
Logical Methods in Computer Science
Vol. 4 (1:2) 2008, pp. 1–24
www.lmcs-online.org

Submitted Nov. 21, 2006
Published Jan. 9, 2008

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROLRADHA JAGADEESAN a, ALAN JEFFREY b, CORIN PITCHER c, AND JAMES RIELY d

a,c,d CTI, DePaul Universitye-mail address: {rjagadeesan,pither,jriely}�ti.depaul.edu
b Bell Labse-mail address: aje�rey�bell-labs.omAbstrat. We study mehanisms that permit program omponents to express role on-straints on lients, fousing on programmati seurity mehanisms, whih permit aessontrols to be expressed, in situ, as part of the ode realizing basi funtionality. In thissetting, two questions immediately arise. (1) The user of a omponent faes the issue ofsafety: is a partiular role su�ient to use the omponent? (2) The omponent designerfaes the dual issue of protetion: is a partiular role demanded in all exeution paths ofthe omponent? We provide a formal alulus and stati analysis to answer both questions.1. IntrodutionThis paper addresses programmati seurity mehanisms as realized in systems suh asJava Authentiation and Authorization Servie (jaas) and .net. These systems enable twoforms of aess ontrol mehanisms1. First, they permit delarative aess ontrol to desribeseurity spei�ations that are orthogonal and separate from desriptions of funtionality,e.g., in an interfae I, a delarative aess ontrol mehanism ould require the aller topossess a minimum set of rights. While oneptually elegant, suh spei�ations do notdiretly permit the enforement of aess ontrol that is sensitive to the ontrol and data�owof the ode implementing the funtionality � onsider for example history sensitive seuritypoliies that require runtime monitoring of relevant events. Consequently, jaas and .netalso inlude programmati mehanisms that permit aess ontrol ode to be intertwinedwith funtionality ode, e.g., in the ode of a omponent implementing interfae I. On theone hand, suh programmati mehanisms permit the diret expression of aess ontrolpoliies. However, the programmati approah leads to the ommingling of the oneptuallyseparate onerns of seurity and funtionality.1998 ACM Subjet Classi�ation: D.3, K.6.5.Key words and phrases: role-based aess ontrol, lambda-alulus, stati analysis.

a,c Radha Jagadeesan and Corin Pither were supported in part by NSF CyberTrust 0430175.
d James Riely was supported in part by NSF CAREER 0347542.1In this paper, we disuss only authorization mehanisms, ignoring the authentiation mehanisms thatare also part of these infrastrutures.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (1:2) 2008
© R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely

