
Timed Constraint Programming: A Declarative Approach
to Usage Control

Radha Jagadeesan∗

Will Marrero†

Corin Pitcher‡
DePaul University

Chicago, IL 60604

Vijay Saraswat§
IBM Research

Yorktown Heights, NY

ABSTRACT
This paper focuses on policy languages for (role-based) ac-
cess control [14, 32], especially in their modern incarnations
in the form of trust-management systems [9] and usage con-
trol [30, 31]. Any (declarative) approach to access control
and trust management has to address the following issues:

• Explicit denial, inheritance, and overriding, and

• History-sensitive access control

Our main contribution is a policy algebra, in the timed con-
current constraint programming paradigm, that uses a form
of default constraint programming to address the first issue,
and reactive computing to address the second issue.

The policy algebra is declarative — programs can be viewed
as imposing temporal constraints on the evolution of the sys-
tem — and supports equational reasoning. The validity of
equations is established by coinductive proofs based on an
operational semantics.

The design of the policy algebra supports reasoning about
policies by a systematic combination of constraint reason-
ing and model checking techniques based on linear time
temporal-logic. Our framework permits us to perform se-
curity analysis with dynamic state-dependent restrictions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Access controls; D.3.2 [Programming Languages]: Lan-
guage Classifications—Constraint and logic languages

General Terms
Languages, Security, Verification

∗rjagadeesan@cs.depaul.edu. Supported in part by NSF
0430175.
†wmarrero@cs.depaul.edu
‡cpitcher@cs.depaul.edu
§vsaraswa@us.ibm.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

Keywords
Constraints, Reactive Systems, Usage Control, Role-Based
Access Control, Trust Management

1. INTRODUCTION
There is a recent resurgence of interest in research into

policy languages. This interest is motivated in part by the
loopholes and the drawbacks in recently proposed standards
for policy languages in a variety of domains, (e.g., see [17] for
an analysis of a language for software licenses, and [2, 6] for
an analysis of a policy language for privacy in enterprises).

In the rest of this introduction, we consider examples to
motivate the two main issues underlying usage control; ex-
amine related work and place our contributions in context.

Explicit denial, inheritance and overriding.We first
present a simplified account of the Windows access control
list (ACL) mechanism [39]. Recall that an ACL for an object
such as a file is composed of access control entries (ACEs)
representing access rights granted or denied to users.

Example 1.1 Figure 1 is an excerpt of a database of ACL
rules using the syntax of [24]. The order of the definitions
is irrelevant. We take the set of principals to consist of the
filesystem FS, the local security authority LSA, and a set of
users. The LSA’s local names are groups that denote sets
of users. The filesystem’s local names also include the pos-
itive or negative access rights parameterized by the absolute
path of a file or directory. We consider the READ CONTROL

permission, which authorizes reading a file or directory. The
filesystem’s local name FS.READ CONTROL+(path) denotes the
set of users that appear in positive ACEs. The negative
ACEs are denoted by FS.READ CONTROL-(path). The names
FS.READ CONTROLI+(path) and FS.READ CONTROLI-(path) are
similar but refer to ACEs inherited from the parent of path.

When read access to a file object path is requested by a
user s, the security monitor carries out the procedure de-
scribed in Figure 2.

Following existing research, including the delegation logic [22]
and the RT framework [24], one can read the “positive” rules
from the ACL model as axioms for permitted delegation. For
example, the fourth rule for read-control in Figure 1 is read
as “an access-check for read of the patients sub-directory
is satisfied by membership in the role LSA.Doctors”. The
“negative” rules are used for explicit denial to achieve con-
cise descriptions: eg., the first rule with FS.READ CONTROL- on

Figure 1 Excerpt from Windows ACL model
LSA.Administrators <- Administrator
LSA.Doctors <- Alice
LSA.Doctors <- Bob
LSA.Suspended <- Bob

FS.READ_CONTROL+("\") <- LSA.Administrators
FS.READ_CONTROL+("\Docs and Settings\Alice") <- Alice
FS.READ_CONTROL-("\Patients") <- LSA.Suspended
FS.READ_CONTROL+("\Patients") <- LSA.Doctors
FS.READ_CONTROLI+("\Patients") <- FS.READ_CONTROL+("\")
FS.READ_CONTROLI+("\Patients") <- FS.READ_CONTROLI+("\")
FS.READ_CONTROLI-("\Patients") <- FS.READ_CONTROL-("\")
FS.READ_CONTROLI-("\Patients") <- FS.READ_CONTROLI-("\")

Figure 2 The order of evaluation in evaluating access re-
quests from user s to file object path

1. If s is in FS.READ CONTROL-(path), then deny the re-
quest, otherwise continue.

2. If s is in FS.READ CONTROL+(path), then allow the re-
quest, otherwise continue.

3. If s is in FS.READ CONTROLI-(path) (the negative
ACEs inherited from the parent), then deny the re-
quest, otherwise continue.

4. If s is in FS.READ CONTROLI+(path) (the positive ACEs
inherited from the parent), then allow the request, oth-
erwise continue.

5. Deny the request.

the left denies access to those suspended from duty. In addi-
tion, as reflected in the last four rules of Figure 1 and in the
algorithm in Figure 2, the Windows ACL uses inheritance
and overriding to minimize repetition of access control lists
(ACLs) on hierarchically-structured collections. These rules
allow a child object to inherit ACLs from its parent and to
override them locally.

History and temporal aspects.Consider the following ex-
ample drawn verbatim from [44].

Example 1.2 ([44]) Suppose in a DRM application with
limited number of simultaneous usages, an object o can only
be accessed and used by 10 users at a time. Each new ac-
cess request is allowed. We assume that there is only one
access generated from a single user. If the number of users
accessing the object is 10, then one existing user’s ongoing
access is revoked when a new request is generated. There can
be different policies to determine which users ongoing access
must be stopped as follows. (a) Revocation by start time: the
longest usage will be revoked. (b) Revocation by idle time:
the usage with the longest idle time is revoked (c) Revocation
by total usage time: the user with the longest accumulating
usage time will be revoked.

What is key in this example, for our purposes, is that the
past interactions with the DRM application determine fu-
ture responses of the system.

Such temporal requirements are further illustrated by Brewer
and Nash’s Chinese Wall security policy [12]. This policy is

a mandatory access control model that prevents an employee
passing data, maliciously or accidentally, from one client to
another client when there would be a conflict of interest be-
tween the two clients, e.g., when the clients are engaged in
legal action but are both represented by lawyers from the
same firm. The Chinese Wall model is history-sensitive in
the sense that access control decisions are based on the own-
ership of the data previously read by the user.

