But then the true branch of the conditional must be chosen at each iteration within
N L , and this is only possible if L can converge to a set of programs that represent an infinite
set of natural numbers, because y must take values from a strictly increasing sequence of natural
numbers. Lemma 3.4.8(2) rules this out because L ⇓must. So we have N L ⇑may if and only if
L ⇑may, N L ⇓may [0] if and only if there exists K such that L ⇓may K, and N L cannot converge

to any other program. Therefore M�L0(L4)
CB N. For M
�L0(L5)

CB N, we observe M L5
�L0(L5)
CB N L5 .

The program N L5 may diverge. To see this define N′ by:

N ′ def= if lt(y,z)then f z else [0]

Then, for all n ∈ ω:

(ffix f .λy. let z ⇐?ωinN′)n

�+ (λy. let z ⇐?ωinN′[ffix f .λy. let z ⇐?ωinN′/ f])n

� letz ⇐?ωinN ′[ffix f .λy. let z ⇐?ωinN′/ f][n/y]

� letz ⇐ [n+ 1] inN′[ffix f .λy. letz ⇐?ωinN′/ f][n/y]

� if lt(n,n+ 1)then(ffix f .λy. let z ⇐?ωinN′)n+ 1 else [0]

� (ffix f .λy. let z ⇐?ωinN′)n+ 1

By examining other reductions, we have:

M L5 �L0(L5)
CB [0]

N L5 �L0(L5)
CB Ω∪ [0]

They are not related by convex bisimilarity, and therefore M
�L0(L5)
CB N. �

Perhaps more surprisingly, convex bisimilarity for language fragments more expressive than
L0(?ω) can be finer than �L0(?ω)

CB . The example in proposition 5.6.5 was suggested by Alan
Jeffrey.

Proposition 5.6.5 If A ⊆ne ω is not recursively enumerable, then the restriction of �L0(?A,?ω)
CB to

L0(?ω) is strictly finer than �L0(?ω)
CB .

168 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Proof There are countably many terms in L0(?ω) (up to α-equivalence) and we assume an
enumeration 〈Mn | n < κ〉 of programs in L0(?ω)(P⊥(nat)) (possibly containing repetitions).
Define M and N by:

� M
def= λx.?〈Mn | n < κ〉 : P⊥(nat) → P⊥(P⊥(nat))

� N
def= λx. [x]∪?〈Mn | n < κ〉 : P⊥(nat) → P⊥(P⊥(nat))

For any L ∈ L0(?ω)(P⊥(nat)), there exists m ∈ ω such that L = Mm. Therefore:

M L �L0(?ω)
CB ?〈Mn | n < κ〉�L0(?ω)

CB [Mm]∪?〈Mn | n < κ〉�L0(?ω)
CB N L

But, M and N can be distinguished by ?A because, by lemma 5.5.6(4), there is no m ∈ ω such
that Mm�L0(?ω)

CB ?A. Thus:

M (?A) �L0(?A,?ω)
CB ?〈Mn | n < κ〉
�L0(?A,?ω)

CB [?A]∪?〈Mn | n < κ〉�L0(?A,?ω)
CB N (?A)

This does not complete the proof because M and N are not in L0(?ω). However, we can
construct programs in L0(?ω) that are convex bisimilar to M and N. To see this, note that not
only is L (?ω) countable, but type checking and the reduction relation are recursive on a suitable
encoding of terms as natural numbers. We denote the encoding of a term L ∈ L (?ω) byL̃ ∈ ω.
Now there exists a program interp such that:

� interp ∈ L (?ω) : nat → P⊥(nat)

and:

interpm �L0(?ω)
CB

{
L if ∃L ∈ L0(?ω)(P⊥(nat)).m = L̃

[0] otherwise

If ?〈Mn | n < κ〉 ⇓may [Mm] then:

lety ⇐?ωin [interpy]
� lety ⇐ [M̃m] in [interpy]

� [interpM̃m]

And it follows that:

?〈Mn | n < κ〉�L0(?ω)
CB lety ⇐?ωin [interpy]

The argument above holds when we redefine M and N by:

� M
def= λx. lety ⇐?ωin [interpy] : P⊥(nat) → P⊥(P⊥(nat))

� N
def= λx. [x]∪ lety ⇐?ωin [interpy] : P⊥(nat) → P⊥(P⊥(nat))

Therefore M�L0(?ω)
CB N and M
�L0(?A,?ω)

CB N, where M,N ∈ L0(?ω). �

5.7. FIXED-POINTS 169

5.7 Fixed-Points

In this section we prove the Scott induction principle for the lower, upper, and convex variants
of similarity, i.e., fixed-point terms are least fixed-points with respect to those relations.

With deterministic λ-calculi it is often possible to define finite approximations to a fixed-point
term and prove that their least upper bound is equivalent to the fixed-point (see [MST96, Pit97,
San97]). The situation with non-deterministic λ-calculi is more complex because ω-continuity
usually fails and the variants of mutual similarity and bisimilarity do not coincide. There are a
number of approaches to resolving the lack of ω-continuity in a denotational setting, including
lower, upper, and convex powerdomain models [Plo76, Plo83, Gun92] and categorical power-
domain models [Leh76, Abr83, PR88, Rus90]. These approaches are not entirely satisfactory
because they make unwanted identifications [Plo83, Ong93, MW95] or do not make necessary
identifications such as capturing the idempotency of binary erratic choice. In addition, the results
of section 5.6 suggest that a range of models will be required to model languages with different
forms of erratic non-determinism (with respect to relative definability).

Lassen [Las98b] proves positive and negative results about unwinding, continuity, and Scott in-
duction for contextual preorders upon λ-calculi with finite and countable erratic non-determinism,
as well as a continuity result for upper similarity in the presence of finite non-determinism. He
also gives a number of examples, one of which demonstrates the failure of ω-continuity for lower
similarity. This is rephrased for L in example 5.7.1.

Example 5.7.1 Define the term M by:

x : P⊥(P⊥(nat)) � M
def= [[0]∪ (lety ⇐ x in letz ⇐ y in [plus(z,1)])] : P⊥(P⊥(nat))

It can be shown that:

� fixx.M�M0

CB [Ω∪?ω] : P⊥(P⊥(nat))

As an aside, varying the placement of the unit term constructors in M changes the convex bisim-
ilarity equivalence class.

Now, for n ∈ ω, define the nth unwinding fix(n) x.M of the fixed-point program fixx.M by:

� fix(0) x.M
def= Ω : P⊥(P⊥(nat))

� fix(n+1) x.M
def= M[fix(n) x.M/x] : P⊥(P⊥(nat))

The finite unwindings of fixx.M are related by convex bisimilarity to simple programs:

fix(0) x.M �M0

CB Ω
fix(1) x.M �M0

CB [Ω∪?〈0〉]
fix(2) x.M �M0

CB [Ω∪?〈0,1〉]
...

fix(n+1) x.M �M0

CB [Ω∪?〈0,1, . . . ,n〉]

170 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

The program N
def= Ω∪?〈Ω∪?〈m | m≤ n〉 | n < ω〉 is a least upper bound of the finite unwindings

with respect to the preorder lower similarity, but it is not a fixed-point of M with respect to mutual
lower similarity because M[N/x]
�M0

LS N. However, the additional unwinding does coincide with
the fixed-point:

M[N/x]�M0

CB fixx.M�M0

CB [Ω∪?ω]

If the unwinding for the limit ordinal ω is defined by fix(ω) x.M
def= N, and the previous definition

is extended for successor ordinals, then the closure ordinal of the function that takes a term and
substitutes it into M for x is ω+ 1 = Succ(ω). In general, least upper bounds with respect to
lower similarity are definable in L only if the set of terms is countable, and so unwindings
cannot be defined for uncountable limit ordinals. Note also that N is not a least upper bound
with respect to upper or convex similarity.

The usual technique for proving a syntactic formulation of Scott induction relies on ω-continuity,
but this does not hold in general for erratic non-determinism. In the remainder of this section, we
develop a novel technique that does not depend upon ω-continuity, and prove the Scott induction
principle for the lower, upper, and convex variants of similarity upon L and all of the language
fragments. However, we first observe that Scott induction does not hold for refinement similarity.

Example 5.7.2 If M
def= x and N

def= [�], then � M[N/x]�M0

RS N : P⊥(σ), but:

fixx.M�M0

CB Ω
�M0

RS [�]�M0

CB N

The components of the Scott induction result make use of a form of compatibility result where
related terms are also related when placed in the same reduction context.

Lemma 5.7.3 Consider a compatible relation R ∈ Rel(E) and terms L, M, N such that L � x
and:

Γ,x : σ � L ∈ L (E) : τ
Γ,x : σ � 〈M,N〉 ∈ R : σ

Then Γ,x : σ � 〈L[x &→M],L[x &→N]〉 ∈ R : τ

Proof Reflexivity of R follows from compatibility by induction and lemma 5.3.8(2). The
result follows by induction on the derivation of L � x. The coproduct and product cases require

the fragment L (E) to be closed under blocked substitution. �

5.7. FIXED-POINTS 171

Lemma 5.7.4 is more specific, and is used to replace a substituted term only at the blocked
occurrence of a variable.

Lemma 5.7.4 Consider a compatible relation R ∈ Rel(E) and terms L, M, N such that L � x
and:

R [Id(L (E))] ⊆ R

Γ,x : σ � L ∈ L (E) : τ

Γ,x : σ � M ∈ L (E) : σ

Γ � N ∈ L (E) : σ

Γ � 〈M[N/x],N〉 ∈ R : σ

Then Γ � 〈L[x &→M][N/x],L[N/x]〉 ∈ R : τ.

Proof By lemma 5.7.3:

Γ,x : σ � 〈L[x &→M[N/x]],L[x &→N]〉 ∈ R : τ

With Γ � 〈N,N〉 ∈ Id(L (E)) : σ and R [Id(L (E))] ⊆ R , this implies:

Γ � 〈L[x &→M[N/x]][N/x],L[x &→N][N/x]〉 ∈ R : τ

By lemma 3.4.11(1,2):

L[x &→M][N/x] = L[x &→M[N/x]][N/x]

L[N/x] = L[x &→N][N/x]

Therefore Γ � 〈L[x &→M][N/x],L[N/x]〉 ∈ R : τ �

We now make the following assumptions and definitions until proposition5.7.8 (inclusively):

1. There is a preorder R ∈ Rel0(E) such that the open extension of R is compatible:

Cmp(E ,Opn(E ,R)) ⊆ Opn(E ,R)

By lemma 5.3.4(2):

Opn(E ,R)[Id(L (E))] ⊆ Opn(E ,R)

The relation R is intended to be the lower, upper, or convex variant of similarity upon

L0(E).

172 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. There is a term M and a program N such that:

x : P⊥(σ) � M ∈ L (E) : P⊥(σ)

� N ∈ L (E) : P⊥(σ)

� 〈M[N/x],N〉 ∈ R : P⊥(σ)

With additional constraints on R we prove in theorem5.7.9 that:

� 〈fixx.M,N〉 ∈ R : P⊥(σ)

3. Define the relation S ∈ Rel0(E) by:

S def= {〈D[fixx.M/x],D[N/x]〉 | x:P⊥(σ) � D ∈ L (E) : τ}

The relation S is used for a coinductive proof. The meta-variable D ranges over terms that
function as contexts in the following proofs. However, we only substitute programs for x.
Consequently, contextual substitution with variable capture is unnecessary, and we may
restrict ourselves to ordinary substitution.