CC© Creative Commons

http://creativecommons.org/about/licenses

2 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYThere is extensive literature on poliy languages to speify and implement poliies(e.g., [16, 28, 15, 5, 29, 13℄ to name but a few). This researh studies seurity poliiesas separate and orthogonal additions to omponent ode, and is thus foused on delarativeseurity in the parlane of jaas/.net.In ontrast, we study programmati seurity mehanisms. Our motivation is to extratthe seurity guarantees provided by aess ontrol ode whih has been written inline withomponent ode. We address this issue from two viewpoints:
• The user of a omponent faes the issue of safety: is a partiular set of rights su�ient touse the omponent? (ie. with that set of rights, there is no possible exeution path thatwould fail a seurity hek. Furthermore, any greater set of rights will also be allowed touse the omponent)
• The omponent designer faes the dual issue of protetion: is a partiular set of rightsdemanded in all exeution paths of the omponent? (ie. every exeution path requiresthat set of rights. Furthermore, any lesser set of rights will not be allowed to use theomponent)The main ontribution of this paper is separate stati analyses to alulate approximationsto these two questions. An approximate answer to the �rst question is a set of rights,perhaps bigger than neessary, that is su�ient to use the omponent. On the other hand,an approximate answer to the seond question, is a set of rights, perhaps smaller than whatis atually enfored, that is neessary to use the omponent.1.1. An overview of our tehnial ontributions. There is extensive literature on Role-Based Aess-Control (rba) models inluding nist standards for rba [26, 12℄; see [11℄ fora textbook survey. The main motivation for rba, in software arhitetures (e.g., [22, 21℄)and frameworks suh as jaas/.net, is that it enables the enforement of seurity poliiesat a granularity demanded by the appliation. In these examples, rba allows permissionsto be de-oupled from users: Roles are the unit of administration for users and permissionsare assigned to roles. Roles are often arranged in a hierarhy for suint representationof the mapping of permissions. Component programmers design ode in terms of a statiolletion of roles. When the appliation is deployed, administrators map the roles de�nedin the appliation to users in the partiular domain.In this paper, we study a lambda alulus enrihed with primitives for aess ontrol,dubbed λ-RBAC. The underlying lambda alulus serves as an abstration of the ambientprogramming framework in a real system. We draw inspiration from the programmingidioms in jaas and .net, to determine the expressiveness required for the aess ontrolmehanisms. In a sequene of .net examples2, losely based on [18℄, we give the reader a�avor of the basi programming idioms.Example 1 ([18℄). In the .net Framework lr, every thread has a Prinipal objet thatarries its role. This Prinipal objet an be viewed as representing the user exeutingthe thread. In programming, it often needs to be determined whether a spei� Prinipalobjet belongs to a familiar role. The ode performs heks by making a seurity all fora PrinipalPermission objet. The PrinipalPermission lass denotes the role that aspei� prinipal needs to math. At the time of a seurity hek, the lr heks whether2In order to minimize the syntati barrage on the unsuspeting reader, our examples to illustrate thefeatures are drawn solely from the .net programming domain. At the level of our disussion, there are noreal distintions between jaas and .net seurity servies.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 3the role of the Prinipal objet of the aller mathes the role of the PrinipalPermissionobjet being requested. If the role values of the two objets do not math, an exeption israised. The following ode snippet illustrates the issues:PrinipalPermission usrPerm =new PrinipalPermission (null,"Manager");usrPerm.Demand()If the urrent thread is assoiated with a prinipal that has the the role of manager, thePrinipalPermission objets are reated and seurity aess is given as required. If theredentials are not valid, a seurity exeption is raised.In this vein, the intuitive operation of λ-RBAC is as follows. λ-RBAC program exeutiontakes plae in the ontext of a role, say r, whih an be viewed onretely as a set ofpermissions. The set of roles used in a program is stati: we do not allow the dynamireation of roles. λ-RBAC supports run-time operations to reate objets (i.e. higher-orderfuntions) that are wrapped with proteting roles. The use of suh guarded objets isfailitated by operations that hek that the role-ontext r is at least as strong as theguarding role: an exeption is raised if the hek fails.The next example illustrates that boolean ombinations of roles are permitted in pro-grams. In lassial rba terms, this is abstrated by a lattie or boolean struture onroles.Example 2 ([18℄). The Unionmethod of the PrinipalPermission lass ombines multiplePrinipalPermission objets. The following ode represents a seurity hek that sueedsonly if the Prinipal objet represents a user in the CourseAdmin or BudgetManager roles:PrinipalPermission Perm1 =new PrinipalPermission (null,"CourseAdmin");PrinipalPermission Perm2 =new PrinipalPermission(null,"BudgetManager');// Demand at least one of the roles using Unionperm1.Union (perm2).Demand ()Similarly, there is an Interset method to represent a �join� operation in the role lattie.In λ-RBAC, we assume that roles form a lattie: abstrating the onrete union/inter-setion operations of these examples. In the onrete view of a role as a set of permissions,role ordering is given by supersets, ie. a role is stronger than another role if it has morepermissions; join of roles orresponds to the union of the sets of permissions and meet ofroles orresponds to the intersetion of the sets of permissions. Some of our results assumethat the lattie is boolean, i.e. the lattie has a negation operation. In the onrete viewof the motivating examples, the negation operation is interpreted by set omplement withrespet to a maximum olletion of permissionsOur study is parametri on the underlying role lattie.The key operation in suh programming is rights modulation. From a programmingviewpoint, it is onvenient, indeed sometimes required, for an appliation to operate underthe guise of di�erent users at di�erent times. Rights modulation of ourse omes in two�avors: rights weakening is overall a safe operation, sine the aller hooses to exeute withfewer rights. On the other hand, rights ampli�ation is learly a more dangerous operation.In the .net framework, rights modulation is ahieved via a tehnique alled impersonation.

4 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYExample 3. Impersonation of an aount is ahieved using the aount's token, as shownin the following ode snippet:WindowsIdentity stIdentity = new WindowsIdentity (StToken);// StToken is the token assoiated with the Windows at being impersonatedWindowsImpersonationContext stImp = stIdentity.Impersonate();// now operating under the new identitystImp.Undo(); // revert bak
λ-RBAC has ombinators to perform soped rights weakening and ampli�ation.We demonstrate the expressiveness of λ-RBAC by building a range of useful ombinatorsand a variety of small illustrative examples. We disuss type systems to perform the twoanalyses alluded to earlier: (a) an analysis to detet and remove unneessary role-heks ina piee of ode for a aller at a su�iently high role, and (b) an analysis to determine the(maximal) role that is guaranteed to be required by a piee of ode. The latter analysis a-quires partiular value in the presene of rights modulation. For both we prove preservationand progress properties.1.2. Related work. Our paper falls into the broad area of researh enlarging the sope offoundational, language-based seurity methods (see [27, 19, 3℄ for surveys).Our work is lose in spirit, if not in tehnial development, to edit automata [16℄, whihuse aspets to avoid the expliit intermingling of seurity and baseline ode.The papers that are most diretly relevant to the urrent paper are those of Braghin,Gorla and Sassone [7℄ and Compagnoni, Garalda and Gunter [10℄. [7℄ presents the �rst on-urrent alulus with a notion of rba, whereas [10℄'s language enables privileges dependingupon loation.Both these papers start o� with a mobile proess-based omputational model. Both al-uli have primitives to ativate and deativate roles: these roles are used to prevent undesiredmobility and/or ommuniation, and are similar to the primitives for role restrition andampli�ation in this paper. The ambient proess alulus framework of these papers pro-vides a diret representation of the �sessions� of rba� in ontrast, our sequential alulusis best thought of as modeling a single session.[7, 10℄ develop type systems to provide guarantees about the minimal role required forexeution to be suessful � our �rst type system oupies the same oneptual spae as thisstati analysis. However, our seond type system that alulates minimum aess ontrolsdoes not seem to have an analogue in these papers.More globally, our paper has been in�uened by the desire to serve loosely as a metalan-guage for programming rba mehanisms in examples suh as the jaas/.net frameworks.Thus, our treatment internalizes rights ampli�ation by program ombinators and the am-plify role onstrutor in role latties. In ontrast, the above papers use external � i.e.not part of the proess language � mehanisms (namely, user poliies in [10℄, and rba-shemes in [7℄) to enfore ontrol on rights ativation. We expet that our ideas an beadapted to the proess aluli framework. In future work, we also hope to integrate thepowerful bisimulation priniples of these papers.Our paper deals with aess ontrol, so the extensive work on information �ow, e.g.,see [24℄ for a survey, is not diretly relevant. However, we note that rights ampli�ationplays the same role in λ-RBAC that delassi�ation and delimited release [9, 25, 20℄ plays in