Current approaches.The traditional approach to formal-
izing such access-control languages is logic-based. These are
usually in some fragment of many-sorted first-order pred-
icate logic, e.g., [16], with sorts for roles and time, and
with suitable restrictions to ensure effective computability.
Often, these restrictions are set up to ensure that there is
a compilation down to an efficient execution engine, e.g.,
based on variants and extensions of Datalog. Such research
includes the delegation logic [22], the RT framework [24] ap-
proach to trust-management, and compositional approaches
to access-control [11, 42, 43] that compile down to logic pro-
grams. Implementation techniques help in achieving effi-
cient execution [4]. Constraint (logic) programming appears
as a tool in some research with the role of constraint systems
being to axiomatize the domain-specific reasoning of inter-
est — such research includes the use of Datalog with con-
straints [23] and the use of constraint programming to model
access control [5] and attribute based access control [41].

These approaches suffer some shortcomings with respect
to the two key issues.

First, if the underlying formalism is Datalog without ex-
plicit negation, one is usually operating under the assump-
tion that anything not explicitly permitted is prohibited.
[16] argues that it is unclear that this is the case for policy
makers. Stratifying the execution of Datalog programs leads
to the ability to use negation in restricted circumstances. A
full treatment of negations requires that we work with Data-
log with explicit negation [21] and work with a closed world
view, i.e., all facts not provable are considered to be not
available. The Datalog view, even with negation, does not
permit convenient encoding of inheritance and overriding,
features that are crucial in some applications. For exam-
ple, we have seen that Windows uses these features to effi-
ciently realize access control lists (ACLs) on hierarchically-
structured collections.

Secondly, (logical) time is delegated to a sort and treated
implicitly. We feel that this is inappropriate in modern usage
control systems which are fundamentally dependent on the
past evolution of the system. The state sensitive aspect of
access control is now becoming well-accepted — e.g., see [1],
temporal extensions to role-based access control (RBAC) [8]
and state-transition approaches to trust management [13].

Our approach.Our solution to the first problem is based
on moving to (concurrent) constraint programming [20, 36]
as the underlying declarative basis. In such a setting, there is
a natural 3-valued interpretation since the results of a query
to a constraint system can be yes, no and don’t know. Our
policy algebra provides a way to write permitting or denying
policies as well as a mechanism to override policies based
on a restricted notion of defaults. Our policy combination
operators are logical operators in such a 3-valued world, and
permit the prescription of methods to detect and resolve
conflicts via operations on 3-valued truth values.

Our solution to the second problem is based on the ap-
proach to reactive systems inspired by timed concurrent con-
straint programming [34]. Recall that reactive systems are
those that react continuously with their environment at a
rate controlled by the environment. Execution in a reac-
tive system proceeds in bursts of activity. Thus, a reactive
system has a logical notion of time: at each time instant,
the environment stimulates the system with an input, ob-
tains a response, and may then be inactive (with respect to
the system) for an arbitrary period of time before initiating
the next burst. Existing research on temporal specification
languages for usage control policies [44] and access control
policies [37] demonstrates the expressiveness gained by ex-
plicitly incorporating such a logical notion of time.

What is new in our approach is an integrated executable
and declarative framework that incorporates both time and
the domain-specific reasoning (via constraint systems) re-
quired for dealing with roles and other important abstrac-
tions. Thus, building on the line of algebraic approaches
to policy composition [11, 42, 43], and in contrast to other
executable state machine approaches [28, 40, 38, 13], we
describe a declarative algebra of temporal operators.

Implementation and Analysis.The policy algebra is a
domain-specific language in the timed constraint program-
ming paradigm. This opens up the possibility of adapt-
ing general-purpose programming language techniques to
achieve domain-specific objectives.
jcc [35] is a Java library, available from SourceForge, that

realizes timed default constraint programming [34]. There
is a translation of our policy algebra into jcc. We are in the
process of implementing this translation. This implemen-
tation will enable the use of general programming language
techniques to inline the reference monitors into applications.
In this extended abstract, we elide details of the translation
and implementation.

When restricted to finitely many principals and resources,
the explicit relationship of our framework to reactive sys-
tems enables us to build upon and reuse extant specifica-
tion and verification machinery. We illustrate the utility
of such an analysis by factoring the safety and availability
analysis of [25] into two orthogonal and well-studied pieces
of research: (a) the analysis of Datalog programs developed
in [25] and (b) LTL model-checking to handle assumptions
about the interaction with the environment. More impor-
tantly, our framework permits us to perform security analy-
sis with dynamic state-dependent restrictions — this was
left as an open problem in [25].

The rest of the paper.We begin with an informal introduc-
tion to the language in section 2. In this section, we illus-
trate the language with a variety of examples. In section 3,
we provide an operational semantics and define bisimilarity,
which is a congruence. We use bisimulation arguments to
provide the basic rudiments of equational reasoning. We es-
tablish the basic framework needed for the analysis of finite-
state policies and provide examples of analysis with dynamic
state-dependent restrictions that can be carried out in our
framework. Finally, we conclude by placing our work in the
global context of declarative techniques.

2. AN OUTLINE OF OUR APPROACH
The (concurrent) constraint (cc) programming paradigm

replaces the traditional notion of a store as a valuation of
variables with the notion of a store as a constraint on the
possible values of variables. Computation progresses by ac-
cumulating constraints in the store, and by checking whether
the store entails constraints. In this section, we describe a
domain-specific policy algebra in the cc paradigm. Our ap-
proach to a timed language of policies is inspired by declar-
ative approaches to reactive computing [18, 7, 15] and is a
domain-specific sub-language of Timed Default Concurrent
Constraint programming [34].

2.1 Syntax
The syntax of the policy algebra is described in Figure 3.

Figure 3 Syntax of temporal policy algebra

Value grammar:

K ::= true Positive response (grant)
| false Negative response (deny)
| ⊥ No response

Body grammar:

P, Q ::= K
| not(P)
| P relop Q relop ∈ {and, or, def, left}

Boolean policy combination

| new x in P Local variable creation

| f(�t) Invoke policy with terms �t
| if a then P else Q Ask tokens
| if P then Q1 else Q2 Query Policy

| hence P
| time P on-present a
| time P on-absent a
| next(tell(a))

Policy declarations have the form:

f(�x) :: P

In such a policy declaration, the free variables of P must be
contained in �x.
We use a for constraint tokens and �t for terms.

2.2 Execution model
The programs in our policy algebra are reactive, mean-

ing that a program may interact with its environment in
a sequence of discrete time steps. At each time step, the
environment provides an input that can be either:

• a query to a policy, or

• other input events which may not need a grant or deny
response but that may affect policy queries in the fu-
ture

An example of the first kind of environment stimulus is a
subject requesting access to an object via a policy invoca-
tion. An example of the second kind of environment stimu-
lus are endaccess(s, o, r) events that represent a notification

from subject s of the end of its access to object o that re-
quired right r. The latter kind of events arise inevitably in
history-sensitive access control.

The arrival of a new input event and its processing ad-
vances the conceptual logical discrete clock. In response to
the input, execution is carried out to quiescence and results
in two kinds of information:

• A response to the stimulus. The response can be any
of three values — grant (true), deny (false), or un-
defined (⊥).

• A “continuation” to be executed at future time in-
stants. The continuation policy enforces future oblig-
ations and carries the state required to enforce the
policy — it does not directly respond to policy queries
per se.