The relation S cannot be defined by relational substitution, but does satisfy a property similar to
that of lemma 5.3.6(5).

Lemma 5.7.5

S ⊆ {〈fixx.M,N〉}∪Cls(Cmp(E ,Opn(E ,S)))

Proof By a case analysis on x : P⊥(σ) � D ∈ L (E) : τ. If D = x then:

〈D[fixx.M/x],D[N/x]〉 = 〈fixx.M,N〉

and we are done. Otherwise D is not a variable and we have to show:

� 〈D[fixx.M/x],D[N/x]〉 ∈ Cmp(E ,Opn(E ,S)) : τ

In each case, substituting fixx.M and N for x into the immediate subterms of D results in terms
that are related by Opn(E ,S) (for variable binding term constructors we use the fact that fixx.M

and N are closed to commute substitutions). Finally, D[fixx.M/x],D[N/x] ∈ L (E) because
fragments are closed under substitution, and therefore:

� 〈D[fixx.M/x],D[N/x]〉 ∈ Cmp(E ,Opn(E ,S)) : τ

�

5.7. FIXED-POINTS 173

We now use the preceding lemmas to prove propositions dealing with the behaviour of terms
resulting from a substitution of fixx.M and N into the same term D. In each proposition, the idea
is to use the fact that a reduction of D[fixx.M/x] or D[N/x] does not involve either substitution

(so there is a term E such that D� E) or D� x. For the former case, D[fixx.M/x]� E[fixx.M/x]

and D[N/x] � E[N/x]. In the latter case, D[fixx.M/x]�det D[x &→M][fixx.M/x] and we have
the relationship

� 〈D[x &→M][N/x],D[N/x]〉 ∈ R : τ

And then the proofs continue working with the terms resulting from substituting fixx.M and N

into D[x &→M]. Proposition 5.7.6 handles the case for the function 〈·〉L0(E)
LS . Propositions 5.7.7

and 5.7.8 establish the two clauses in the alternative formulation of 〈·〉L0(E)
US on page 91.

Proposition 5.7.6 Suppose R ⊆ 〈R 〉L0(E)
LS and there is a term D and a program K1 such that

x : P⊥(σ) � D ∈ L (E) : τ and D[fixx.M/x] ⇓may K1. Then there exists a program K2 such that

D[N/x] ⇓may K2 and � 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ.

Proof By induction on the length of the reduction sequence D[fixx.M/x]�∗ K1. For the base
case, D[fixx.M/x] = K1. By lemma 3.2.2, D is canonical because fixx.M is not canonical. Hence
D[N/x] is also canonical. In addition, by lemma 5.7.5:

� 〈D[fixx.M/x],D[N/x]〉 ∈ Cmp(E ,Opn(E ,S)) : τ

Now R is a preorder, hence reflexive, so S ⊆ S ;R , and the open extension and compatible
refinement are monotone, so:

Cmp(E ,Opn(E ,S)) ⊆ Cmp(E ,Opn(E ,S ;R))

Therefore:

� 〈D[fixx.M/x],D[N/x]〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

For the inductive step, suppose that D[fixx.M/x] � L�∗ K1. By lemma 3.4.10(2), either

D � x or there exists a term E such that D � E and L = E[fixx.M/x]. Suppose D � x. By
lemma 3.4.11(4), D[fixx.M/x] has precisely one reduction:

D[fixx.M/x]�det D[x &→M][fixx.M/x]

So L = D[x &→M][fixx.M/x]. Applying the induction hypothesis to (note that language fragments
are closed under blocked substitution):

D[x &→M][fixx.M/x] ⇓may K1

yields a program K2 such that D[x &→M][N/x] ⇓may K2 and:

� 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

174 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By lemma 5.7.4:

� 〈D[x &→M][N/x],D[N/x]〉 ∈ Opn(E ,R) : τ

So 〈D[x &→M][N/x],D[N/x]〉 ∈ R ⊆ 〈R 〉L0(E)
LS . By lemma 5.3.9(1), there exists a program K3

such that D[N/x] ⇓may K3 and:

� 〈K2,K3〉 ∈ Cmp(E ,Opn(E ,R)) : τ

The relation R is transitive, so S ;R ;R ⊆ S ;R . Using lemma 5.3.4(3) and 5.3.6(4) we have:

Cmp(E ,Opn(E ,S ;R));Cmp(E ,Opn(E ,R)) ⊆ Cmp(E ,Opn(E ,S ;R))

Therefore:

� 〈K1,K3〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

This completes the case when D � x. Now consider the case when D� E and L = E[fixx.M/x].
Applying the induction hypothesis to E[fixx.M/x] ⇓may K1, gives us a program K2 such that
E[N/x] ⇓may K2 and:

� 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

Using lemma 3.4.10(1), D[N/x]� E[N/x], so D[N/x] ⇓may K2, and we are done. �

Proposition 5.7.7 If R ⊆ 〈R 〉L0(E)
US and there is a term D such that x : P⊥(σ) � D ∈ L (E) : τ

and D[N/x] ⇑may. Then D[fixx.M/x] ⇑may.

Proof By coinduction it suffices to show that there exists a term E such that D[fixx.M/x] �
E[fixx.M/x] where x : P⊥(σ)� E ∈L (E) : τ and E[N/x]⇑may. By lemma 3.4.10(2), D[N/x]⇑may

implies either D � x or there exists a term E such that D � E and E[N/x] ⇑may. Suppose D � x.
By lemma 5.7.4:

� 〈D[x &→M][N/x],D[N/x]〉 ∈ Opn(E ,R) : τ

By using 〈D[x &→ M][N/x],D[N/x]〉 ∈ R ⊆ 〈R 〉L0(E)
US and D[N/x] ⇑may we may deduce that

D[x &→M][N/x] ⇑may. By lemma 3.4.11(4), D[fixx.M/x] has one reduction:

D[fixx.M/x]�det D[x &→M][fixx.M/x]

Therefore, we may take E = D[x &→M], and this concludes the case when D � x. Now consider

the case when D� E and E[N/x] ⇑may. By lemma 3.4.10(1), D[fixx.M/x]� E[fixx.M/x], and
we are done. �

5.7. FIXED-POINTS 175

Proposition 5.7.8 Suppose R ⊆ 〈R 〉L0(E)
US and there is a term D and a program K2 such that

x : P⊥(σ)� D∈L (E) : τ and D[N/x] ⇓may K2. Then D[fixx.M/x] ⇑may or there exists a program
K1 such that D[fixx.M/x] ⇓may K1 and:

� 〈K1,K2〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

Proof Suppose that D is canonical, so D
= x and both D[fixx.M/x] and D[N/x] are canonical.
By lemma 5.7.5:

� 〈D[fixx.M/x],D[N/x]〉 ∈ Cmp(E ,Opn(E ,S)) : τ

Now suppose that D is not canonical. We claim that D[fixx.M/x] ⇑may or there exists a term E

and a program K3 such that D[fixx.M/x]� E[fixx.M/x], E[N/x] ⇓may K3, and:

� 〈K3,K2〉 ∈ Cmp(E ,Opn(E ,R)) : τ

Either D = x and N is canonical, so D � x, or D[N/x] is not canonical and there exists L such that

D[N/x]� L�∗ K2. In the latter case, by lemma 3.4.10(2), either D � x or there exists a term E

such that D� E and L = E[N/x]. Suppose D � x. By lemma 5.7.4:

� 〈D[x &→M][N/x],D[N/x]〉 ∈ Opn(E ,R) : τ

Using 〈D[x &→M][N/x],D[N/x]〉 ∈ R ⊆ 〈R 〉L0(E)
US and D[N/x] ⇓may K2, by lemma 5.3.9(2), we

have that D[x &→M][N/x] ⇑may or there exists K3 such that D[x &→M][N/x] ⇓may K3 and:

� 〈K3,K2〉 ∈ Cmp(E ,Opn(E ,R)) : τ

If D[x &→M][N/x] ⇑may then proposition 5.7.7 implies that D[x &→M][fixx.M/x] ⇑may. Also, by
lemma 3.4.11(4):

D[fixx.M/x]�det D[x &→M][fixx.M/x]

Hence D[x &→ M][N/x] ⇑may implies D[fixx.M/x] ⇑may. Otherwise, define E = D[x &→ M], so

D[fixx.M/x]�det E[fixx.M/x] and E[N/x] ⇓may K3. This establishes the claim when D � x.

Now suppose there exists a term E such that D � E and E[N/x] ⇓may K2. By lemma 3.4.10(1),

D[fixx.M/x]� E[fixx.M/x]. Therefore we may take K3 = K2, because:

� 〈K2,K2〉 ∈ Cmp(E ,Opn(E ,R)) : τ

We can now deduce the result. By iterating the above argument, we obtain a sequence of reduc-
tions:

D[fixx.M/x]� E1[fixx.M/x]� E2[fixx.M/x]� . . .

176 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

where, for i ≥ 1, Ei[N/x] ⇓may Ki+2 and:

� 〈Ki+2,Ki+1〉 ∈ Cmp(E ,Opn(E ,R)) : τ

The sequence may terminate when En[fixx.M/x] ⇑may, in which case D[fixx.M/x] ⇑may, or a
term En is canonical. Otherwise the sequence is infinite, so D[fixx.M/x] ⇑may. Thus, we need
only consider the case when En is canonical. We have:

D[fixx.M/x] ⇓may En[fixx.M/x]

� 〈En[fixx.M/x],En[N/x]〉 ∈ Cmp(E ,Opn(E ,S)) : τ

En[N/x] = Kn+2

� 〈Kn+2,K2〉 ∈ Cmp(E ,Opn(E ,R)) : τ

Therefore:

� 〈En[fixx.M/x],K2〉 ∈ Cmp(E ,Opn(E ,S ;R)) : τ

We may set K1 = En[fixx.M/x], and we are done. �

The Scott induction result for the variants of lower, upper, and convex variants of similarity
upon every language fragment can be established using propositions 5.7.6, 5.7.7, and 5.7.8.
This shows that Scott induction is a robust principle that requires no restrictions upon the form
of erratic non-determinism.

Theorem 5.7.9 Suppose that R ∈ Rel0(E) is lower similarity �L0(E)
LS , upper similarity �L0(E)

US ,

or convex similarity �L0(E)
CS , and there are terms M and N such that:

Γ,x : P⊥(σ) � M ∈ L (E) : P⊥(σ)

Γ � N ∈ L (E) : P⊥(σ)

Γ � 〈M[N/x],N〉 ∈ Opn(E ,R) : P⊥(σ)

Then Γ � 〈fixx.M,N〉 ∈ Opn(E ,R) : P⊥(σ).

Proof Suppose that Γ is the empty environment. Then the assumptions on page171 apply to
R , M, and N for propositions 5.7.6, 5.7.7, and 5.7.8. It suffices to prove S ⊆ R . By the “up to”
result of lemma 2.3.10, this follows from:

1. S ⊆ 〈S ;R 〉L0(E)
LS when R = �L0(E)

LS .

2. S ⊆ 〈S ;R 〉L0(E)
US when R = �L0(E)

US .

3. S ⊆ 〈S ;R 〉L0(E)
LS ∩〈S ;R 〉L0(E)

US when R = �L0(E)
CS .

5.7. FIXED-POINTS 177

Using lemma 5.3.9, these inclusions follow immediately from propositions 5.7.6, 5.7.7, and
5.7.8. This completes the case for the empty environment.