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 5the ontext of information �ow; namely that of permitting aess that would not have beenpossible otherwise. In addition, by supporting the internalizing of the ability to amplify oderights into the role lattie, our system permits aess ontrol ode to atively partiipate inmanaging rights ampli�ation.1.3. Rest of the paper. We present the language in Setion 2, the type system in Se-tion 3 and illustrate its expressiveness with examples in Setion 4. We disuss methods forontrolling rights ampli�ation in Setion 5. Setion 6 provides proofs of the theorems fromSetion 3. 2. The LanguageAfter a disussion of roles, we present an overview of the language design. The remainingsubsetions present the formal syntax, evaluation semantis, typing system, and some simpleexamples.2.1. Roles. The language of roles is built up from role onstrutors. The hoie of roleonstrutors is appliation dependent, but must inlude the lattie onstrutors disussedbelow. Eah role onstrutor, κ, has an assoiated arity, arity(κ). Roles A�E have the form
κ(A1, . . . , An).We require that roles form a boolean lattie; that is, the set of onstrutors must inludethe nullary onstrutors 000 and 111, binary onstrutors ⊔ and ⊓ (written in�x), and unaryonstrutor ⋆ (written post�x). 000 is the least element of the role lattie. 111 is the greatestelement. ⊓ and ⊔ are idempotent, ommutative, assoiative, and mutually distributive meetand join operations respetively. ⋆ is the omplement operator.A role may be thought of as a set of permissions. Under this interpretation, 000 is theempty set, while 111 is the set of all permissions.The syntax of terms uses role modi�ers, ρ, whih may be of the form ↑A or ↓A. We userole modi�ers as funtions from roles to roles, with ρLA M de�ned as follows:

↑ALB M = A ⊔ B ↓ALB M = A ⊓ BIn summary, the syntax of roles is as follows.
κ ::= 000 | 111 | ⊔ | ⊓ | ⋆ | · · · Role onstrutors
A�E ::= κ(A1, . . . , An) Roles
ρ ::= ↑A | ↓A Role modi�ersThroughout the paper, we assume that all roles (and therefore all types) are well-formed,in the sense that role onstrutors have the orret number of arguments.The semantis of roles is de�ned by the relation �A .

= B� stating that A and B areprovably equivalent. In addition to any appliation-spei� axioms, we assume the standardaxioms of boolean algebra. We say that A dominates B (notation A > B) if A
.
= A ⊔ B(equivalently B

.
= A ⊓ B) is derivable. Thus we an onlude 111 > A ⊔ B > A > A ⊓ B > 000,for any A, B.The role modi�er ↓A reates a weaker role (loser to 000), thus we refer to it as a restrition.Dually, the modi�er ↑A reates a stronger role (loser to 111), and thus we refer to it as an

6 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYampli�ation. While this ordering follows that of the nist rba standard [12℄, it is dual tothe normal logial reading; it may be helpful to keep in mind that, viewed as a logi, 111 is�false�, 000 is �true�, ⊔ is �and�, ⊓ is �or� and > is �implies.�2.2. Language overview. Our goal is to apture the essene of role-based systems, whereroles are used to regulate the interation of omponents of the system. We have hosen tobase our language on Moggi's monadi metalanguage beause it is simple and well under-stood, yet rih enough to apture the key onepts. By design, the monadi metalanguage ispartiularly well suited to studying omputational side e�ets (or simply e�ets), whih areentral to our work. (We expet that our ideas an be adapted to both proess and objetaluli.)The �omponents� in the monadi metalanguage are terms and the ontexts that usethem. To protet terms, we introdue guards of the form {A}[M℄, whih an only bedisharged by a ontext whose role dominates A. The notion of ontext role is formalized inthe de�nition of evaluation, where A ⊲ M → N indiates that ontext role A is su�ient toredue M to N . The term check M disharges the guard on M . The evaluation rule allows
A ⊲ check {B}[M℄ → [M℄ only if A > B.The ontext role may vary during evaluation: given ontext role A, the term ρ(M)evaluates M with ontext role ρLA M. Thus, when ↓B(M) is evaluated with ontext role A,
M is evaluated with ontext role A⊓B. A ontext may protet itself from a term by plaingthe use of the term in suh a restrited ontext. (The syntax enfores a stak disipline onrole modi�ers.) By ombining upwards and downwards modi�ers, ode may assume any roleand thus irumvent an intended poliy. We address this issue in Setion 5.These onstruts are su�ient to allow protetion for both terms and ontexts: termsan be proteted from ontexts using guards, and ontexts an be proteted from termsusing (restritive) role modi�ers.2.3. Syntax. Let x, y, z, f , g range over variable names, and let bv range over base values.Our presentation is abstrat with respet to base values; we use the types String, Int and
Unit (with value unit) in examples. We use the standard enodings of booleans and pairs(see Example 14). The syntax of values and terms are as follows.
V,U,W ::= M,N,L ::= Values; Termsbv | x V Base Value