2.3 Constraint systems
Communication in concurrent constraint programming is

based on a generic, parametric notion of first-order pieces
of partial information: first-order because the constraints
involve variables over some underlying domain of discourse,
partial because constraints do not necessarily completely de-
termine the values that variables take. All cc languages are
built generically over constraint systems [33, 36].

A constraint system is a multi-sorted (intuitionist) first
order theory with equality that axiomatizes domain-specific
reasoning. A constraint system is a system of partial in-
formation, consisting of a set of primitive constraints (first-
order formulae) or tokens D, closed under conjunction and
existential quantification, and an inference relation (logical
entailment), denoted by �, that relates tokens to tokens.
We use a, b, . . . to range over tokens. For example, con-
straints can be expressions of the form X ≥ Y, or “the sum
of the weights of the vehicles on the bridge must not exceed
a given limit”. Constraints come equipped with their own
entailment relation, that determines which pieces of infor-
mation (e.g., X ≥ Z) follow from other pieces of information
(e.g. X ≥ Y and Y ≥ Z). The formal definition of constraint
systems is by now standard — we refer the reader to [36].

Traditional examples of such systems include the system
Herbrand (underlying logic programming), Finite Domains
(FD) [19], and Gentzen [34]. The constraint systems rele-
vant to the domain of interest of this paper include Tree-
Domains [23] and the Datalog constraint system [23].

Example 2.1 The Herbrand constraint system. Let L
be a first-order language L with equality. The tokens of the
constraint system are the atomic propositions. Entailment is
specified by Clark’s Equality Theory, which include the usual
entailment relations that one expects from equality. Thus,
for example, f(X, Y) = f(A, g(B,C)) must entail X = A
and Y = g(B,C).

Example 2.2 The Tree Domain For specification of hi-
erarchies such as role hierarchies and DNS names, the tree
domain is useful. Each constant of a tree domain takes
the form 〈a1, . . . an〉 that represents a path in a labelled tree
with each ai being the string on an edge in the path. A
primitive constraint is of the form x relop〈a1, . . . an〉 where
relop ∈ {<,≤,≺,	}. x < relop〈a1, . . . an〉 means that x is
a child of the node 〈a1, . . . an〉, and x ≺ 〈a1, . . . an〉 means

that x is a descendant of the node 〈a1, . . . an〉. For exam-
ple, x ≺ 〈edu, stanford〉 captures addresses in the domain
stanford.edu.

Example 2.3 Datalog Constraints Datalog clauses are
already in the form permissible as rules in a constraint sys-
tem. A constraint Datalog program with constraints in sev-
eral domains can be evaluated in polynomial time when the
constraint domains in question are also polynomially decid-
able [23]. When convenient we use RT notation from [23]
such as:

FS.READ_CONTROL+("\Patients") <- LSA.Doctors

to represent constraints and isMember(B, A, R) to test the
membership of a principal B in the local name R of a sec-
ond principal A. In this paper the constraints correspond-
ing to RT rules are used only as tell-constraints, i.e., we
only use them for deductions and do not query if they are
in the store. Formally, they do not appear on the right-
hand side of the entailment relation. Constraints such as
isMember(user, FS, READ CONTROL−(path)) are used to query
the store. This query can yield a value true if the rules suf-
fice to establish this membership or a value ⊥ if the mem-
bership does not follow from the rules.

In our programming examples, we will usually work with a
constraint system that includes Datalog Constraints.

2.4 The Untimed language
Before presenting the examples without temporal features,

we give an informal overview of the language design to place
the policy algebra in the context of (concurrent) constraint
programming languages.

The basic context of the policy algebra is 3-valued logic.
A query to a policy can yield three values: grant, deny, and
a third value ⊥ coding “undefined” and arising from the
absence of a response from a policy.

In our policy framework, we have several variants of the
basic parallel composition operation of concurrent constraint
programming. All these variants impose the constraints of
both P and Q. The differences between the variants is in
the boolean operation that they perform to combine the re-
sponses (i.e., grant, deny, undefined) from P and Q. These
boolean operators have the expected meaning as character-
ized in the following truth tables, due to Lukasiewicz.

b1 or b2 =

��
�

true, at least one of bi is true

false, both bi are false

⊥, otherwise

not b =

��
�

false, b is true

true, b is false

⊥, b is ⊥

b1 and b2 =

��
�

false, at least one of bi is false

true, both bi are true

⊥, otherwise

b1 left b2 = b1

b1 def b2 =

�
b1, b1
=⊥
b2, b1 =⊥

For each boolean operation, we have a variant of the par-
allel composition operator.

• The version P left Q discards the response from Q
and returns the value from P . A typical use of this

combinator in our algebra is to use Q as a continuation
for the future with responses to policy queries, if any,
coming from P .

• We have binary operators on policies corresponding to
the boolean operations — e.g., a binary combinator
P or Q imposes the constraints of both P and Q but
also yields a response to an access query that is the
disjunction of the responses of the individual policies
P and Q.

• An interesting combinator in this flavor is an over-
riding combinator P def Q that overrides the results
given by Q by those provided by P . In particular, the
results of Q are used if P does not provide a response
to the access request.

The boolean policy combinators satisfy several expected dis-
tributivity and DeMorgan properties induced by the laws
satisfied by the corresponding boolean operations— see Fig-
ure 4 for a sample. The equality, ≡, in these equations is
bisimilarity that is defined and shown to be a congruence in
section 3.

Figure 4 Equational laws for Boolean combinators

P1 and (P2 or P3) ≡ (P1 and P2) or (P1 and P3)

P1 or (P2 and P3) ≡ (P1 or P2) and (P1 or P3)

(P) def (P1 and P2) ≡ (P def P1) and (P def P2)

(P) def (P1 or P2) ≡ (P def P1) or (P def P2)

(P1 and P2) def (P) ≡ (P1 def P) and (P2 def P)

(P1 or P2) def (P) ≡ (P1 def P) or (P2 def P)

The ask query (if a then P else Q) imposes the con-
straints of P provided the store entails the constraint a; it
imposes the constraints of Q if the store does not entail the
constraint a. In temporal terms, this query operation is in-
stantaneous. In policy terms, this represents the restriction
of the policy P to the individuals who satisfy a. We use
if a then P as shorthand for if a then P else ⊥. Thus,
if a then P does not yield a response — the response is
⊥ or undefined — if the store does not entail a. The ask
combinator satisfies several expected distributivity laws —
see Figure 5.

Figure 5 Equational laws for the ask combinator

if a then (P1 or P2) ≡ (if a then P1) or (if a then P2)

if a then (P1 and P2) ≡ (if a then P1) and (if a then P2)

if a then notP ≡ not(if a then P)

if a then (P1 def P2) ≡ (if a then P1) def (if a then P2)

Finally, the untimed combinators include new variables
that behave as expected, as illustrated by the laws of Fig-
ure 6.