Now consider Γ = x1 : σ1, . . . ,xn : σn and programs Li ∈ L0(E)(σi), for all 1 ≤ i ≤ n. If�L =
L1, . . . ,Ln, we have to show:

� 〈(fixx.M)[�L/�x],N[�L/�x]〉 ∈ R : P⊥(σ)

Now Γ � 〈M[N/x],N〉 ∈ Opn(E ,R) : P⊥(σ) implies:

� 〈M[N/x][�L/�x],N[�L/�x]〉 ∈ R : P⊥(σ)

By lemma 3.3.4:

M[N/x][�L/�x] = M[�L/�x][N[�L/�x]/x]

And so:

� 〈M[�L/�x][N[�L/�x]/x],N[�L/�x]〉 ∈ R : P⊥(σ)

By the argument above for the empty environment:

� 〈fixx.(M[�L/�x]),N[�L/�x]〉 ∈ R : P⊥(σ)

But fixx.(M[�L/�x]) = (fixx.M)[�L/�x], and so:

� 〈(fixx.M)[�L/�x],N[�L/�x]〉 ∈ R : P⊥(σ)

Therefore Γ � 〈fixx.M,N〉 ∈ Opn(E ,R) : P⊥(σ). �

178 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Chapter 6

Discussion

In this section we summarise the work presented in this dissertation and then discuss applications
and future research.

6.1 Summary

Chapter 2 reviews and demonstrates relationships between ordinals (including recursive ordi-
nals), well-founded relations, trees, transition systems (labelled and unlabelled, with and with-
out divergence), and the coinductively-defined similarity and bisimilarity relations. The variants
of similarity and bisimilarity upon transition systems with divergence serve as an introduction
to the more complex typed transition systems defined in chapter 4, and are used to compare
different binary choice operators from the literature.

Chapter 3 introduces a λ-calculus L that exhibits a general form of erratic non-determinism.
To allow more general definitions and results, types and terms may be infinite objects and are
not restricted to recursive trees. The operational semantics is presented as a reduction seman-
tics and an evaluation semantics. The latter makes use of the duality between least and greatest
fixed-points to present the inductively-defined must convergence predicate as the complement
of the coinductively-defined may divergence predicate, and this relationship turns out to be use-
ful for the compatibility theorems of chapter 5. A family of non-deterministic λ-calculi with
uniformly defined operational semantics is generated using closure conditions upon sets of well-
typed terms. This allows consideration of λ-calculi with more restrictive forms of erratic non-
determinism, which is important because some similarity and bisimilarity relations are sensitive
to the forms of erratic non-determinism present in the language.

Chapter 4 identifies typed transition systems as the appropriate abstract structures representing
the behaviour of L and its language fragments. Typed transition systems are a special case of
labelled transition systems with divergence, and so the definitions of the variants of similarity
and bisimilarity from chapter 2 can be replayed. General inclusions are established between the
relations.

A typed transition system S is defined by interpreting each type constructor by its set-theoretic
counterpart, where the computation type P⊥(σ) is interpreted by the set of non-empty subsets of

179

180 CHAPTER 6. DISCUSSION

the lift of the interpretation of σ. This is possible because the type system for L , and hence typed
transition systems, does not permit recursive types. The definition is determined by the structure
of typed transition systems, but (unsurprisingly) cannot be used as a denotational model because
it lacks general fixed-points. It is nevertheless useful for constructing examples that distinguish
the variants of similarity, mutual similarity, and bisimilarity, and for formalising properties of
typed transition systems. In addition, a category of maps between typed transition systems is
defined and every typed transition system that can be quotiented by convex bisimilarity, and that
satisfies another minor condition, is the source of a map with target S . Intuitively, the target of
a map is a partial quotient of the source typed transition system, with additional elements.

Chapter 5 defines typed transition systems for L and its fragments. The variants of similarity
and bisimilarity correspond to their usual definitions for non-deterministic λ-calculi. The lower,
upper, and convex variants of similarity are shown to be compatible for all fragments using
an extension (due to Lassen and discovered independently by the author) of techniques due to
Howe and Ong. In particular, the compatibility results apply to fragments exhibiting finite non-
determinism ?〈0,1〉, countable non-determinism ?ω, and more complex forms of indexed erratic
non-determinism such as ?A, where A ⊆ne ω is a non-recursively enumerable set.

Another technique, also due to Howe, is used to prove compatibility of the variants of bisim-
ilarity. However, an additional assumption is required to handle infinitary terms and “incom-
plete” fragments. This is unfortunate, but not overly restrictive because the excluded infinitary
terms are rarely used (and the assumption holds for the common forms of indexed erratic non-
determinism mentioned above), and term constructors that cause fragments to be “incomplete”
would be replaced by term constructors of lower arity, e.g., ?〈0,1〉 would be a term constructor
of arity 0 rather than a term constructor of arity 2 with immediate subterms 0 and 1.

A novel technique is used to prove compatibility of Lassen’s refinement similarity by relating
the dual of the transitive closure of Howe’s congruence candidate to the transitive closure of
Howe’s congruence candidate for the dual of the underlying relation.

The compatibility proofs apply not to a single language, but to collections of languages obtained
as fragments of L . The proofs themselves are greatly simplified by the use of Lassen’s relational
operators and the fact that the variants of similarity and bisimilarity are defined in terms of only
two simulation functions, 〈·〉TLS and 〈·〉TUS, on relations.

Relative definability of programs with respect to convex bisimilarity is considered, with the
focus on programs of type P⊥(nat). This is a robust notion because convex bisimilarity at this
type does not depend upon the fragment. The following chain exists with respect to relative
definability (where Ω∪?〈0,1〉=M0

CB Ω∪?ω):

?〈0〉≤M0

CB Ω∪?〈0〉≤M0

CB Ω∪?〈0,1〉≤M0

CB ?〈0,1〉≤M0

CB ?ω

For each consecutive pair, the second program can be used to distinguish programs from the
deterministic, recursive fragment L (/0) that the first program cannot. In addition, if A ⊆ne ω is
a non-recursively enumerable set, then ?A can be used to distinguish programs from L (?ω) that
?ω cannot. This is relevant to the study of denotational models for erratic non-determinism be-
cause a model for a more expressive form of erratic non-determinism will be too discriminating
for a programming language with less expressive forms of erratic non-determinism.

6.2. FURTHER WORK 181

Finally, the Scott induction principle is proven for the lower, upper, and convex variants of
similarity in all language fragments. Results for lower similarity for finite non-determinism and
countable non-determinism, and upper similarity for finite non-determinism, are unpublished
but were known to Lassen and can be proven using techniques similar to those developed in
his dissertation [Las98b] for contextual approximation. The novel technique introduced here
applies to all three relations by examining the reductions of terms with substitutions of programs,
applying single instances of substitutions only when they are in a reduction context, and avoiding
the use of contextual substitution.

6.2 Further Work

There are several avenues for future work, and we divide them roughly into applications for
non-deterministic/concurrent higher-order languages and to denotational models.

Non-Deterministic λ-Calculi

The operational theory of λ-calculi exhibiting erratic non-determinism is well-developed, and
it is tempting to look for a specification and refinement formalism that makes use of structured
data types and the higher-order nature of the λ-calculus, as opposed to Dijkstra’s more frugal
Guarded Command Language (GCL). As a first step, we discuss some of the issues involved in
translating the GCL to L .

Dijkstra’s GCL [Dij76, dB80, Kal90]1 is a minimal imperative language with constructs for non-
deterministic alternation and iteration. Variables are often booleans, natural numbers, integers,
or arrays. For the sake of argument, we consider two variables, a a natural number and b an
array of length 5 of natural numbers. Define the type σ by:

σ def= nat× (sum〈unit | n < 5〉 → nat)

Following the usual approach to state transformer semantics of simple imperative languages
[Plo83], we would like to transform GCL programs using the variables a and b into programs
of L with type σ → P⊥(σ). If P and Q are GCL programs and their translations are �P�,�Q� ∈
L0(σ → P⊥(σ)), then the translation of the sequential composition P;Q is given by:

�P;Q� def= λx. lety ⇐ �P�x in�Q�y ∈ L0(σ → P⊥(σ))

The translations of alternation and iteration statements must evaluate all guards (boolean expres-
sions that must not diverge) and then non-deterministically choose between the statements whose
guards are true. Alternation introduces the possibility of a program failing when no guards are
true [AO91]. Failure can be identified with divergence or modelled using a coproduct type, in
which case it must be propagated by translations.

From a precondition and a postcondition we can define a program that is the minimal program,
with respect to upper similarity, satisfying the precondition and postcondition. If we consider

1de Bakker’s book [dB80] contains a formal treatment of the GCL that is particularly useful in this context.

182 CHAPTER 6. DISCUSSION

only the variable a, as well as a precondition predicate pre ⊆ ω and a postcondition relation
post ⊆ ω×ω, then one such program is:

λx.casexof 〈ym.Mm | m < ω〉 ∈ L0(nat → P⊥(nat))

where, for m ∈ ω, we define Mm ∈ L0(P⊥(nat)) and Am ⊆ ω by:

Mm
def=

{
Ω if m
∈ pre or Am = /0
?Am otherwise

Am
def= {n | 〈m,n〉 ∈ post}

Given a representation of a natural number as an initial state, this program diverges if the initial
state does not satisfy the precondition or there are no terminal states that satisfy the postcondition
with this initial state.

In general, it is necessary to use a case statement indexed by ω to make use of variables of type
nat, because variables of L cannot appear in the indexing expression of an erratic choice term
constructor. Consequently, it may be difficult to specify properties of lists of unbounded size.
For example, a similar program for preconditions and postconditions over the variables a and b
must have 6 nested case statements, 1 for a and 5 for b.

A second program satisfies a precondition and postcondition if it is greater than or equal to,
with respect to upper similarity, the program derived from those conditions. The finer rela-
tions, refinement similarity, convex similarity, upper bisimilarity, and convex bisimilarity, may
be useful for identifying stronger relationships between programs. If the bisimilarity relations
are used then it would be sensible to restrict attention from L to the fragment M in order to
have compatibility.

The next step would be to investigate how proof principles for GCL programs, particularly
loops, can be carried over to their translations into L programs. If this proves successful, it
would be interesting to generalise those principles for developing functional programs from
non-deterministic functional programs representing specifications. This would allow structured
(coproduct and product) and function types to be used for program development. Such types
are not normally available in the GCL, perhaps because preconditions and postconditions use
program variables within the terms of well-formed formulae. If the types of program variables
are not flat, then it is tempting to introduce a more expressive term language, but this can lead to
partially-defined terms with their associated problems [CJ91].

It should be straightforward to extend L with algebraic data types, re-prove the compatibil-
ity and Scott induction results, and construct a structure that corresponds to S . With such
a language, it may be possible to adapt some of Bird and de Moor’s development techniques
[BdM97]. However, the settings are mismatched because Bird and de Moor’s model allows a
program to have no outcome and does not incorporate divergence and general recursion. In-
stead primitive recursion is used to define functions over (well-founded) algebraic data types.
Removing the fixed-point term constructor or creating a subtype P(σ) of P⊥(σ) that permits
non-determinism but not divergence solves the latter problem. The possibility of no outcome
follows from a more serious problem: much of Bird and de Moor’s work is based upon spec-
ifying the behaviour of a program in terms of the dual of a function. It seems unlikely that it

6.2. FURTHER WORK 183

would be possible to give an operational semantics for the dual of a higher-order program. In the
special case of a function between algebraic data types, it may be possible to define a program
that acts as the dual of a program up to convex bisimilarity. For example, the dual of a program

M of type nat → P(nat) could be a program Mop, also of type nat → P(nat), defined by:

Mop def= λx.casexof 〈yn.?An | n < ω〉
where An ⊆ ω is defined by:

An
def= {m ∈ ω | ∃N.M m ⇓may [N]∧N�L0(E)

CB n}
In addition, there will be countably many convex bisimilarity equivalence classes of programs
with a fixed algebraic data type such as finite lists or trees, and so we can expect to be able to
define the dual of functions operating on such data types. However, in general, it would not
be possible to define the dual of an open term or to internalise the dual operation within the
programming language.