λx.M M N | fix M Abstration{A}[M℄ check M Guard[M℄ let x= M;N Computation
ρ(M) Role Modi�erNotation. In examples, we write A(M) to abbreviate ↓000(↑A(M)), whih exeutes M atexatly role A.The variable x is bound in the value �λx.M � (with sope M) and in the term � let x=M;

N � (with sope N). If x does not appear free in M , we abbreviate �λx.M � as �λ.M �.Similarly, if x does not appear free in N , we abbreviate � let x= M;N � as �M;N �. Weidentify syntax up to renaming of bound variables and write N{x := M} for the apture-avoiding substitution of M for x in N .

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 7In the presentation of the syntax above, we have paired the onstrutors on valueson the left with the destrutors on omputations on the right. For example, the monadimetalanguage distinguishes 2 from [2℄ and [1+1℄: the former is an integer, whereas thelatter are omputations that, when bound, produe an integer. The omputation value [M℄must be disharged in a binding ontext � see the redution rule for let, below. Similarly,the funtion value λx.M must be disharged by appliation; in the redution semantisthat follows, evaluation proeeds in an appliation till the term in funtion position reduesto a lambda abstration. {A}[M℄ onstruts a guarded value; the assoiated destrutor is
check .The monadi metalanguage distinguishes omputations from the values they produeand treats omputations as �rst lass entities. (Any term may be treated as a value via theunit onstrutor [M℄.) Both appliation and the let onstrut result in omputations; how-ever, the way that they handle their arguments is di�erent. The appliation �(λx.N) [M℄�results in N{x := [M℄}, whereas the binding � let x= [M℄;M � results in N{x := M}.2.4. Evaluation and role error. The small-step evaluation relation A ⊲ M → M ′ isde�ned indutively by the following redution and ontext rules.(r-app)
A ⊲ (λx.M) N → M{x := N}

(-app)
A ⊲ M → M ′

A ⊲ M N → M ′ N(r-fix)
A ⊲ fix (λx.M) → M{x := fix (λx.M)}

(-fix)
A ⊲ M → M ′

A ⊲ fix M → fix M ′(r-hk)
A ⊲ check {B}[M℄ → [M℄ A > B

(-hk)
A ⊲ M → M ′

A ⊲ check M → check M ′(r-bind)
A ⊲ let x= [M℄;N → N{x := M}

(-bind)
A ⊲ M → M ′

A ⊲ let x= M;N → let x= M ′;N(r-mod)
A ⊲ ρ(V) → V

(-mod)
ρLA M ⊲ M → M ′

A ⊲ ρ(M) → ρ(M ′)The rules r/-app for appliation, r/-fix for �xed points and r/-bind for let arestandard. r-hk ensures that the ontext role is su�ient before disharging the relevantguard. -mod modi�es the ontext role until the relevant term is redued to a value, atwhih point r-mod disards the modi�er.The evaluation semantis is designed to ensure a role-monotoniity property. Inreasingthe available role-ontext annot invalidate transitions, it an only enable more evolution.Lemma 4. If B ⊲ M → M ′ and A > B then A ⊲ M → M ′.Proof. (Sketh) The ontext role is used only in r-hk. Result follows by indution on theevaluation judgement.

8 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYVia a series of onseutive small steps, the �nal value for the program an be determined.Suessful termination is written A ⊲ M ։ V whih indiates that A is authorized to runthe program M to ompletion, with result V . Viewed as a role-indexed relation on terms,
։ is re�exive and transitive.De�nition 5. (a) M0 evaluates to Mn at A (notation A ⊲ M0 ։ Mn) if there exist terms
Mi suh that A ⊲ Mi → Mi+1, for all i (0 ≤ i ≤ n − 1). (b) M diverges at A (notation
A ⊲ M →ω) if there exist terms Mi suh that A ⊲ Mi → Mi+1, for all i ∈ N.Evaluation an fail beause a term diverges, beause a destrutor is given a value of thewrong shape, or beause an inadequate role is provided at some point in the omputation.We refer to the latter as a role error (notation A ⊲ M err), de�ned indutively as follows.
A ⊲ check {B}[M℄ err