Coding the Windows ACL.To model the Windows ACL
mechanism, we further assume that we are working with

Figure 6 Equational laws for the new combinator

new x in new y in P ≡ new y in new x in P

new x in P ≡ P, x not free in P

Figure 7 The Windows Read File Access Policy program

CheckPos(user,path,XR) ::

if isMember(user,FS,XR(path)) then

grant

CheckNeg(user,path,XR) ::

not(CheckPos(user,path,XR))

ReadFileAccess(user,path) ::

CheckNeg(user,path,READ_CONTROL-) def

(CheckPos(user,path,READ_CONTROL+) def

(CheckNeg(user,path,READ_CONTROLI-) def

(CheckPos(user,path,READ_CONTROLI+) def

deny)))

the constraint system Datalog Constraints. The policies
CheckPos, CheckNeg, and ReadFileAccess of Figure 7 real-
ize the access control policy of the Windows filesystem. We
discuss this program bottom-up to introduce the program-
ming elements of the policy algebra.
CheckPos only performs a membership check. For exam-

ple, in the case of a read request, membership is tested in
various READ CONTROL ACLs. Inheritance of ACLs (based on
the hierarchy of the filesystem, in practice) can be encoded
using RT statements as shown in Figure 1 and so occurs in
the constraint system. As discussed earlier, the membership
check yields a true value if membership is deducible from
the Datalog program representing the RT rules, and unde-
fined or unknown if the membership is not deducible. We
use grant and deny as syntactic sugar for true and false

respectively in examples.

Overridable defaults.The overall policy ReadFileAccess

uses a default mechanism to specify overridable policies. In
P1 def P2, the response of P2 is used only if P1 does not
yield a defined response to an access request1.

The primary use of this combinator in our context is to
establish overridable defaults. The default combinator es-
tablishes the relative priority of different policy pieces by
their static positions in the program text w.r.t. the def

combinator. For example, in the ReadFileAccess policy

1A more general variant of the default combinator is an n-
ary max combinator [28] with the following intended truth

table semantics. For a vector �b = 〈b1, . . . , bn〉 let #true(�b)

(resp. #false(�b) be the number of true(resp. false) en-
tries.

max(�b) =

��
�

true, #true(�b) > #false(�b)

false, #false(�b) > #true(�b)⊥, otherwise

In this extended abstract, we do not explore this further
because of space constraints.

the outermost policy CheckNeg(user,path,READ-CONTROL-)

has highest priority, overriding inherited ACLs checked in
the policy CheckPos(user,path,READ-CONTROLI+), which in
turn has priority higher only than the policy that always
denies. This is an example of a “closed policy”, where the
“closed” assumption is encoded formally in our policy pro-
gram by the innermost deny. Replacing this by a grant

would have yielded an open policy encoding the specifica-
tion that replaces line (5) of Figure 2 by “grant the request”.

An example from [16] illustrates the possibilities that arise
in the interaction between the three-valued nature of con-
straint entailment and the default combinator.

Example 2.4 The policy says that anyone without bad credit
is granted access to a resource. In this example, we are using
a unary policy badCredit to capture whether an individual
has bad credit. We write two variants below.

The policy P1 given by:

P1(s) :: if not(badCredit(s)) then grant

is undefined for individuals whose credit cannot be estab-
lished. So, P1(s) def deny grants access to anyone who
can be proved to not have bad credit, and denies access to
everyone else.

In contrast, the policy P2 given by:

P2(s) :: if badCredit(s) then deny

grants access to individuals whose credit cannot be estab-
lished. The policy P2(s) def grant grants access to any-
one who cannot be proved to have bad credit.

Coding the BVS policy algebra [11].We conclude the
informal discussion of the untimed combinators in the policy
algebra by comparing the expressiveness of our formalism
with an existing algebra for composition of policies [11]. The
BVS process algebra of policies supports:

1. all boolean operations on policies

2. a scoping operation to enable restriction of a policy to
a set of individuals

3. closure of a policy under a set of inference (deriva-
tion) rules, where derivation rules are Horn clause logic
rules whose head is the authorization to be derived and
whose body is the condition under which the autho-
rization can be derived.

In our setting, (1) is explicitly part of the given operations on
policies, and (2) is derived from the if a then P combinator
on policies. Our approach to (3) is to encode such rules in
the inference relation of the constraint system.

This translation scheme is compositional. That is, the
examples analyzed in [11] can be translated compositionally,
combinator by combinator into our algebra of policies. We
elide these details for reasons of space.

In terms of expressiveness, our work adds defaults and
temporal features that are not present in [11].

2.5 The timed language
The temporal constructs in our syntax are powerful enough

to encode the temporal behaviors of linear-time temporal
logic.

Our operation to add information to the store is next(tell(a))
(for a constraint a). This program imposes the constraint a
in the next time instant — the delayed imposition breaks the
subtle cycles underlying the tremendous expressive power of
defaults. Our programming examples demonstrate that the
loss of expressiveness is permissible in this application.

Our basic combinator for timed behavior is hence P . Intu-
itively, a copy of P is created at every time instant, starting
at the next instant.

The next two temporal constructs of our process alge-
bra can be viewed by analogy with the scoping operator
if a then P : just as the scoping operator restricts the
scope of individuals to whom the policy applies, the tem-
poral operators restrict the “temporal” scope of application
of a policy by choosing a subset of time instants at which to
execute the policy. This temporal combinator is the “mul-
tiform” combinator of synchronous programming. It comes
in two variants, both of which provide a subsampled clock
to P .

The first is written time P on-present a In this case, the
policy P runs only at the instants when the store entails a,
as shown in Figure 8.

Figure 8 Activation diagram for time P on-present a

aa

[][]
P

0

1

Time →
a

Our final temporal combinator is the dual of the above
combinator, written time P on-absent a. In this case, the
policy P runs only at the points of time when the store does
not entail a.

Defined combinators.Adapting our earlier work [34], given
these two basic building blocks and the other untimed com-
binators, we can program a variety of interesting temporal
behaviors:

• A useful variant of hence P is always P
def
= P left hence P ,

which starts a new copy of P at every time instant, in-
cluding the current time instant.

• The next(P) combinator that starts P in the next in-
stant.

• P until a that behaves like P until a time instant
when a is entailed; P is killed from the time instant
when a is entailed.

• first a do P that starts P in the first instant at which
a is entailed.

We discuss the laws of the always combinator (listed in
Figure 9) below. In addition to some laws based on its read-
ing as an LTL operator, the policy combinator always also
distributes over disjunction and negation. These “extra”
equations arise from the fact that policy values are used only
at the first instant: recall that at future instants, the con-
tinuation does not respond directly to policy queries and its
sole role is to constrain the evolution using the shared store.
Similar temporal-logic inspired laws hold for the other tem-
poral combinators — we omit them for reasons of space in
this extended abstract.

Figure 9 Equational laws for always

always (P1 or P2) ≡ (always P1) or (always P2)

always (P1 and P2) ≡ (always P1) and (always P2)

always (not P) ≡ not (always P)

always (P1 def P2) ≡ (always P1) def (always P2)

always next P ≡ next always P

always always P ≡ always P

Coding state machines.From a programming point of
view, the primary use of temporal features is to describe
state transitions. We begin with a basic example to illus-
trate the expressiveness of the algebra by a crude and direct
encoding of finite state machines.