The addition of recursive types would cause several problems. The duals suggested above would
have no analogue for a non-deterministic program with type nat→P(list(nat)), where list(nat)
represents finite or infinite lists of natural numbers, because there is no way to recognise infinite
lists. Countable non-determinism may be useful for specifying such programs by testing that all
finite prefixes of lists satisfy some property (see the take lemma in [BdM93]). Recursive types
would also introduce divergence at all types, not just computation types, and would prevent the
definition of a structure corresponding to S . Similarity and bisimilarity could be defined, and
the compatibility and Scott induction results should hold with few changes. However, a new
strategy may be required to prove compatibility of the variants of bisimilarity if the possibility
of divergence at value types weakens lemma 4.2.5.

Concurrent λ-Calculi

The operational semantics derived here for the binary erratic choice operator M∪N differs from
Jeffrey’s [Jef99] operational semantics for internal choice:

M � M′

M �N � M′ �N

N � N ′

M �N � M �N ′

K �N � K M �K � K

The variants of similarity and bisimilarity considered here cannot distinguish between M ∪N
and M �N, because although their reduction trees are different, they do have the same leaves
(labelled with canonical programs). However, higher-order weak similarity and bisimilarity can
distinguish them because those relations are sensitive to reduction behaviour. If higher-order
weak similarity is denoted by (, then, for programs M, N of the same computation type, we
have M (N if and only if:

(∀M′.M � M′ =⇒∃N ′.N �∗ N ′ ∧M′ (N ′)∧
(∀M′.M = [M′] =⇒∃N ′.N �∗ [N ′]∧M′ (N ′)

184 CHAPTER 6. DISCUSSION

Higher-order weak bisimilarity is defined in the obvious way. For example, convex bisimilarity
relates the programs [�]∪Ω and fixx. [�]∪ x, both of type P⊥(unit), but they are not related
by higher-order weak bisimilarity because Ω and fixx. [�]∪ x are not related by higher-order
weak bisimilarity. The interest in higher-order weak similarity and bisimilarity is motivated by
applications to languages, such as CML, with concurrency and communication primitives.

It would be useful to understand the relationship between languages with binary erratic choice
with respect to the lower, upper, and convex variants of similarity and bisimilarity and languages
with internal choice with respect to higher-order weak similarity and bisimilarity.

Denotational Models

The variants of bisimilarity are strictly finer than the corresponding variants of mutual simi-
larity (see example 4.4.5 and the discussion in section 5.2). This prompts the question, are
partial orders appropriate for modelling the variants of bisimilarity, and, if not, which properties
characterise the fixed-point operator with respect to the variants of bisimilarity? There are a
number of related equational treatments of fixed-point operators: iteration and iterative theories
[Blo89, Wag94], traced monoidal categories [JSV96, Has97], dinatural fixed-point operators
[Sim93, PS00], and FLR0 [Mos89, Mos95]. It would be interesting to see whether the variants
of bisimilarity satisfy such properties, because then the quotient of the language fragment by the
bisimilarity would be a model of the equational axioms that does not arise directly from a partial
order, in contrast to the usual domain-theoretic examples.

For example, the dinaturality property is that, for a relation R ∈Rel0(E) and terms Γ,x : P⊥(σ)�
M : P⊥(τ) and Γ,y : P⊥(τ) � N : P⊥(σ), we have:

Γ � 〈fixy.M[N/x],M[fixx.N[M/y]/x]〉 ∈ Opn(E ,R) : P⊥(τ)

It may be possible to give a direct proof of dinaturality with respect to the variants of bisimi-
larity using techniques similar to those used for the Scott induction result (theorem5.7.9). An
alternative is to try to adapt Lassen and Moran’s [LM99] proof of dinaturality with respect to
mutual cost similarity for a λ-calculus with ambiguous choice.

Bibliography

[Abr83] S. Abramsky. On semantic foundations for applicative multiprogramming. In
J. Diaz, editor, Automata, Languages and Programming, volume 154 of Lecture
Notes in Computer Science. Springer-Verlag, 1983. 57, 169

[Abr87a] S. Abramsky. Domain Theory and the Logic of Observable Properties. PhD thesis,
University of London, 1987. 57

[Abr87b] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Com-
puter Science, 53:225–241, 1987. 33, 39

[Abr89] S. Abramsky. A generalized Kahn principle for abstract asynchronous networks.
In M. Mislove M. Main, A. Melton and D. Schmidt, editors, Proceedings of the
5th Conference on Mathematical Foundations of Programming Semantics, volume
442 of Lecture Notes in Computer Science, pages 1–21. Springer-Verlag, 1989. 16

[Abr90] S. Abramsky. The lazy lambda calculus. In Turner [Tur90b], pages 65–117. 9, 10,
11, 20, 21, 39, 88, 88, 88, 88, 120, 134

[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Computation,
92(2):161–218, 1991. 8, 39

[AC98] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998. 10, 44

[Acz77] P. Aczel. An introduction to inductive definitions. In Barwise [Bar77], pages 739–
782. 9, 23, 35, 35, 42

[Acz88] P. Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford University, 1988. 9, 32, 43

[Acz94] P. Aczel. Final universes of processes. Lecture Notes in Computer Science, 802:1–
28, 1994. 9

[AD95] R. M. Amadio and M. Dam. Reasoning about higher-order processes. In
P. D. Mosses, M. Nielsen, and M. I. Schwarzbach, editors, TAPSOFT ’95: The-
ory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of Lecture Notes in Computer Science, pages 202–216.
Springer-Verlag, 1995. Full version as SICS Research Report RR:94/18, October
1994. 17

185

186 BIBLIOGRAPHY

[AGM94] S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors. Semantic Structures,
volume 3 of Handbook of Logic in Computer Science. Clarendon Press, 1994.
186, 198

[AJ94] S. Abramsky and A. Jung. Domain theory. In Abramsky et al. [AGM94]. 44

[AJM94] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended
abstract). In M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Computer
Software TACS’94, volume 789 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 1994. 9

[ALT95] R. M. Amadio, L. Leth, and B. Thomsen. From a concurrent λ-calculus to the
π-calculus. In H. Reichel, editor, Fundamentals of Computation Theory (FCT ’95,
10th International Conference, Dresden, Germany), volume 965 of Lecture Notes
in Theoretical Computer Science, pages 106–115. Springer-Verlag, 1995. Full ver-
sion as Technical Report ECRC-95-18. 17

[Ama93] R. M. Amadio. On the reduction of CHOCS bisimulation to π-calculus bisimula-
tion. In E. Best, editor, CONCUR ’93: 4th International Conference on Concur-
rency Theory, volume 715 of Lecture Notes in Computer Science, pages 112–126.
Springer-Verlag, August 1993. 17

[Ama94] R. M. Amadio. Translating core Facile. Technical Report ECRC-TR-3-94, Euro-
pean Computer-Industry Research Center, GmbH, Munich, 1994. Also available
as a technical report from CRIN(CNRS)-Inria (Nancy). 17

[AO91] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science. Springer-Verlag, 1991. 5, 6, 181

[AO93] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. In-
formation and Computation, 105(2):159–267, 1993. 10, 20, 21, 88

[AP86] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724–767, October 1986. 6, 20, 81, 81, 157

[BA81] J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate com-
putation. In J. Dı́az and I. Ramos, editors, Proceedings of the International Collo-
quium on Formalization of Programming Concepts, volume 107 of Lecture Notes
in Computer Science, pages 252–259. Springer-Verlag, 1981. 16

[Bac80] R. J. R. Back. Semantics of unbounded nondeterminism. In J. W. de Bakker and
J. van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium,
volume 85 of Lecture Notes in Computer Science, pages 51–63. Springer-Verlag,
1980. 6, 6

[Bac88] R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25:593–624, 1988. 6

[Bar77] J. Barwise, editor. Handbook of Mathematical Logic. Number 90 in Studies in
Logic and the Foundations of Mathematics. North-Holland, 1977. 185, 192, 192

BIBLIOGRAPHY 187

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, revised
edition, 1984. 9, 10, 58, 69, 88

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. S. E. Maibaum, editors, Background: Computational Structures, volume 2 of
Handbook of Logic in Computer Science. Clarendon Press, 1992. 55

[BdM93] R. S. Bird and O. de Moor. Solving optimisation problems with catamorphisms.
In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, 2nd International
Conference on the Mathematics of Program Construction, volume 669 of Lecture
Notes in Computer Science, pages 45–66. Springer-Verlag, 1993. 183

[BdM97] R. S. Bird and O. de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, 1997. 182

[Ber98] K. L. Bernstein. A congruence theorem for structured operational semantics of
higher-order languages. In 13th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 1998. 11

[BL95] G. Boudol and C. Laneve. λ-calculus, multiplicities and the π-calculus. Technical
Report INRIA Res. Report 2581, INRIA Sophia-Antopolis, June 1995. 13

[Blo89] S. L. Bloom. The equational logic of iterative processes. In J. Csirik, J. Demetro-
vics, and F. Gécseg, editors, Fundamentals of Computation Theory, volume 380 of
Lecture Notes in Computer Science, pages 47–57. Springer-Verlag, 1989. 184

[BM96] J. Barwise and L. Moss. Vicious Circles: on the Mathematics of Non-Wellfounded
Phenomena. Number 60 in CSLI Lecture Notes. CSLI publications, 1996. 9, 32,
42, 43

[Bou93] G. Boudol. The λ-calculus with multiplicities. Technical Report INRIA Res. Re-
port 2025, INRIA, September 1993. 13

[Bou94a] G. Boudol. The discriminating power of multiplicities in the λ-calculus. Technical
Report INRIA Res. Report 2441, INRIA, December 1994. 13

[Bou94b] G. Boudol. Lambda-calculi for (strict) parallel functions. Information and Com-
putation, 108:51–127, 1994. 13

[Bou97a] G. Boudol. The π-calculus in direct style. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 228–241, January 1997. 17

[Bou97b] G. Boudol. Typing the use of resources in a concurrent calculus. In R. K. Shya-
masundar and K. Ueda, editors, Advances in Computing Science, Proceedings of
ASIAN ’97, the Asian Computing Science Conference (Kathmandu, Nepal), vol-
ume 1345 of Lecture Notes in Computer Science, pages 239–253. Springer-Verlag,
1997. 17

188 BIBLIOGRAPHY

[BPR90] D. B. Benson, P. Panangaden, and J. R. Russell. Defining fair merge as a colimit:
Towards a fixed-point theory for indeterminate dataflow. In M. Z. Kwiatkowska,
M. W. Shields, and R. M. Thomas, editors, Semantics for Concurrency, Leicester,
Workshops in Computing, pages 175–184. Springer-Verlag, 1990. 16