A 6> B
ρLA M ⊲ M err

A ⊲ ρ(M) err

A ⊲ M err

A ⊲ M N err

A ⊲ M err

A ⊲ fix M err

A ⊲ M err

A ⊲ let x= M;N err

A ⊲ M err

A ⊲ check M errExample 6. Reall from Setion 2.3 that B(M) abbreviates ↓000(↑B(M)), and de�ne
test as follows3.

test △

= check {B}[unit℄
test is a omputation that requires ontext role B to evaluate. For example, ↓B⋆(test)produes a role error in any ontext, sine ↓B⋆ restrits any role-ontext to the negation ofthe role B.Example 7. We now illustrate how terms an provide roles for themselves. Consider thefollowing guarded funtion:

from<A,B> △

= {A}[λy.B(y)℄
from<A,B> is a guarded value that may only be disharged by A, resulting in a funtionthat runs any omputation at B. Let test △

= check {B}[unit℄. No matter what therelationship is between A and B, the following evaluation sueeds:
A ⊲ let z= check from<A,B>; z test ։ B(test) ։ [unit℄

from<A,B> is far too powerful to be useful. After the A-guard is disharged, the resultingfuntion will run any ode at role B. One an provide spei� ode, of ourse, as in λy.B(M).Suh funtions are inherently dangerous and therefore it is desirable onstrain the way inwhih suh funtions are reated. The essential idea is to attah suitable heks to a funtionsuh as λg.λy.B(g y), whih takes a non-privileged funtion and runs it under B. Thereare a number of subtleties to onsider in providing a general purpose infrastruture to reateterms with rights ampli�ation. When should the guard be heked? What funtions shouldbe allowed to run, and in what ontext? In Example 21, we disuss the treatment of theseissues using the Domain and Type Enforement aess ontrol mehanism.3We do not address parametriity here; the brakets in the names test and from<A,B> are merelysuggestive.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 93. TypingWe present two typing systems that ontrol role errors in addition to shape errors.The �rst typing system determines a ontext role su�ient to avoid role errors; thatis, with this role, there is no possible exeution path that auses a role error. This systemenables the removal of unneessary role-heks in a piee of ode for a aller at a su�ientlyhigh role.The seond system determines a ontext role neessary to avoid role errors; that is, anyrole that does not dominate this role will ause every exeution path to result in a role error.Stated di�erently, the seond system alulates the role that is heked and tested on everyexeution path and thus determines the amount of protetion that is enfored by the allee.Tehnially, the two systems di�er primarily in their notions of subtyping. In the abseneof subtyping, the typing system determines a ontext role that is both neessary and su�ientto exeute a term without role errors.Beause it learly indiates the point at whih omputation is performed, the monadimetalanguage is attrative for reasoning about seurity properties, whih we understand asomputational e�ets. The type [T] is the type of omputations of type T . We extend theomputation type [T] to inlude an e�et that indiates the guards that are disharged duringevaluation of a term. Thus the term check {A}[1+1℄ has type 〈A〉[Int] � this type indiatesthat the redution of the term to a value (at type Int) requires A. Guarded values inhabittypes of the form {A}[T] � this type indiates the protetion of A around an underlyingvalue at type T . These may be disharged with a check, resulting in a term inhabiting theomputation type 〈A〉[T].The syntax of types is given below, with the onstrutors and destrutors at eah typerealled from Setion 2.3.
T, S ::= V,U,W ::= M,N,L ::= Types; Values; Terms

Base bv | x V Base Value
T � S λx.M M N | fix M Abstration
{A}[T] {A}[M℄ check M Guard
〈A〉[T] [M℄ let x= M;N Computation

ρ(M) Role Modi�er3.1. Subtyping. The judgments of the subtyping and typing relations are indexed by αwhih ranges over {1, 2}. The subtyping relation for 〈A〉[T] re�ets the di�erene betweenthe two type systems.If role A su�es to enable a term to evaluate without role errors, then any higher roleontext also avoids role errors (using Lemma 4). This explains the subtyping rule for the�rst type system � in partiular, ⊢1 〈A〉[T] <: 〈111〉[T], re�eting the fat that the top role issu�ient to run any omputation.On the other hand, if a role A of the role-ontext is heked and tested on every exeutionpath of a term, then so is any smaller role. This explains the subtyping rule for the �rsttype system � in partiular, ⊢2 〈A〉[T] <: 〈000〉[T], re�eting the fat that the bottom role isvauously heked in any omputation.