Example 2.5 Let {s0, . . . sn} be the states of a state ma-
chine. Let the transition from si to sj be on an aij. Such a
state machine is encoded as follows. Assume a variable s of
sort State with constants s0, . . . , sn.

time [always

[if a00 then next tell (s = s0)

if a01 then next tell (s = s1)

...

]

] on-present (s = s0)

left

time [always

[if a10 then next tell (s = s0)

if a11 then next tell (s = s1)

...

]

] on-present (s = s1)

This demonstrates that the paradigm is expressive enough
to address applications exemplified by Example 1.2.

The real utility of the paradigm is that there is no need
to construct single monoloithic state machines for the entire
policy. We illustrate the implicit compositional construction
and use of state machines by considering three classic exam-
ples of history-sensitive access control — Chinese Walls [12],
dynamic separation of duty [14], and type enforcement in
SELinux [26].

The Chinese Wall Security Policy.Brewer and Nash’s
Chinese Wall security policy [12] is a mandatory access con-
trol model that prevents an employee passing data, ma-
liciously or accidentally, from one client to another client
when there would be a conflict of interest between the two
clients, e.g., when the clients are engaged in legal action but
are both represented by lawyers from the same firm. The
Chinese Wall model is history-sensitive in the sense that ac-
cess control decisions are based on the ownership of the data
previously read by the user.

In the Chinese Wall policy each object is owned by pre-
cisely one company (the Chinese Wall ownership need not
be related to the usual notion of ownership for a file object).
We write owner(path) for the company that owns path.
Companies with conflicts of interest are encoded using a

Figure 10 Adding A Chinese Wall to the Read Access

OKCW(user,path) ::

(if exists X. [conf(X,owner(path)) /\ read(user,X)]

then deny)

def grant

ReadFileAccessWithCW(user,path) ::

if ReadFileAccess(user,path) then

[if OKCW(user,path)then

grant

left

always

(next(tell(read(user,owner(path)))))]

def deny

symmetric binary relation conf. We assume the following
structure in the constraint system:

• A unary function symbol owner(.) with sort Path
→ Company, a binary predicate conf(.,.) with sort
Company × Company, and a binary predicate read(.,.)
with sort User × Path.

• A trivial entailment relation on ground instances. The
only other deductions involving these predicates come
from the axioms on constraint systems (e.g. conf(o1, o2) �
∃X.conf(o1, X)).

The simple security component of the Chinese Wall pol-
icy is described in Figure 10. To illustrate compositional
construction of policies, it is presented as an enhancement
of the earlier Windows read access policy. When a read file
access is performed, this is recorded in the store for the fu-
ture. This record is queried by the policy OKCW to confirm
that no Chinese Wall restrictions are violated. In passing,
we also note that the structure of this program permits dy-
namic changes in the entries of the Chinese Wall conflict
table conf.

Dynamic separation of duties.We present a minor vari-
ant of the Chinese Wall access policy to enforce a form of
dynamic separation of duty (DSD) [14].

Technically, DSD relations are described as a pair (role
set, n) where n is a natural number greater than 1. The
required property is that no user may activate n or more
roles from the role set. In this extended abstract, we treat
the case n = 3. The program in Figure 11 enforces that no
three files from the conflict set conf are simultaneously be-
ing read by a user. In this extended abstract, each conflict
set is encoded by a collection of 6 triples, each correspond-
ing to a possible permutation of the 3 elements. The only
change from the Chinese Wall program is that the end of
access to the file, as recorded by endaccess(user,path), is
used to track the reads that are currently being exercised
by the user rather than the complete history of accesses as
recorded by the policy for the Chinese Wall. The construct
P until endaccess(user, path) naturally fits this intention.

SELinux: RBAC and Type Enforcement.The National
Security Agency’s Security-Enhanced Linux (SELinux) [26]
brings mandatory access control to Linux in the form of
role-based access control and type enforcement [10, 3] mech-

Figure 11 Illustrating Dynamic Separation of Duties with
Read Access
OKDSD(user,path) ::

(if exists X. exists Y

[conf(X,Y,owner(path)) /\

read(user,X) /\ read(user,Y)

]

then deny)

def grant

ReadFileAccessWithDSD(user,path) ::

if ReadFileAccess(user,path) then

(if OKDSD(user,path) then

grant

left

[always

next(tell(read(user,owner(path))))

until endaccess(user,path)

])

def deny

anisms to support the tight imposition of the principle of
least privilege [27].

Type enforcement associates a domain with each process,
and a type with each resource, such as a file. Types provide
a level of indirection for collections of resources that have
the same access properties. For example, Kerberos config-
uration files might be labelled with type krb5_conf_t and
shell executable files might be labelled with shell_exec_t.
Access to a resource by a process is primarily determined
by the process’s domain and the resource’s type. For exam-
ple, the following SELinux policy statement allows a process
running in domain sshd_t2 to read a Kerberos configuration
file when it is labelled with type krb5_conf_t:

allow sshd_t krb5_conf_t:file read;

Domain transitions are carefully controlled to provide assur-
ance that malicious or compromised software cannot harm
the system. For example, the following SELinux policy
statement allows a process running in domain sshd_t to
assume domain user_t upon executing a program of type
shell_exec_t, e.g., /bin/sh.

domain_auto_trans(sshd_t,shell_exec_t,user_t);

In addition to an SELinux user and domain, SELinux as-
sociates a role with each process to facilitate the assignment
of domains to users. The triple of the user, role, and domain
is known as the security context. For example, the following
SELinux policy statements tell us that the security context
(root, system_r, sshd_t) is valid because the root user may
have role system_r and that role may have domain sshd_t:

user root roles { staff_r system_r };

role system_r types sshd_t;

Changes to the user and role in the security context are
also restricted because they affect possible values for the

2The SELinux implementation of type enforcement does not
distinguish between domains and types internally, hence the
_t suffix for domain sshd_t.

Figure 12 A portion of SELinux access control

always

if ExecTE(u1,r1,d1,type1) then

(if exists U,R,D.

[secCtxt(U,R,D) /\

SELinuxPolicy(U,R,D,u1,r1,d1,type1)]

then [setState(u1,r1,d1)

until exists U,R,D,TYPE. ExecTE(U,R,D,TYPE)

]

else [maintainState()

until exists U,R,D,TYPE. ExecTE(U,R,D,TYPE)

])

left

if ExecTE(u2,r2,d2,type2) then ...

domain. The restrictions are imposed using SELinux’s con-
straint language. For example, the following SELinux pol-
icy constraint forces the role to stay the same (r1 == r2)
when a process executes another binary, unless the source
domain t1 is privileged (possesses the privrole attribute,
e.g., sshd_t) and the target domain t2 is unprivileged (pos-
sesses the userdomain attribute, e.g., user_t):

type sshd_t, domain, privrole;

type user_t, domain, userdomain;

constrain process transition

(r1 == r2 or (t1 == privrole and t2 == userdomain));

We formalize a fragment of the SELinux mechanism as a
process monitor in Figure 12. The monitor tracks the cur-
rent security context of the process as a constraint of the
form secCtxt(u,r,d). The environment interacts via the
input event ExecTE(u’,r’,d’,type), which requests exe-
cution of a file of type type with a new security context
(u’,r’,d’). There is a copy of such code for each tuple of
constants (u,r,d,type).