[Bro86] M. Broy. A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science, 45:1–61, 1986. 16

[Bro88] M. Broy. Nondeterministic data flow programs: How to avoid the merge anomaly.
Science of Computer Programming, 10:65–85, 1988. 16

[BRW88] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics for CSP.
Technical report, Programming Research Group, University of Oxford, 1988. 39

[Buc97] A. Bucciarelli. Degrees of parallelism in the continuous type hierarchy. Theoretical
Computer Science, 177(1):59–71, April 1997. 18, 77

[Bur88] F. W. Burton. Nondeterminism with referential transparency in functional pro-
gramming languages. The Computer Journal, 31(3):243–247, June 1988. 16

[CC92] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpreta-
tions. In Conference Record of the 19th ACM Symposium on Principles of Pro-
gramming Languages, pages 83–94, 1992. 15, 53, 73

[CG95] R. L. Crole and A. D. Gordon. A sound metalogical semantics for input/output
effects. In L. Pacholski and J. Tiuryn, editors, Computer science logic: 8th work-
shop, CSL ’94, volume 933 of Lecture Notes in Computer Science, pages 339–353.
Springer-Verlag, 1995. 19, 59, 59

[Chu38] C. A. Church. The constructive second number class. Bull. Amer. Math. Soc.,
44:224–232, 1938. 46

[CJ91] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial func-
tions. In C. Morgan and J. C. P. Woodcock, editors, Proceedings of the Third Re-
finement Workshop, Workshops in Computing Series, pages 51–69, Berlin, 1991.
Springer-Verlag. 182

[CK37] C. A. Church and S. C. Kleene. Formal definitions in the theory of ordinal numbers.
Fund. Math., 28:11–21, 1937. 46

[Cli82] W. Clinger. Nondeterministic call by need is neither lazy nor by name. In ACM
Symposium on Lisp and Functional Programming, pages 226–234, 1982. 17

[CM93] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in denotational
semantics. In Proceedings of the Conference on Category Theory and Computer
Science, Amsterdam, CWI Technical Report, 1993. 59

[CP92] R. L. Crole and A. M. Pitts. New foundations for fixpoint computations: FIX-
hyperdoctrines and the FIX-logic. Information and Computation, 98(2):171–210,
1992. 19

BIBLIOGRAPHY 189

[Cro93] R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
University Press, 1993. 58, 59, 127

[Cut80] N. Cutland. Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, 1980. 77

[dB80] J. de Bakker. Mathematical Theory of Program Correctness. International Series
in Computer Science. Prentice Hall, 1980. 4, 181, 181

[Den84] J. B. Dennis. Data flow computation. In M. Broy, editor, Control Flow and Data
Flow: Concepts of Distributed Programming., volume 14 of NATO Advanced Sci-
ence Institutes Series F: Computer and System Sciences. Springer-Verlag, 1984. A
collection of 5 essays. 16

[dGHLP94] P. di Gianantonio, F. Honsell, S. Liani, and G. D. Plotkin. Countable non-
determinism and uncountable limits. In B. Jonsson and J. Parrow, editors, CON-
CUR ’94: Concurrency Theory, 5th International Conference, volume 836 of Lec-
ture Notes in Computer Science, pages 130–145. Springer-Verlag, August 1994.
6

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. 4, 5, 181

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks. Cambridge University Press, 1990. 30, 33

[Ear97] B. Earl. Tools for domain theory. Master’s thesis, University of Oxford, Computing
Laboratory, September 1997. 101

[Fau82] A. A. Faustini. The Equivalence of an Operational and a Denotational Semantics
for Pure Dataflow. PhD thesis, University of Warwick, 1982. 16

[FF86] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine and the
λ-calculus. In Formal Description of Programming Concepts III, pages 193–217.
North-Holland, 1986. 65

[FH83] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola
Normale Supeiore di Pisa, Classe di Scienze, 10:493–522, 1983. 32, 43

[FHJ95] W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation for core
CML. Technical Report 05/95, University of Sussex, September 1995. 17, 68, 120

[FHL94] M. Forti, F. Honsell, and M. Lenisa. Processes and hyperuniverses. In I. Prı́vara,
B. Rovan, and P. Ruzicka, editors, Mathematical Foundations of Computer Science
1994 19th International Symposium, volume 841 of Lecture Notes in Computer
Science, pages 352–363. Springer-Verlag, 1994. 9, 32, 43

[Fio94] M. P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD thesis,
University of Edinburgh, 1994. 59

[Fra86] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-
Verlag, 1986. 5

190 BIBLIOGRAPHY

[Gal91] J. H. Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0? A sur-
vey of some results in proof theory. Annals of Pure and Applied Logic, 53(3):199–
260, September 1991. 23

[Gir87] J.-Y. Girard. Proof Theory and Logical Complexity, volume 1 of Studies in Proof
Theory. Bibliopolis, 1987. 23, 45, 46

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989. 75

[Gor94] A. D. Gordon. Functional Programming and Input/Output. Distinguished Disser-
tations in Computer Science. Cambridge University Press, 1994. 11, 19, 21, 58,
59, 59, 75, 89, 120

[Gor95a] A. D. Gordon. Bisimilarity as a theory of functional programming. BRICS Notes
Series NS-95-3, Department of Computer Science, University of Aarhus, 1995.
11, 38, 89, 120

[Gor95b] A. D. Gordon. A tutorial on co-induction and functional programming. In Pro-
ceedings of the 1994 Glasgow Workshop on Functional Programming, Workshops
in Computing, 1995. 11, 39, 120

[Gri81] D. Gries. The Science of Programming. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, 1981. 3, 6

[Gru93] J. Grundy. A Method of Program Refinement. PhD thesis, University of Cambridge,
1993. 4

[Gun92] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. MIT Press, 1992. 9, 10, 11, 33, 44, 72, 76, 88, 112,
169

[HA80] M. C. B. Hennessy and E. A. Ashcroft. A mathematical semantics for a nonde-
terministic typed λ-calculus. Theoretical Computer Science, 11(3):227–245, 1980.
12

[Has97] M. Hasegawa. Models of Sharing Graphs: A Categorical Semantics of Let and
Letrec. PhD thesis, University of Edinburgh, 1997. 184

[Hen82] P. Henderson. Purely functional operating systems. In J. Darlington, P. Henderson,
and D. Turner, editors, Functional Programming and its Applications, pages 177–
192. Cambridge University Press, 1982. 16

[Hen94] M. Hennessy. Higher-order process and their models. In S. Abiteboul and
E. Shamir, editors, Automata, Languages and Programming, 21st International
Colloquium, volume 820 of Lecture Notes in Computer Science, pages 286–303,
Jerusalem, Israel, July 1994. Springer-Verlag. 17

[HM95] J. Hughes and A. K. Moran. Making choices lazily. In Functional Programming
and Computer Architecture, pages 108–119. ACM Press, June 1995. 12, 14, 17,
19, 73

BIBLIOGRAPHY 191

[HO89] J. Hughes and J. T. O’Donnell. Expressing and reasoning about non-deterministic
functional programs. In Functional Programming (Glasgow), Workshops in Com-
puting, pages 308–328. Springer-Verlag, 1989. 16

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Information and
Computation, 163:285–408, 2000. 9

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969. 3

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985. 7

[How89] D. J. Howe. Equality in lazy computation systems. In Proceedings, 4th Annual
Symposium on Logic in Computer Science, pages 198–203. IEEE Computer Soci-
ety Press, 1989. 11, 12, 21, 89, 129, 134, 135

[How96] D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 124(2):103–112, 1996. 11, 12, 18, 21,
134, 142

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-calculus. Num-
ber 1 in London Mathematical Society Student Texts. Cambridge University Press,
1986. 69, 88

[IS98] H. Ibraheem and D. A. Schmidt. Adapting big-step semantics to small-step style:
Coinductive interpretations and “higher-order” derivations. In A. D. Gordon, A. M.
Pitts, and C. Talcott, editors, Proc. 2nd Workshop on Higher Order Operational
Techniques in Semantics, Stanford, December 1997, volume 10 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1998. 73

[Jef95] A.S.A. Jeffrey. A fully abstract semantics for a concurrent functional language
with monadic types. In Proceedings, Tenth Annual IEEE Symposium on Logic in
Computer Science, pages 255–264, San Diego, California, 26–29 June 1995. IEEE
Computer Society Press. 17, 120

[Jef99] A.S.A. Jeffrey. A fully abstract semantics for a higher-order functional language
with nondeterministic computation. Theoretical Computer Science, 228(1-2):105–
150, 1999. 13, 19, 59, 59, 68, 183

[Joh87] P. T. Johnstone. Notes on Logic and Set Theory. Cambridge Mathematical Text-
books. Cambridge University Press, 1987. 23, 25

[JR97] B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction. Bul-
letin of EATCS, 62:222–259, 1997. 10, 33

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb.
Phil. Soc., 119:447–468, 1996. 184

192 BIBLIOGRAPHY

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress,
pages 471–475. North-Holland, 1974. 16

[Kah87] G. Kahn. Natural semantics. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, editors, STACS 87, volume 247 of Lecture Notes in Computer Science, pages
22–39. Springer-Verlag, 1987. 9, 72

[Kal90] A. Kaldewaij. Programming: the derivation of algorithms. International Series in
Computer Science. Prentice Hall, 1990. 6, 181

[Kei77] H. J. Keisler. Fundamentals of model theory. In Barwise [Bar77]. 57

[Kle38] S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic,
3(4):150–155, December 1938. 46

[KSS99] A. Kutzner and M. Schmidt-Schauß. A non-deterministic call-by-need lambda
calculus. ACM SIGPLAN Notices, 34(1):324–335, January 1999. 12, 17

[Kun77] K. Kunen. Combinatorics. In Barwise [Bar77]. 23

[Kun80] K. Kunen. Set Theory: an introduction to independence proofs, volume 102 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1980. 23,
58

[Las97] S. B. Lassen. Action semantics reasoning about functional programs. Math. Struct.
in Comp. Science, 7(5):557–589, 1997. 12, 12, 13, 73, 135

[Las98a] S. B. Lassen. Relational reasoning about contexts. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, pages 91–135. Cambridge University Press, 1998. 38

[Las98b] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, Denmark, 1998.
12, 12, 12, 18, 21, 44, 69, 75, 80, 100, 125, 129, 135, 169, 181

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 144–154, 1993. 17

[Lav93] C. Lavatelli. Non-deterministic lazy λ-calculus vs π-calculus. Technical Report
Technical Report 93-15, DMI, LIENS, 1993. 13, 13

[Leh76] D. J. Lehmann. Categories for Fixpoint Semantics. PhD thesis, Department of
Computer Science, University of Warwick, 1976. 57, 169

[Lev79] A. Levy. Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag,
1979. 23, 35

[Lic96] B. Lichtenthäler. Degrees of Parallelism. Masters thesis, Informatik-Bericht, Jan-
uary 1996. Abridged English version. 18, 77

BIBLIOGRAPHY 193

[LM99] S. B. Lassen and A. K. Moran. Unique fixed point induction for McCarthy’s Amb.
In Proc. of MFCS’99, the 26th Symposium on Mathematical Foundations of Com-
puter Science, volume 1672 of Lecture Notes in Computer Science, pages 198–208.
Springer-Verlag, September 1999. 184