10 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELY
⊢α Base <: Base

⊢α T <: T ′

⊢α {A}[T] <: {A′}[T ′]
if α = 1 then A′

> Aif α = 2 then A > A′

⊢α T ′ <: T ⊢α S <: S′

⊢α T � S <: T ′ � S′

⊢α T <: T ′

⊢α 〈A〉[T] <: 〈A′〉[T ′]
if α = 1 then A′

> Aif α = 2 then A > A′Lemma 8. The relations ⊢α T <: S are re�exive and transitive.3.2. Type systems. Typing is de�ned using environments. An environment,
Γ ::= x1:T1, . . . , xn:Tnis a �nite partial map from variables to types.As usual, there is one typing rule for eah syntati form plus the rule t-sub for sub-sumption, whih allows the use of subtyping. Upwards and downwards role modi�ers haveseparate rules, disussed below. The typing rules for the two systems di�er only in their no-tion of subtyping and in the side ondition on t-mod-dn; we disuss the latter in Example 15.(t-base)

Γ ⊢α bv : Base

(t-var)
Γ, x:T ,Γ′ ⊢α x : T

(t-sub)
Γ ⊢α M : T

Γ ⊢α M : T ′
⊢α T <: T ′(t-abs)

Γ, x:T ⊢α M : S

Γ ⊢α λx.M : T � S
x /∈ dom(Γ)

(t-app)
Γ ⊢α M : T � S Γ ⊢α N : T

Γ ⊢α M N : S

(t-fix)
Γ ⊢α M : T � T

Γ ⊢α fix M : T(t-grd)
Γ ⊢α M : T

Γ ⊢α {A}[M℄ : {A}[T]

(t-hk)
Γ ⊢α M : {A}[T]

Γ ⊢α check M : 〈A〉[T](t-unit)
Γ ⊢α M : T

Γ ⊢α [M℄ : 〈000〉[T]

(t-bind)
Γ ⊢α M : 〈A〉[T] Γ, x:T ⊢α N : 〈B〉[S]

Γ ⊢α let x= M;N : 〈A ⊔ B〉[S]
x /∈ dom(Γ)(t-mod-up)

Γ ⊢α M : 〈B〉[T]

Γ ⊢α ↑A(M) : 〈B ⊓ A⋆〉[T]

(t-mod-dn)
Γ ⊢α M : 〈B〉[T]

Γ ⊢α ↓A(M) : 〈B〉[T]
if α = 1 then A > BThe rules t-base, t-var, t-sub, t-abs, t-app and t-fix are standard. For example,the identity funtion has the expeted typing, ⊢α λx.x : T � T, for any T . Nonterminatingomputations an also be typed; for example, ⊢α fix (λx.x) : T, for any T .Any term may be injeted into a omputation type at the least role using t-unit. Thus,in the light of the earlier disussion on subtyping, if ⊢α M : T then, in the �rst system, [M℄inhabits 〈A〉[T] for every role A; in the seond system, the term inhabits only type 〈000〉[T],indiating that no heks are required to suessfully evaluate the value [M℄.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 11Computations may be ombined using t-bind4. If M inhabits 〈A〉[T] and N inhabits
〈B〉[S], then �M;N � inhabits 〈A ⊔ B〉[S]. More generally, we an dedue:

⊢α λx. let x′= x;x′ : 〈A〉[〈B〉[T]]� 〈A ⊔ B〉[T]In the �rst type system, this rule is motivated by noting that the role ontext A⊔B su�esto suessfully avoid role errors in the ombined omputation if A (resp. B) su�es for M(resp. N). For the seond type system, onsider a role C that is not bigger than A ⊔ B �thus C is not bigger than at least one of A,B. If it is not greater than A, by assumption ontyping of M , every omputation path of M in role ontext C leads to a role-error. Similarlyfor B. Thus, in role ontext C, every omputation path in the ombined omputationleads to a role error. Furthermore, using the earlier subtyping disussion, the sequene alsoinhabits 〈111〉[S] in the �rst system and 〈000〉[S] in the seond.The rule t-grd types basi values with their protetion level. The higher-order versionof {A}[℄ has the natural typing:
⊢α λx.{A}[x℄ : T � {A}[T]Reall that in the transition relation, check {A}[N℄ heks the role ontext against A. Thetyping rule t-hk mirrors this behavior by onverting the protetion level of values intoonstraints on role ontexts. For example, we have the typing:

⊢α λx.check x : {A}[T]� 〈A〉[T]In the speial ase of typing Γ ⊢α check {A}[N℄ : 〈A〉[T], we an further justify in the twosystems as follows. In terms of the �rst type system, the role ontext passes this hek if itis at least A. In terms of the seond type system, any role ontext that does not inlude Awill ause a role-error.Role modi�ers are treated by separate rules for upwards and downwards modi�ers.The rule for t-mod-up is justi�ed for the �rst type system as follows. Under assumptionthat B su�es to evaluate M without role-errors, onsider evaluation of ↑A(M) in roleontext B ⊓A⋆. This term ontributes A to role ontext yielding A⊔ (B ⊓A⋆) = (A⊔B)⊓
(A ⊔ A⋆) = B for the evaluation of M . For the seond type system, assume that if a role isnot greater than B, then the evaluation of N leads to a role error. Consider the evaluationof ↑A(M) in a role ontext C that does not exeed B ⊓ A⋆. Then, the evaluation of Mproeeds in role ontext C ⊔ A whih does not exeed B and hene auses a role error byassumption.The rule for t-mod-dn is justi�ed for the �rst type system as follows. Under assumptionthat B su�es to evaluate M without role-errors, and A is greater than B onsider evaluationof ↓A(M) in role ontext B. This term alters role-ontext B to B⊓A = B for the evaluationof M , whih su�es. For the seond type system, assume that if a role is not greater than
B, then the evaluation of N leads to a role error. Consider the evaluation of ↓A(M) in arole ontext C that does not exeed B. Then, C ⊓A ertainly does not exeed B and so theevaluation of M auses a role error by assumption.Example 16 and Example 15 disuss alternate presentations for the rules of typing forthe role modi�ers.In stating the results, we distinguish omputations from other types. Lemma 10 holdstrivially from the de�nitions.4The distintion between our system and dependeny-based systems an be see in t-bind, whih in d[1, 2, 30℄ states that ⊢ let x= M;N : 〈B〉[S] if B > A, where ⊢ M : 〈A〉[T] and x:T ⊢ N : 〈B〉[S].