The constraint system determines valid security context
transitions using SELinuxPolicy(u,r,d,u1,r1,d1,type1):
this is read as permitting a transition from security con-
text (u,r,d) to (u1,r1,d1) on type1. This information is
a direct representation of SELinux policy statements. In
this extended abstract, we elide the details of the obvious
entailment relation of this constraint system.

This program carries forward explicitly the piece of state
encoded in secCtxt(u,r,d), using setState:

setState(u,r,d) :: always(next(tell(secCtxt(u,r,d)))

until a change is signalled by another transition. The policy
maintainState, used above, is a routine case-analysis on the
current state:

if secCtxt(u1,r1,d1) then

[setState(u1,r1,d1)

until exists U,R,D,TYPE. ExecTE(U,R,D,TYPE)

]

left

if secCtxt(u2,r2,d2) then

[setState(u2,r2,d2)

until exists U,R,D,TYPE. ExecTE(U,R,D,TYPE)

]

...

Figure 13 Operational Semantics

u, K ⇓ K, true ,⊥
u, P ⇓ K, v, Q

u, not(P) ⇓ not(K), v, Q

u, P1 ⇓ K1, v1, Q1 u, P2 ⇓ K2, v2, Q2 relop ∈ {or, and, def, left}
u, P1 relop P2 ⇓ relop(K1, K2), v1 ∧ v2, Q1 left Q2

u � a u, P ⇓ K, v, P ′

u, if a then P else Q ⇓ K, v, P ′
u
� a u, Q ⇓ K, v, Q′

u, if a then P else Q ⇓ K, v, Q′

u, P ⇓ true, v1, P
′ u, Q1 ⇓ K, v2, Q

′
1

u, if P then Q1 else Q2 ⇓ K, v1 ∧ v2, P ′ left Q′
1

u, P1 ⇓ K, v1, Q1 K
= true u, Q2 ⇓ K′, v2, Q
′
2

u, if P then Q1 else Q2 ⇓ K′, v1 ∧ v2, P ′ left Q′
2

u, P [y/x] ⇓ K, v, Q y a fresh variable

u, new x in P ⇓ K, v, Q

(u, �y = �t), (P [�y/�x] left (hence tell(�y = �t))) ⇓ K, v, Q f(�x) :: P �y fresh variables

u, f(�t) ⇓ K, v, Q

u � a u, P ⇓ K, v, Q

u, time P on-present a ⇓ K, v, time Q on-present a

u
� a

u, time P on-present a ⇓ ⊥, true , time P on-present a

u
� a u, P ⇓ K, v, Q

u, time P on-absent a ⇓ K, v, time Q on-absent a

u � a

u, time P on-absent a ⇓ ⊥, true , time P on-absent a

u, hence P ⇓ ⊥, true , P left (hence P) u, next(tell(a)) ⇓ ⊥, a,⊥

3. SEMANTICS

3.1 Operational semantics
The operational semantics of the policy algebra is pre-

sented in Figure 13.
It is assumed that the security monitor possesses an initial

store for the system. The security monitor invokes a policy
with appropriate terms (respecting arity and sort), e.g.:

ReadFileAccess(Alice,"\Patients\Chart01.txt")

or forwards input events of the kind endaccess(s, o, r). Eval-
uation may fail to terminate because of recursive calls. If
evaluation of a process in a store terminates, then the re-
sulting value K is one of true, false, or ⊥.

The operational semantics judgement is

u, P ⇓ K, v, Q

A configuration (u, P), consisting of a store u and a process
P (that may have free variables), is evaluated to a value
K and a continuation configuration (v, Q) for the next time
instant. In the course of evaluation, P can query the cur-
rent instant’s store u, but the store u is never modified sig-
nificantly in the current instant. When the security mon-
itor handles the next access request, say f(�t), by invoking
a policy at the next logical time instant, that policy runs
in parallel with the continuation store and process from the
previous time instant, i.e., the program executed at the next
time instant is f(�t) left Q in the store v.

Note on new variable creation.The operational rules in
Figure 13 assume new variable creation in the rules for pro-

cedures and new: we assume that these new variables are
drawn from a global shared namespace, so each request for
a new variable yields a globally distinct new identifier.

3.2 Equational reasoning
In this section, we define a notion of behavioral equiva-

lence between policies. Our definitions are inspired by sim-
ilar studies for the timed cc languages [29]. However, our
approach is tuned to the current setup and is intentionally
more syntactic to enable coinductive proofs directly on poli-
cies as they execute.

We consider a simple modification to the operational se-
mantics relation:

X , u, P ⇓ K,Y, u′, P ′

where X is a set of variables and (u, P) is a configuration.
The idea is that the new variables created in operational
reductions from the configurations (u, P) are not from X .
Figure 14 gives the flavor of the modified rules.

We now define a notion of behavioral equivalence between
configurations and then processes. Consider a ternary rela-
tion R with members of the form (X , (u, P), (v, Q)), where
X is a set of variables and (u, P), (v, Q) are configurations.
When R is bisimilarity (defined presently), the meaning is
that (a) the stores u, v are identical when the X vars are
hidden, and (b) (u, P) and (v, Q) have the same behavior
when executed with any “input” constraint that does not
meaningfully involve variables in X .

Figure 14 Excerpt of Extended Operational Semantics

X , u, K ⇓ K,X , true ,⊥
X , u, P ⇓ K,Y, v, Q

X , u, not(P) ⇓ not(K),Y, v, Q

X , u, P1 ⇓ K1,Y, v1, Q1 X , u, P2 ⇓ K2,Z, v2, Q2

X , u, P1 left P2 ⇓ K1,Y ∪ Z , v1 ∧ v2, Q1 left Q2

X ∪ {y}, u, P [y/x] ⇓ K,Y, v, Q

X , u, new x in P ⇓ K,Y, v, Q

f(�x) :: P R = (P [�y/�x] left (hence tell(�y = �t)))
X ∪ {�y}, (u, �y = �t), R ⇓ K,Y, v, Q

X , u, f(�t) ⇓ K,Y, v, Q

The ternary relation F(R) is defined by:

(X , (u, P), (v, Q)) ∈ F(R) ⇔
∃X .u = ∃X .v, and
∀a, K.

∀Y, u′, P ′. X , (u ∧ ∃X .a), P ⇓ K,Y, u′, P ′ ⇒
∃Z, v′, Q′. X , (v ∧ ∃X .a), Q ⇓ K,Z, v′, Q′

∧(Y ∪ Z, (u′, P ′), (v′, Q′)) ∈ R
The functional F is monotone. A bisimulation is a relation

R such that R ⊆ F(R) and Rop ⊆ F(Rop). Bisimilarity ∼
is defined to be the largest bisimulation.