[LP98] S. B. Lassen and C. S. Pitcher. Similarity and bisimilarity for countable non-
determinism and higher-order functions. In A. D. Gordon, A. M. Pitts, and C. Tal-
cott, editors, Proc. 2nd Workshop on Higher Order Operational Techniques in Se-
mantics, Stanford, December 1997, volume 10 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1998. 12, 13, 135

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Num-
ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1986. 59

[McC63] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70.
North-Holland, 1963. 14, 16

[Mil89] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. 7, 8, 9, 30, 35, 38, 39, 57

[Mil90] R. Milner. Functions as processes. In M. S. Paterson, editor, Automata, Languages
and Programming, volume 443 of Lecture Notes in Computer Science, pages 166–
180. Springer-Verlag, 1990. 13

[Mil91] R. Milner. The polyadic π-calculus: A tutorial. Technical report, LFCS, University
of Edinburgh, 1991. 7

[Mit96] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. 9, 21,
88, 99

[Mog89a] E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, University of Edinburgh, 1989. Lecture Notes for course CS 359,
Stanford University. 19, 55

[Mog89b] E. Moggi. Computational lambda-calculus and monads. In Proceedings, 4th An-
nual Symposium on Logic in Computer Science, pages 14–23. IEEE Computer So-
ciety Press, 1989. 19, 55, 59

[Mog91] E. Moggi. Notions of computations and monads. Information and Computation,
93(1):55–92, 1991. 19, 55, 59

[Mor90] C. C. Morgan. Programming from Specifications. International Series in Computer
Science. Prentice Hall, 1990. 6

[Mor94] A. K. Moran. Natural semantics for non-determinism. Licentiate thesis, Chalmers
University of Technology and University of Göteborg, May 1994. 12, 12, 14

194 BIBLIOGRAPHY

[Mor98] A. K. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb. PhD thesis,
Department of Computing Science, Chalmers University of Technology, Göteborg,
Sweden, September 1998. 12, 12, 14, 16, 16, 17, 19, 70, 75

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1974. 35

[Mos89] Y. N. Moschovakis. The formal language of recursion. The Journal of Symbolic
Logic, 54(4):1216–1252, December 1989. 184

[Mos90] Y. N. Moschovakis. Descriptive Set Theory. North-Holland, 1990. 46

[Mos91] Y. N. Moschovakis. A model of concurrency with fair merge and full recursion.
Information and Computation, 93(1):114–171, 1991. 16

[Mos95] Y. N. Moschovakis. Computable concurrent processes. Theoretical Computer Sci-
ence, 139(1–2):243–273, 1995. 16, 184

[Mos98] Y. N. Moschovakis. A game-theoretic, concurrent and fair model of the typed
lambda-calculus, with full recursion. In M. Nielsen and W. Thomas, editors, CSL
’97, volume 1414 of Lecture Notes in Computer Science, pages 341–359. Springer-
Verlag, 1998. 16

[MP86] A. Moitra and P. Panangaden. Finitary choice cannot express fairness: A metric
space technique. Technical Report TR86-788, Cornell University, 1986. 16

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II.
Information and Computation, 100(1):1–77, 1992. 7

[MST96] I. A. Mason, S. F. Smith, and C. L. Talcott. From operational semantics to domain
theory. Information and Computation, 128(1):26–47, 1996. 169

[MT88] R. Milner and M. Tofte. Co-induction in relational semantics. Technical Report
ECS-LFCS-88-58, LFCS, University of Edinburgh, 1988. 8

[MW95] Y. N. Moschovakis and G. T. Whitney. Powerdomains, powerstructures and fair-
ness. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic ’94, volume
933 of Lecture Notes in Computer Science, pages 382–396. Springer-Verlag, 1995.
6, 169

[Odi89] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland, 1989. 18, 23, 45, 46, 77, 158

[Ong92a] C.-H. L. Ong. Concurrent lambda calculus, and a general pre-congruence theorem
for applicative bisimulation. Preliminary version, August 1992. 13, 21, 21, 89, 89,
134

[Ong92b] C.-H. L. Ong. Functions, non-determinism and concurrency. Working draft, Jan-
uary 1992. 13, 89, 89

BIBLIOGRAPHY 195

[Ong93] C.-H. L. Ong. Non-determinism in a functional setting. In Proceedings, 8th An-
nual Symposium on Logic in Computer Science, pages 275–286. IEEE Computer
Society Press, 1993. 12, 12, 18, 89, 89, 169

[OP93] C.-H. L. Ong and A. M. Pitts. Systematic programming semantics, 1993. Case for
support. 21, 89

[Par79] D. M. Park. On the semantics of fair parallelism. In D. Bjørner, editor, Abstract
Software Specification, volume 86 of Lecture Notes in Computer Science, pages
504–526. Springer-Verlag, 1979. 6, 8, 35, 39

[Par81] D. M. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Conference on Theoretical Computer Science, volume 104 of Lecture Notes
in Computer Science, pages 167–183. Springer-Verlag, 1981. 6, 8, 35, 39

[PGM90] S. Prasad, A. Giacalone, and P. Mishra. Operational and algebraic semantics for
Facile: A symmetric integration of concurrent and functional programming. In
M. S. Paterson, editor, Automata, Languages and Programming, volume 443 of
Lecture Notes in Computer Science, pages 765–780. Springer-Verlag, 1990. 17

[Pit91] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, 4th Higher Order Workshop,
Banff 1990, Workshops in Computing, pages 162–189. Springer-Verlag, Berlin,
1991. 19

[Pit97] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer and
A. M. Pitts, editors, Semantics and Logics of Computation. Cambridge University
Press, 1997. Lectures given at the CLICS-II Summer School on Semantics and
Logics of Computation, Isaac Newton Institute for Mathematical Sciences, Cam-
bridge, UK, September 1995. 9, 65, 69, 169

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science, 1:125–159, 1975. 9

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487,
1976. 44, 169

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977. 9

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981. 7, 9, 11,
30, 65

[Plo82] G. D. Plotkin. A powerdomain for countable non-determinism (extended abstract).
In M. Nielson and E. M. Schmidt, editors, International Colloquium on Automata,
Languages and Programs, volume 140 of Lecture Notes in Computer Science,
pages 418–428. Springer-Verlag, 1982. 6, 14

[Plo83] G. D. Plotkin. Domains. Course notes, 1983. 44, 169, 169, 181

196 BIBLIOGRAPHY

[Plo85] G. D. Plotkin. Denotational semantics with partial functions. Lecture notes,
C.S.L.I. Summer School, Stanford, 1985. 9

[Pot90] M. D. Potter. Sets: An Introduction. Oxford Science Publications. Oxford Univer-
sity Press, 1990. 23, 45

[PR88] P. Panangaden and J. Russell. A category-theoretic semantics for unbounded in-
determinacy. Technical Report 88-957, Cornell University, December 1988. 57,
169

[PS87] P. Panangaden and V. Shanbhogue. On the expressive power of indeterminate net-
work primitives. Technical Report 87-891, Cornell University, December 1987.
16

[PS88a] P. Panangaden and V. Shanbhogue. McCarthy’s amb cannot implement fair merge.
Technical Report 88-913, Cornell University, May 1988. 16

[PS88b] P. Panangaden and E. W. Stark. Computations, residuals, and the power of indeter-
minacy. In T. Lepistö and A. Saloman, editors, 15th ICALP, volume 317 of Lecture
Notes in Computer Science, pages 439–454. Springer-Verlag, 1988. 16

[PS00] G. Plotkin and A. K. Simpson. Complete axioms for categorical fixed-point oper-
ators. In Fifteenth Annual IEEE Symposium on Logic in Computer Science, pages
30–44, 2000. 184

[Rep92] J. H. Reppy. Higher-order Concurrency. PhD thesis, Department of Computer
Science, Cornell University, June 1992. TR 92-1285. 17, 17

[Rep99] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
17

[Rog67] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Series in Higher Mathematics. McGraw-Hill, 1967. 18, 45, 77,
153, 158

[Ros88] A. W. Roscoe. Two papers on CSP. Technical Report PRG-67, Programming Re-
sarch Group, Oxford University Computing Laboratory, July 1988. (An alternative
order for the failures model & Unbounded nondeterminism in CSP). 57

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. International Series in
Computer Science. Prentice Hall, 1998. 7, 8, 39, 57

[Rus90] J. R. Russell. Full Abstraction and Fixed-Point Principles for Indeterminate Com-
putation. PhD thesis, Department of Computer Science, Cornell University, April
1990. Available as TR90-1120. 16, 57, 169

[San93] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993. 17

[San94] D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information
and Computation, 111(1):120–153, 1994. 13

BIBLIOGRAPHY 197

[San97] D. Sands. From SOS rules to proof principles: An operational metatheory for
functional languages. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 428–441,
January 1997. 169

[Saz75] V. Yu. Sazonov. Sequentially and parallel computable functionals. In G. Goos
and J. Hartmanis, editors, λ-calculus and Computer Science Theory, volume 37 of
Lecture Notes in Computer Science, pages 312–319. Springer-Verlag, 1975. 18,
77

[Sco93] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theo-
retical Computer Science, 121(1–2):411–440, 1993. Reprint of an unpublished
manuscript written in 1969. 9

[Sha90] V. Shanbhogue. The Expressiveness of Indeterminate Dataflow Primitives. PhD
thesis, Cornell University, 1990. Available as TR90-1147. 16, 16, 16

[Sho71] J. R. Shoenfield. Degrees of Unsolvability. North-Holland, 1971. 18

[Sie93] K. Sieber. Call-by-value and nondeterminism. In Proceedings of the Conference
on Typed Lambda Calculus and its Applications, volume 664 of Lecture Notes in
Computer Science, pages 376–390. Springer-Verlag, 1993. 12

[Sim93] A. K. Simpson. A characterisation of the least-fixed-point operator by dinaturality.
Theoretical Computer Science, 118(2):301–314, September 1993. 184

[Smy78] M. B. Smyth. Power domains. Journal of Computer and System Sciences,
16(1):23–36, 1978. 44

[Spi89] J. M. Spivey. A categorical approach to the theory of lists. In J. L. A. van de
Snepscheut, editor, Mathematics of Program Construction, volume 375 of Lecture
Notes in Computer Science, pages 399–408. Springer-Verlag, 1989. 59

[Spi90] J. M. Spivey. A functional theory of exceptions. Science of Computer Program-
ming, 14:25–42, 1990. 59

[SS92] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. Com-
puter Journal, 35(5):514–523, October 1992. 17

[Sta87] E. W. Stark. Concurrent transition system semantics of process networks. In Con-
ference Record of the 14th ACM Symposium on Principles of Programming Lan-
guages, pages 199–210, 1987. 16

[Sta90] E. W. Stark. A simple generalisation of Kahn’s principle to indeterminate dataflow
networks. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors,
Semantics for Concurrency, Leicester, pages 157–176. Springer-Verlag, 1990. 16

[Sti97] C. Stirling. Bisimulation, model-checking and other games. Notes for Mathfit
instructional meeting on games and computation, Edinburgh, June 1997. 9, 42

198 BIBLIOGRAPHY

[Tho89] B. Thomsen. A calculus of higher order communicating systems. In Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
pages 143–154, 1989. 17

[Tho91] S. Thompson. Type Theory and Functional Programming. International Computer
Science Series. Addison Wesley, 1991. 58

[Tho93] B. Thomsen. Plain CHOCS: A second generation calculus for higher order pro-
cesses. Acta Informatica, 30(1):1–59, January 1993. 17

[Tho95] B. Thomsen. A Theory of Higher Order Communication Systems. Information
and Computation, 116(1):38–57, 1995. 17