12 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYDe�nition 9. Role A dominates type T (notation A ≥ T) if T is not a omputation type,or T is a omputation type 〈B〉[S] and A > B.Lemma 10. (a) If A > B and B ≥ T then A ≥ T . (b) If ⊢1 T <: S and A ≥ S then A ≥ T .() If ⊢2 T <: S and A ≥ T then A ≥ S.The following theorems formalize the guarantees provided by the two systems. Theproofs may be found in Setion 6.Theorem 11. If ⊢1 M : T and A ≥ T , then either A ⊲ M →ω or A ⊲ M ։ V for some V .Theorem 12. If ⊢2 M : T and A 6≥ T , then either A ⊲ M →ω or there exists N suh that
A ⊲ M ։ N and A ⊲ N err.For the �rst system, we have a standard type-safety theorem. For the seond system,suh a safety theorem does not hold; for example ⊢2 check {111}[unit℄ : 〈111〉[Unit] and 111 ⊲

check {111}[unit℄ → [unit℄ but 6⊢2 [unit℄ : 〈111〉[Unit]. Instead Theorem 12 states that a termrun with an insu�ient ontext role is guaranteed either to diverge or to produe a roleerror.3.3. Simple examples.Example 13. We illustrate ombinators of the language with some simple funtions. Theidentity funtion may be given its usual type:
⊢α λx.x : T � TThe unit of omputation an be used to reate a omputation from any value:

⊢α λx.[x℄ : T � 〈000〉[T]The let onstrut evaluates a omputation. In this following example, the result of theomputation x′ must itself be a omputation beause it is returned as the result of thefuntion:
⊢α λx. let x′= x; x′ : 〈A〉[〈B〉[T]]� 〈A ⊔ B〉[T]The guard onstrut reates a guarded term:

⊢α λx.{A}[x℄ : T� {A}[T]The hek onstrut disharges a guard, resulting in a omputation:
⊢α λx.check x : {A}[T]� 〈A〉[T]The upwards role modi�er redues the role required by a omputation.

⊢α λx.↑B(x) : 〈A〉[T]� 〈A ⊓ B⋆〉[T]The �rst typing system requires that any omputation performed in the ontext of a down-ward role modi�er ↓B() must not require more than role B:
⊢α λx.↓B(x) : 〈A〉[T]� 〈A〉[T] (where B > A if α = 1)In the �rst type system, the last two judgments may be generalized as follows:

⊢1 λx.ρ(x) : 〈ρLA M〉[T]� 〈A〉[T]Thus a role modi�er may be seen as transforming a omputation that requires the modi�erinto one that does not. For further disussion see Example 16.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 13Example 14 (Booleans). The Churh Booleans, tru
△

= λt.λf. t and fls
△

= λt.λf. f, illustratethe use of subtyping. In the two systems, these may be given the following types.
Bool1 △

= 〈A〉[T]� 〈B〉[T]� 〈A ⊔ B〉[T] ⊢1 tru, fls : Bool1
Bool2 △

= 〈A〉[T]� 〈B〉[T]� 〈A ⊓ B〉[T] ⊢2 tru, fls : Bool2These types re�et the intuitions underlying the two type systems. The �rst type systemre�ets a �maximum over all paths� typing, whereas the seond re�ets a �minimum over allpaths� typing. The onditional may be interpreted using the following derived rules.
Γ ⊢1 L : Bool1 Γ ⊢1 M : 〈A〉[T] Γ ⊢1 N : 〈B〉[T]

Γ ⊢1 if L then M else N : 〈A ⊔ B〉[T]

Γ ⊢2 L : Bool2 Γ ⊢2 M : 〈A〉[T] Γ ⊢2 N : 〈B〉[T]

Γ ⊢2 if L then M else N : 〈A ⊓ B〉[T]
�Example 15 (t-mod-dn). The side ondition on t-mod-dn does not e�et typability inseond typing system, but may unneessarily derease the auray of the analysis, as anbe seen from the following onrete example.Let M,N be terms of type 〈B〉[T].