Definition 3.1 P and Q are bisimilar, written P ≡ Q,
when (∅, (u, P), (u, Q)) ∈ ∼, for all stores u.

Coinduction provides good proof-rules for bisimilarity. The
following theorem testifies that we also have a compositional
proof principle.

Theorem 3.2 Bisimilarity is a congruence.

The proof of this theorem formalizes the idea that our defin-
itions capture the observable elements of program behavior,
namely the shared store and the result to the policy queries.
The proofs involving the new combinator illustrate the name-
management techniques supported by our definitions. The
equational laws that were described in earlier sections are
proved using the usual bisimulation techniques.

3.3 Analysis
In the rest of this section, we assume that we are working

with finite state policies: this restricts the scope of the analy-
sis to systems with a finite number of principals, resources,
roles, and rules. We develop a framework to perform secu-
rity analysis with dynamic state-dependent restrictions —
[25] leaves this as an open problem.

We consider the labelled transition system whose states
are configurations (u, P) and whose transitions are given by
input events and policy invocations. For example, consider
the following transitions:

• (u, P)
f(�t),K−−−−→ (v, Q) if u, (f(�t) left P) ⇓ K, v, Q

• (u, P)
endaccess(s,o,r)−−−−−−−−−−→ (v, Q) if

u ∧ endaccess(s, o, r), P ⇓ K, v, Q

This labelled transition system is clearly similar to the mod-
els in state-transition approaches to trust-management [13].
What we have provided via a policy algebra is a structured
approach to building this LTS. In our examples, each state
of the LTS is captured by a Datalog constraint program.

Next, we show that the properties considered in [23] are
expressible in LTL. In this extended abstract, we merely
recall that an LTL formula is interpreted over traces (se-
quences of states). In each state of the trace, a truth value
is associated with each of the atoms appearing in the for-
mula. LTL has temporal operators in addition to the usual
logical connectives of propositional logic so that one can de-
scribe relationships between the values of the atoms across
time. The formula G[f] is true in a state of the trace if
the subformula f is true from then on. The formula F[f]
is true in a state of the trace if the subformula f is true in
that state or in some future state. X[f] is true in a state
of the trace if f is true in the next state in the trace. LTL
has also been extended in order to talk about past events
by defining past time versions of each of these operators.

When the LTL formula is used to specify the behavior of
a system, there is an implicit quantification performed over
all traces that begin in the start state of the system, i.e., a
system satisfies the LTL formula if every trace satisfies that
formula.

For convenience in writing these specifications, we assume
the following shortcuts. The predicate grant(p, r) is true at
the moment that p is granted access to r and is false oth-
erwise. The predicate endaccess(p, r) is true at the moment
that p releases resource r and is false otherwise. The pred-
icate tryaccess(p, r) is true if a request by p for resource r
would be granted and is false otherwise. This special predi-
cate is required when checking for availability since we can-
not force a principal to actually make the request.

We also assume the availability of some domain-specific
predicates like safe(p), prop1(p), prop2(p) as well as predi-
cates like admin(p) whose truth values can be deduced from
the store/state using the techniques of [23].

In writing these properties, we freely use quantification.
Since the number of principals is finite, quantification over
principals is achieved via finite conjunction.

We first specify the properties considered in [25] as LTL
safety properties3, as revealed by their description using the
G-operator (“true along the entire path”).

Simple Safety Is a (presumably untested) principal guar-
anteed to be denied access to a resource?

G[¬grant(p, r)]

Simple Availability Is a (presumably trusted) principal
guaranteed access to a resource?

G[tryaccess(p, r)]

Bounded Safety Is the set of principals having access bounded
by a given set of principals?

∀p . G[grant(p, r) → safe(p)]

3There is a clash of vocabulary between the use of “safety”
in [25] and the use of the same word in LTL. We explicitly
say LTL safety.

Containment Does every principal that has one property
have another property?

∀p . G[prop1(p) → prop2(p)]

The algorithms to verify these properties for finite-state sys-
tems are evident: standard LTL techniques are used to ex-
plore the state space and Datalog techniques as explored
in [25] establish properties at individual states.

The advantage of viewing the analysis as an instance of
extended LTL model-checking is that we are able to perform
security analysis with dynamic state-dependent restrictions.
Clearly, the Chinese Wall specification is of this nature:

∀p.G[grant(p, r1) → G[¬grant(p, r2)]]

This formula captures the specification that when a given
principal P is given access to a resource r1, she can no longer
access another resource r2.

Such dynamic assertions are particularly helpful in com-
positional analysis of policies, as illustrated by the following
example.

• Policy P1 enforces the Chinese Wall policy between
resources r1, r2 as specified above.

• Process P2 controls who gets access to r. Let us assume
that it only allows principals who have been granted
access to r2 in the past (coded as Fpast[grant(p, r2)])
to gain access to r:

P2 |= ∀p.G[grant(p, r) → Fpast[grant(p, r2)]]

The conjunction of the two policies ensures that if a principal
p accesses r1, then she does not have access to r.

4. CONCLUSIONS
The requirements of precise formal foundations and em-

phasis on avoidance of failure make the general area of secu-
rity particularly receptive to the application of declarative
programming techniques. This observation is of course not
novel, given the variety of literature referred to in the intro-
duction.

The novelty in this paper is the application of declarative
techniques from reactive programming languages. Broadly
speaking, deterministic reactive programming is particularly
appropriate for security applications for two reasons. Firstly,
it supports precise and expressive executable specifications
(as evidenced by their use in embedded systems). Secondly,
its foundations provide a framework that supports the in-
corporation of powerful analysis methods (as evidenced by
the success of software model-checking for reactive systems).

This paper is a first step in this exploration. We have
demonstrated a policy algebra that attempts to modularly
combine untimed constraint-based logical reasoning with tem-
poral reasoning. This view enables us to build on and gen-
eralize existing research to history-sensitive policies.

Foundationally speaking, we feel that our methods pro-
vide a general recipe to add temporal features to existing
logical formalisms. We intend our ongoing and future work
on implementations to provide pragmatic justification.

5. REFERENCES
[1] M. Abadi and C. Fournet. Access control based on

execution history. In Proc. Network and Distributed
System Security Symp., 2003.

[2] M. Backes, M. Dürmuth, and R. Steinwandt. An
algebra for composing enterprise privacy policies. In
P. Samarati, D. Gollmann, and R. Molva, editors,
ESORICS, volume 3193 of Lecture Notes in Computer
Science, pages 33–52. Springer, 2004.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat. Practical domain and
type enforcement for UNIX. In Proceedings of the
1995 IEEE Symposium on Security and Privacy, pages
66–77, May 1995.

[4] S. Barker, M. Leuschel, and M. Varea. Efficient and
flexible access control via logic program specialisation.
In PEPM ’04: Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 190–199.
ACM Press, 2004.

[5] S. Barker and P. J. Stuckey. Flexible access control
policy specification with constraint logic programming.
ACM Trans. Inf. Syst. Secur., 6(4):501–546, 2003.