[Tur90a] D. A. Turner. An approach to functional operating systems. In Research Topics in
Functional Programming [Tur90b]. 16

[Tur90b] D. A. Turner, editor. Research Topics in Functional Programming. The UT Year
of Programming Series. Addison-Wesley, 1990. 185, 198

[Van90] R. J. Van Glabbeek. The linear time – branching time spectrum. Report CS-R9029,
CWI, 1990. 8, 39

[Van93] R. J. Van Glabbeek. The linear time — branching time spectrum II (the semantics
of sequential systems with silent moves). In E. Best, editor, Proceedings CON-
CUR’93, 4th International Conference on Concurrency Theory, Hildesheim, Ger-
many, volume 715, pages 66–81, 1993. 8, 39

[Van94] R. J. Van Glabbeek. What is branching time semantics and why to use it? In
M. Nielsen, editor, The Concurrency Column, pages 191–198. Bulletin of the
EATCS 53, 1994. 8

[Wad92] P. L. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2:461–493, 1992. 19, 59

[Wag94] E. G. Wagner. Algebraic semantics. In Abramsky et al. [AGM94]. 184

[Wal90] D. J. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990. 33, 39

[Whi94] G. T. Whitney. Recursion Structures for Non-Determinism and Concurrency. PhD
thesis, University of California, Los Angeles, March 1994. 16

[Win93] G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing Series. MIT Press, February 1993. 72

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of
Logic in Computer Science. Clarendon Press, 1995. 7, 32

Glossary of Symbols

Sets
ω natural numbers (including 0), 23

ωCK
1 least non-recursive ordinal, 46

ω1 least non-countable ordinal

A+ B disjoint union of sets A and B

A⊥ disjoint union of sets A and {⊥}
Succ(A) successor of a set A, Succ(A) = A∪{A}, 23

Dom(f) domain of function f

Im(f) image of function f

P(A) powerset of set A

Pne(A) set of all non-empty subsets of set A

Sequences
〈〉 empty sequence

�a, 〈a0,a1, . . . ,an〉 . . . finite sequences

〈ai | i ∈ I〉 indexed sequence

. prefix order

≤LX lexicographic order, 46

≤KB Kleene-Brouwer order, 46

Relations
Id(A) identity or diagonal relation of set A, 127

R ∗ reflexive, transitive closure of relation R

R + transitive closure of relation R

R ;S diagrammatic composition of relations R and S , 127

R op dual of relation R , 127

199

200 GLOSSARY OF SYMBOLS

Partial Orders
⊥ least element of partial order (or an urelement), 34

% greatest element of partial order, 34

a�b binary meet of a and b, 34

a$b binary join of a and b, 34�
A meet of set A, 33

F
A join of set A, 33

a complement of a, 34

µa.F(a) least fixed-point of function F , 34

νa.F(a) greatest fixed-point of function F , 34

Trees
Rank(a,<) rank of a with respect to well-founded relation <,27

Len(A,≤) length of tree 〈A,≤〉, 28

Tree(A) ∈-tree of set A, 27

ST(〈S,−→〉,s) synchronisation tree of transition system 〈S,−→〉 rooted at state s,32

Transition Systems
s −→ t unlabelled transition from state s to state t, 30

s
a−→ t transition from state s to state t, labelled with a, 30, 86

s ⇑may state s may diverge, 33, 86

s ⇓must state s must converge, 33, 86

TS(A) ∈-transition system of set A, 31

TSWD(A) ∈-transition system with divergence of set A, 33

Typed Transition Systems
L0 typed transition system, 120

L0(E) typed transition system, 120

M0 typed transition system, 147

S typed transition system, 99

Total(T) hereditarily total elements of typed transition system T ,87

Det(T) hereditarily deterministic elements of typed transition system T ,87

PR category of maps between typed transition systems, 109

Ext(T) extensional collapse of typed transition system T ,111

T �X restriction of TTS T to set of states X , 112

ξ(σ) choice function at type σ, 115

GLOSSARY OF SYMBOLS 201

Simulation Operators
〈R 〉S simulation operator for transition systems, 40

〈R 〉LS lower simulation operator for transition systems with divergence,43

〈R 〉US upper simulation operator for transition systems with divergence,43

〈R 〉TLS lower simulation operator for typed transition system T , 90

〈R 〉TUS upper simulation operator for typed transition system T ,90

Similarity and Bisimilarity for Transition Systems
�S similarity, 40

�S mutual similarity, 40

�B bisimilarity, 40

Similarity and Bisimilarity for Transition Systems with Divergence
�LS, �US, �CS, �RS . lower, upper, convex, refinement similarity, 44

�LS, �US, �CS, �RS . lower, upper, convex, refinement mutual similarity, 44

�LB, �UB, �CB, �RB . lower, upper, convex, refinement bisimilarity, 44

Similarity and Bisimilarity for Typed Transition System T

�T
LS, �T

US, �T
CS, �T

RS . lower, upper, convex, refinement similarity, 91

�T
LS, �T

US, �T
CS, �T

RS . lower, upper, convex, refinement mutual similarity, 91

�T
LB, �T

UB, �T
CB, �T

RB . lower, upper, convex, refinement bisimilarity, 91

Binary Choice Operators
GAng(A,B) global angelic choice of sets A and B, 50

Amb(A,B) ambiguous choice of sets A and B, 50

Err(A,B) erratic choice of sets A and B, 50

LDem(A,B) local demonic choice of sets A and B, 50

GDem(A,B) global demonic choice of sets A and B, 50

202 GLOSSARY OF SYMBOLS

Programming Language
L set of terms of programming language L , 60

L0 set of programs of L , 60

Can0 set of canonical programs of L , 60

L (E) set of terms of smallest fragment containing set of terms E , 77

L0(E) set of programs of smallest fragment containing set of terms E ,77

M set of terms of fragment M , 147

M0 set of programs of fragment M , 147

POrd(σ) P-order of type σ, 56

Var set of variables, 57

Fv(M) free variables of term M, 57

M[N1, . . . ,Nn/x1, . . . ,xn] simultaneous substitution of terms N1, . . . ,Nn for variables x1, . . . ,xn, 58

Red(σ) reducibility candidates of type σ, 76

Operational Semantics
M �det N term M reduces in one step to program N (deterministic), 65

M � N term M reduces in one step to program N, 65

M �ω term M diverges, 66

M � x term M blocked at variable x, 66

M[x &→N] substitution of term N for occurrence of variable x blocking term M,66

M ⇓may K program M may converge to canonical program K, 72

M ⇑may program M may diverge, 73

M ⇓must program M must converge, 74

M ⇓must A program M has must convergence rank A, 80

Relations on Terms
Rel0(E) set of binary relations on programs of L (E), 123

Rel(E) set of binary relations on terms of L (E), 127

Cls(R) closed restriction of relation R , 128

Opn(E ,R) open extension of relation R , 128

R [S] relational substition of relation S into relation R ,128

Cmp(E ,R) compatible refinement of R , 129

Cand(E ,R) congruence candidate of R , 134

Index

α-equivalent terms, 58
⊥ urelement, 45, 51
∈-LTSWD for Pne(ω⊥), 51
∈-induction principle, 25
∈-tree, 27, 31, 32
λ-calculus

call-by-name, 16
call-by-need, 19
call-by-value, 18
computational, 19, 55, 59
lazy, 89, 120
non-deterministic, 11, 56, 89
strongly normalising, 75

π-calculus, 7, 13, 17
higher-order, 17

σ-simulation, 89
σ-evaluation system, 89
τ-labelled transition, 68

abbreviation
term, 62
type, 56

active type, see type
algebra, 33
alternation, 4, 181
ambiguous choice, 2, 11, 14, 16–18, 44, 50,

76
angelic choice, global, 50
angelic merge, 16
application, 97
applicative

bisimilarity, 10, 39, 88
compatibility, 89, 97, 108, 111, 125,

133
context, 10
similarity, 10, 39, 88
structure, 88
transition system, 88, 97, 120

quasi, 97, 111
arithmetic, 58, 79
arithmetical operators, 62
arrays, 181
asymmetry, 149
ATS, see applicative transition system
axiom of

Anti-Foundation, 32
Choice, 25
Extensionality, 42
Foundation, 25, 27, 31, 42
Super Strong Extensionality, 43

big-step semantics, 72
bisimilarity, 40, 76

convex, see convex bisimilarity
higher-order weak, 68, 183
lower, see lower bisimilarity
refinement, see refinement bisimilarity
upper, see upper bisimilarity
weak, 9

blocked substitution, 65, 66, 71, 77, 156,
164, 171, 173–175

blocking relation, 65, 66
blue calculus, 17
bounded non-determinism, 5
branches, 55

calculus of communicating systems, see CCS
calculus of higher-order communicating sys-

tems, see CHOCS
call-by-name

λ-calculus, see λ-calculus
operational semantics, 59
reduction strategy, 17

call-by-need, 19, 76
λ-calculus, see λ-calculus
reduction strategy, 17

203

204 INDEX

call-by-value
λ-calculus, see λ-calculus
reduction strategy, 17
term abbreviation, 62

canonical
program, 12, 120
term, 57

Cantorian normal form, 45
capture-free substitution, see substitution
cardinal, 56

regular, 58
cardinality, 70
case statement, 55
categorical notation, 11
category, 33, 109
category-theoretic semantics for erratic non-

determinism, 57
CCS, 7, 12, 17, 57, 85
channel, 17
characteristic function, 77
CHOCS, 17
choice

ambiguous, see ambiguous choice
angelic, see angelic choice
demonic, see demonic choice
erratic, see erratic choice
internal, see internal choice

Church-Rosser property, 69
Church-style type assignment, 55
closed

restriction, 125, 128
term, see term

closure conditions, 77, 131, 145
CML, 17
coalgebra, 33
coding, 57
coinduction, 8, 33, 40, 87, 142

origins of term, 35
principle, 35

strong, 35
coinductive type, see type
commitment, 13
communicating sequential processes, see CSP
commutativity, lack of, 24
compatible, 8, 9, 11, 12, 15, 18, 57, 74, 80,

90, 125, 131, 133, 147, 182
refinement, 125, 129

compatible refinement, 129
complement, 34, 35, 42, 73, 74
complete lattice, 34, 107
compositional, 125
computable, 55

map, 57
computation type, see type
computational λ-calculus, see λ-calculus
concurrent

evaluation, 14
higher-order languages, 120
ML, see CML
systems, 1, 2

configuration, 68
congruence, 9, 133

candidate, 128, 131, 134, 137
asymmetry of, 142

context, 9, 10, 172
contextual

equivalence, 9, 17, 20, 76
preorder, 10, 12, 17, 20

may, 12
must, 12

substitution, 65, 172
continuous function space, 88
contraction, 60
contravariant, 10, 88
converges, 12, 66
convex

bisimilarity, 12, 142, 153, 160, 161, 184
powerdomain, see powerdomain
similarity, 12, 141, 169

coproduct type, see type
countable

choice, 26, 70
erratic choice, see erratic choice
non-determinism, 5, 16, 70, 81, 183
well-order, 45

countably-branching well-founded tree, 57
counter, 2
CSP, 7, 12, 17

with unbounded non-determinism, 57
cycle, 31, 32, 40

INDEX 205

dataflow, 16, 18
definable, 13

elements, 77
relatively, see relative definability

degrees
of parallelism, 18, 77
Turing, see Turing degrees

demonic choice
global, 50
local, 50

denotational
model, 18
semantics, 59, 125

derivation tree, 45
for must convergence judgement, 74

deterministic programming language, 73
diagonalisation, 46
dinatural fixed-point operators, 184
directed-complete partial order, 77, 88
disconnected elements, 31
disjoint union of LTSs, 41
divergence, 181
diverges, 12, 66
domain-theoretic model, 13
dove-tailed computations, 2
down-set, 25
dual of a function, 182