[6] A. Barth, J. C. Mitchell, and J. Rosenstein. Conflict
and combination in privacy policy languages. In
WPES ’04: Proceedings of the 2004 ACM workshop
on Privacy in the electronic society, pages 45–46.
ACM Press, 2004.

[7] G. Berry. Real-time programming: General purpose or
special-purpose languages. In G. Ritter, editor,
Information Processing 89, pages 11 – 17. Elsevier
Science Publishers B.V. (North Holland), 1989.

[8] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A
temporal role-based access control model. ACM
Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

[9] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc. IEEE Conf. Security and
Privacy. IEEE Press, 1996.

[10] W. E. Boebert and R. Y. Kain. A practical alternative
to hierarchical integrity policies. In Proceedings of the
Eighth National Computer Security Conference, 1985.

[11] P. Bonatti, S. D. C. di Vimercati, and P. Samarati.
An algebra for composing access control policies.
ACM Trans. Inf. Syst. Secur., 5(1):1–35, 2002.

[12] D. Brewer and M. Nash. The Chinese Wall security
policy. In Proceedings of 1989 IEEE Symposium on
Security and Privacy, pages 206–214. IEEE Computer
Society Press, 1989.

[13] A. Chander, D. Dean, and J. C. Mitchell.
Reconstructing trust management. Journal of
Computer Security, 12(1):131–164, 2004.

[14] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM Trans. Information
System Security, 4(3):224–274, 2001.

[15] N. Halbwachs. Synchronous programming of reactive
systems. The Kluwer international series in
Engineering and Computer Science. Kluwer Academic
publishers, 1993.

[16] J. Y. Halpern and V. Weissman. Using first-order
logic to reason about policies. In CSFW ’03:
Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW’03), pages 118–130.
IEEE Computer Society, 2003.

[17] J. Y. Halpern and V. Weissman. A formal foundation
for XrML. In CSFW ’04: Proceedings of the 17th

IEEE Computer Security Foundations Workshop
(CSFW’04), pages 251–263. IEEE Computer Society,
2004.

[18] D. Harel and A. Pnueli. Logics and Models of
Concurrent Systems, volume 13, chapter On the
development of reactive systems, pages 471–498.
NATO Advanced Study Institute, 1985.

[19] P. V. Hentenryck, V. A. Saraswat, and Y. Deville.
Constraint processing in cc(fd). Technical report,
Computer Science Department, Brown University,
1992.

[20] J. Jaffar and M. J. Maher. Constraint logic
programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[21] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214–260, 2001.

[22] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed
authorization. ACM Trans. Inf. Syst. Secur.,
6(1):128–171, 2003.

[23] N. Li and J. C. Mitchell. Datalog with constraints: A
foundation for trust management languages. In PADL
’03: Proceedings of the 5th International Symposium
on Practical Aspects of Declarative Languages, pages
58–73. Springer-Verlag, 2003.

[24] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In SP
’02: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, page 114. IEEE Computer
Society, 2002.

[25] N. Li, W. H. Winsborough, and J. C. Mitchell.
Beyond proof-of-compliance: Safety and availability
analysis in trust management. In IEEE Symposium on
Security and Privacy, pages 123–139. IEEE Computer
Society, 2003.

[26] P. A. Loscocco and S. D. Smalley. Meeting critical
security objectives with Security-Enhanced Linux. In
Proceedings of the 2001 Ottawa Linux Symposium,
2001.

[27] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer,
R. C. Taylor, S. J. Turner, and J. F. Farrell. The
inevitability of failure: The flawed assumption of
security in modern computing environments. In
Proceedings of the 21st National Information Systems
Security Conference, pages 303–314, 1998.

[28] M. McDougall, R. Alur, and C. A. Gunter. A
model-based approach to integrating security policies
for embedded devices. In EMSOFT ’04: Proceedings
of the fourth ACM international conference on
Embedded software, pages 211–219. ACM Press, 2004.

[29] M. Nielsen, C. Palamidessi, and F. D. Valencia.
Temporal concurrent constraint programming:
Denotation, logic and applications. Nord. J. Comput.,
9(1):145–188, 2002.

[30] J. Park. Usage control: a unified framework for next
generation access control. PhD thesis, 2003.

[31] J. Park and R. S. Sandhu. The UCONABC usage
control model. ACM Trans. Information System
Security, 7(1):128–174, February 2004.

[32] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.

Role-based access control models. IEEE Computer,
29(2), 1996.

[33] V. A. Saraswat. The Category of Constraint Systems
is Cartesian-closed. In Proc. 7th IEEE Symp. on Logic
in Computer Science, Santa Cruz, 1992.

[34] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed
Default Concurrent Constraint Programming. Journal
of Symbolic Computation, 22(5-6):475–520,
November/December 1996.

[35] V. A. Saraswat, R. Jagadeesan, and V. Gupta. jcc:
Integrating timed default concurrent constraint
programming into Java. In F. Moura-Pires and
S. Abreu, editors, EPIA, volume 2902 of Lecture Notes
in Computer Science, pages 156–170. Springer, 2003.

[36] V. A. Saraswat, M. Rinard, and P. Panangaden.
Semantic foundations of concurrent constraint
programming. In Proceedings of Eighteenth ACM
Symposium on Principles of Programming Languages,
Orlando, pages 333–352, January 1991.

[37] F. Siewe, A. Cau, and H. Zedan. A compositional
framework for access control policies enforcement. In
FMSE ’03: Proceedings of the 2003 ACM workshop on
Formal methods in security engineering, pages 32–42.
ACM Press, 2003.

[38] E. G. Sirer and K. Wang. An access control language
for web services. In SACMAT ’02: Proceedings of the
seventh ACM symposium on Access control models
and technologies, pages 23–30. ACM Press, 2002.

[39] M. M. Swift, P. Brundrett, C. Van Dyke, P. Garg,
A. Hopkins, S. Chan, M. Goertzel, and
G. Jensenworth. Improving the granularity of access
control for windows 2000. ACM Transactions on
Information and System Security, 5(4), Nov 2002.

[40] V. N. Venkatakrishnan, R. Peri, and R. Sekar.
Empowering mobile code using expressive security
policies. In NSPW ’02: Proceedings of the 2002
Workshop on New Security Paradigms, pages 61–68.
ACM Press, 2002.

[41] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In
FMSE ’04: Proceedings of the 2004 ACM workshop on
Formal methods in security engineering, pages 45–55.
ACM Press, 2004.

[42] D. Wijesekera and S. Jajodia. Policy algebras for
access control — the predicate case. In CCS ’02:
Proceedings of the 9th ACM conference on Computer
and communications security, pages 171–180. ACM
Press, 2002.

[43] D. Wijesekera and S. Jajodia. A propositional policy
algebra for access control. ACM Trans. Inf. Syst.
Secur., 6(2):286–325, 2003.

[44] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu.
A logical specification for usage control. In SACMAT
’04: Proceedings of the ninth ACM symposium on
Access control models and technologies, pages 1–10.
ACM Press, 2004.