Egli-Milner construction, 44
empty environment, 60
environment, 60
erratic choice, 2, 7, 11, 50

binary, 17, 26, 57, 64, 76, 79
countable, 17
indexed, 58, 76
infinite, 137

evaluation, 120
semantics, 11, 15, 86

exception, 59
expressive, 13
extensional

collapse of a TTS, 108, 111
relation, 98

Facile, 17
failure, 181

fair, 14
merge, 16–18
operational semantics, 5
scheduler, 14
scheduling algorithm, 2

fairness, 16, 17
finality, 33
finitary term constructors, 142
finite

element, 13
non-determinism, 5, 70
product category, 59

finitely-branching, 81
fixed-point

greatest, 34, 132
least, 34, 57, 132
post-, 33
pre-, 33
properties, 125
terms, 80
unique, 135

forest, 25, 26
with limit elements, 25

fragment, 18, 77, 108, 119, 120, 131
frame, 88
free variable, 57
function

preserves and reflects labelled transitions
and may divergence, 109

functor, 33
fundamental theorem of logical relations,90

game, 9, 42
GCL, 4, 181
general recursion, 182
global angelic choice, see angelic choice
global demonic choice, see demonic choice
greatest fixed-point, see fixed-point
ground context, 9
guard, 3, 4, 181
guarded command language, see GCL

Hasse diagram, 30
Henkin model, 88
hereditarily

deterministic, 87, 93

206 INDEX

total, 87, 93
Hoare

powerdomain, see powerdomain
triple, 3

Howe’s
congruence candidate, see congruence

candidate
technique, 12, 147

hypersets, 32

identifications between relations, 93
immediate subterms, 144
imperative languages, 181
inclusion maps, 108
inclusions between relations, 93, 108
indexed erratic choice, 17
indexing set, 55–57
induction, 33, 142

principle, 35
strong, 35

inductive
proof, 39
type, see type

infinitary
conjunctions, 57
disjunctions, 57
languages, 57
term constructors, 57
terms, 55, 75

infinite
branching, 74
path, 42

infinity-fair merge, 16
infinity-fair2 merge, 16
initial state, 182
initiality, 33
input event, 16
interleaved computations, 2, 13
interleaving semantics, 7
internal choice, 183
invariant, 4
iteration, 4

theories, 184
iterative theories, 184

join, 33, 104

join-infinite distributive law, 34

kernel, 35
Kleene equivalent, 69
Kleene-Brouwer order, 46
Knaster-Tarski theorem, 34
König’s lemma, 26

labelled transition, 12, 120
relation, 30
system, 8, 30, 85

with divergence, 33, 86
language of guarded commands, see GCL
lattice, complete, see complete lattice
lazy

λ-calculus, see λ-calculus
lists, 16

least
fixed-point, see fixed-point
non-recursive ordinal, 46, 81

length of a tree, 28
lexicographic order, 46
lifting

construct, 11
functor, 59

limit, 26
element, 31
ordinal, see ordinal

list comprehension, 59
logical operators, 62
logical relation, 9, 20, 87, 88
loops, 182
lower

bisimilarity, 12, 142
powerdomain, see powerdomain
set, 104
similarity, 12, 141, 169
simulation function, 43, 137

LTS, see labelled transition system
LTSWD, see labelled transition system
Lusin-Sierpinski order, 46

many-sorted equational logic, 59
maximal equivalence classes, 96
may contextual preorder, see contextual pre-

order

INDEX 207

may convergence
predicate, 12
relation, 12, 15, 72, 120

may divergence predicate, 12, 15, 32, 33,
72, 73

McCarthy’s ambiguous choice, see ambigu-
ous choice

meet, 33, 104
meet-infinite distributive law, 34
merge

angelic, see angelic merge
fair, see fair merge
infinity-fair, see infinity-fair merge
infinity-fair2, see infinity-fair2 merge
operator, 16

message-passing, 11, 17
minimal program, 181
model-checking, 9
Moggi’s computational λ-calculus, see λ-calculus
monad, 59
monotone function, 10
monotonicity, 53
multi-tasking system, 2
multiplication of a monad, 59
must contextual preorder, see contextual pre-

order
must convergence

predicate, 12, 33, 74
rank, 80
rules, 137

mutual similarity, 40, 144

NATS, see non-deterministic applicative tran-
sition system

natural numbers, 23
type, 55

natural semantics, 72
non-definable elements, 18
non-deterministic

λ-calculus, see λ-calculus
applicative transition system, 97

quasi, 89, 97, 111
extensions, 18
program, 50, 55

non-divergent program, 70, 81

non-idempotent, 57
non-terminating program, 55
non-termination, 4
non-well-founded

set, 32
set theory, 9
type, 87

normalisation, 75
notions of computation, 59

open
extension, 125, 128, 142
term, see term

operational semantics, 33
operationally-defined equivalences, 30
oracle, 2
order-isomorphic, 45
ordinal, 23

arithmetic, 24
limit, 24, 26
recursive, 45, 81

P-order, 93, 100, 144
parallel composition, 13
partial

function, 77
recursive function, 77, 79, 88

passive type, see type
PCF, 77, 79
Plotkin powerdomain, see powerdomain
post-fixed-point, see fixed-point
postcondition, 3, 181
powerdomain

convex, 44
Hoare, 44
lower, 44
Plotkin, 44
Smyth, 44
upper, 44

powerset, 34
PR category, 109
pre-fixed-point, see fixed-point
pre-frame, 88
precondition, 3, 181
predomains, 59
prefix order, 26, 46

208 INDEX

primitive recursion, 182
principle of mathematical induction, 23
probabilistic systems, 2
problematic term constructors, 144
process calculi, 11
product type, see type
program, 60, 119

specification, 18
synthesis, 4

program verification, 4

qATS, see applicative transition system
qNATS, see non-deterministic applicative tran-

sition system
quotient of a TTS, 97

rank, 27, 28, 56, 74
must convergence, see must convergence

rank
rank of derivation trees for must convergence

judgements, 80
reachable, 31
recursive

ordinal, see ordinal
tree, 49, 179
type, see type
well-order, 83

recursively
decidable, 45
enumerable, 131, 157

reducibility candidate, 76
reduction

constructors, 65
context, 65, 71
relation, 15, 65

deterministic, 65
semantics, 11, 12, 15
steps, 16, 86, 120
strategy, 17, 65

refinement, 1
similarity, 12, 44, 142, 149

regular cardinal, see cardinal
relational substitution, 125, 128, 172
relative definability, 16, 18, 55, 77, 153
removing states, 108
resolution of non-determinism, 18

resource annotations, 3, 14, 15, 17
restriction, 112, 113
root of a forest, 26

Sazonov’s degrees of parallelism, see degrees
of parallelism

scheduler, 6, 7, 15
scheduling

algorithm, 2
behaviours, 1

Scott induction, 18, 38, 71, 176, 182
sequencing term constructor, 59
sequential, 77

composition, 181
set inclusion, 34
set-theoretic tuples of terms, 57
sharing, 17
signature, 59
silent τ-transitions, 120
similarity, 40

convex, see convex similarity
higher-order weak, 183
lower, see lower similarity
refinement, see refinement similarity
upper, see upper similarity

singular choice, 17
small-step relation, 65
Smyth powerdomain, see powerdomain
specification, 1, 58, 181
split term constructor, 58
state, 30, 119

transformer, 181
stream, 16, 17
strong

bisimilarity, 8
coinduction principle, see coinduction

principle
induction principle, see induction prin-

ciple
monad, 59

strongly normalising λ-calculus, see λ-calculus
structural operational semantics, 65
subject reduction, 68
substitution, 58

blocked, see blocked substitution

INDEX 209

capture-free, 58
subterm closure condition, 79
subterms, 125
subtype, 182
successor, 26

relation, 30
symmetry, 147, 149
synchronisation tree, 32
syntactic

continuity, 80
identity, 17

syntactic translations, 59
syntactically identical, 57
syntax-free, 88
System F, 75

Tait’s method, 75
tape, 1
term

abbreviation, 62
closed, 57
formation inconsistencies, 131
open, 57
well-typed, 60

terminal state, 30, 182
termination, 12, 120
terms, 57

higher-order, 76
threads, 17
thunk, 18
timing, 1
trace behaviour, 16
transition

relation, 30, 65
system, 30

with divergence, 33
transitive closure of the congruence candi-

date, 142, 147, 149
translation of GCL, 181
tree, 25, 26

finite, 183
length, 28
recursive, see recursive tree

TS, see transition system
TSWD, see transition system

TTS, see typed transition system
tuples, 57

of terms, 57
Turing

degrees, 18, 77
reducible, 158

type, 39, 56
abbreviation, 56
active, 120
algebraic, 182
coinductive, 20, 87
computation, 19, 55, 56, 120
coproduct, 55, 181
flat, 182
inductive, 55
inference, 55
passive, 120
product, 55
recursive, 10, 20, 55, 75, 87, 90, 183
system, 55, 59, 119

well-founded, see well-founded type
system

value, 56, 183
typed transition system, 20, 33, 86, 120

undefined behaviour, 4
unfair, 5, 14, 15
unfolding, 32
unique

fixed-point, see fixed-point
state, 87

unit of a monad, 59
unit term constructor, 59
unwinding, 71, 80

syntactic, 90
upper

bisimilarity, 12, 142
powerdomain, see powerdomain
set, 104
similarity, 12, 141, 169, 182
simulation function, 43, 137

value type, see type, 73, 120
variable

binding, 57
capture, 65

210 INDEX

renaming, 58

weak normalisation, 75
weakening, 60
well-founded, 24

∈-tree, 31
derivation tree, 74, 80
forest, 26
induction, 24
partial order, 25
relation, 24, 87
set, 42
tree, 26, 27, 39, 47
tree of reductions, 81
type system, 87

well-order, 24
recursive, 83

well-typed term, 120
winning strategy, 9, 42

	Introduction
	Motivation
	Related Work
	Non-Deterministic Imperative Programming Languages
	Process Calculi
	Functional Programming, Non-Determinism, and Concurrency

	Outline of Dissertation
	Contributions

	Preliminaries
	Ordinals and Trees
	Transition Systems
	Induction and Coinduction
	Similarity and Bisimilarity
	Recursive Ordinals and Recursive Trees
	Binary Choice Operators

	The Non-Deterministic $lambda $-Calculus $thepl $
	Types
	Language
	Type Assignment
	Reduction Semantics
	Evaluation Semantics
	Normalisation
	Fragments of $thepl $
	Rank of Must Convergence

	Typed Transition Systems
	Typed Transition Systems
	Similarity and Bisimilarity
	The TTS $setstts $ and Bisimilarity
	The TTS $setstts $ and Similarity
	A Category of TTS{s}

	Programming Language TTSlittles
	$languagetts $ and $languagefragmenttts {E }$
	Similarity and Bisimilarity
	Relations on Open Terms
	Compatibility
	Relative Definability
	Theory of the Language
	Fixed-Points

	Discussion
	Summary
	Further Work