Γ ⊢α M : 〈B〉[T]

Γ ⊢α M : 〈A ⊓ B〉[T]
(t-sub)

Γ ⊢α ↓A(M) : 〈A ⊓ B〉[T]
(t-mod-dn)With the side ondition, the term let x= ↓A(M);N would have to be given a type of theform 〈A⊓B〉[T], even though both M and N have type 〈B〉[T]. Without the side ondition,the �better� type 〈B〉[T] may be given to the entire let expression.Example 16 (Alternative rule for role modi�ers). In the �rst typing system, t-mod-upand t-mod-dn may be replaed with the following rule, whih we all t-mod-*.

Γ ⊢1 M : 〈ρLB M〉[T]

Γ ⊢1 ρ(M) : 〈B〉[T]Consider ρ = ↑A. Beause C > (A ⊔ C) ⊓ A⋆, the following are equivalent.
Γ ⊢1 M : 〈A ⊔ C〉[T]

Γ ⊢1 ↑A(M) : 〈C〉[T]
(t-mod-*) Γ ⊢1 M : 〈A ⊔ C〉[T]

Γ ⊢1 ↑A(M) : 〈(A ⊔ C) ⊓ A⋆〉[T]
(t-mod-up)

Γ ⊢1 ↑A(M) : 〈C〉[T]
(t-sub)Beause (D ⊓ A⋆) ⊔ A > D, the following are equivalent.

Γ ⊢1 M : 〈D〉[T]

Γ ⊢1 M : 〈(D ⊓ A⋆) ⊔ A〉[T]
(t-sub)

Γ ⊢1 ↑A(M) : 〈D ⊓ A⋆〉[T]
(t-mod-*) Γ ⊢1 M : 〈D〉[T]

Γ ⊢1 ↑A(M) : 〈D ⊓ A⋆〉[T]
(t-mod-up)Consider ρ = ↓A. Beause A > A ⊓ C and C > A ⊓ C, the following are equivalent.

Γ ⊢1 M : 〈A ⊓ C〉[T]

Γ ⊢1 ↓A(M) : 〈C〉[T]
(t-mod-*) Γ ⊢1 M : 〈A ⊓ C〉[T]

Γ ⊢1 ↓A(M) : 〈A ⊓ C〉[T]
(t-mod-dn)

Γ ⊢1 ↓A(M) : 〈C〉[T]
(t-sub)

14 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYSuppose A > D. Then D ⊓ A > D, and the following are equivalent.
Γ ⊢1 M : 〈D〉[T]

Γ ⊢1 M : 〈D ⊓ A〉[T]
(t-sub)

Γ ⊢1 ↓A(M) : 〈D〉[T]
(t-mod-*) Γ ⊢1 M : 〈D〉[T]

Γ ⊢1 ↓A(M) : 〈D〉[T]
(t-mod-dn) �Example 17 (A sublanguage). The following proper sublanguage is su�ient to enode theomputational lambda alulus. Here values and terms are disjoint, with values assignedvalue types T and terms assigned omputation types 〈A〉[T].

T, S ::= Base | T � 〈A〉[S] | {A}[T]

V,U,W ::= bv | x | λx.M | {A}[V ℄
M,N,L ::= [V ℄ | V U | fix V | check V | let x= M;N | ρ(M)Enoding the Churh Booleans in this sublanguage is slightly more ompliated than inExample 14; tru and fls must aept thunks of type Unit� 〈A〉[S] rather than the simplerbloks of type 〈A〉[S].Operations on base values that have no omputational e�et are plaed in the languageof values rather than the language of terms. The resulting terms may be simpli�ed at anytime without a�eting the omputation (e.g., [1+2 == 3℄ may be simpli�ed to [tru℄).Example 18 (Relation to onferene version). The language presented here is muh simplerthan that of the onferene version of this paper [14℄. In partiular, the onferene versionollapsed guards and abstrations into a single form {A}[λx.M℄ with types of the form

T � {A ⊲ B}[S], whih translates here as {A}
[

T � 〈B〉[S]
]: the immediate guard of theabstration is A, whereas the e�et of applying the abstration is B.In addition, the onferene version ollapsed role modi�ation and appliation: theappliation ↓C V U �rst heked the guard of V , then performed the appliation in aontext modi�ed by ↓C. In the urrent presentation, this translates as � let x= check V ;

↓C(x U).� 4. ExamplesIn this setion we assume nullary role onstrutors for user roles, suh as Alice, Bob,
Charlie, Admin, and Daemon.Example 19 (ACLs). Consider a read-only �lesystem proteted by Aess Control Lists(ACLs). One an model suh a system as:

filesystem
△

= λname. if name=="file1" then check {Admin}["data1"℄
else if name=="file2" then check {Alice ⊓ Bob}["data2"℄
else ["error: file not found"℄If Admin ≥ Alice ⊓ Bob then ode running in the Admin role an aess both �les:

Admin ⊲ filesystem "file1" ։ check {Admin}["data1"℄ ։ ["data1"℄
Admin ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄ ։ ["data2"℄If Alice 6≥ Admin then ode running as Alice annot aess the �rst �le but an aess theseond:
Alice ⊲ filesystem "file1" ։ check {Admin}["data1"℄ err

Alice ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄ ։ ["data2"℄

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 15Finally, if Charlie 6≥ Alice ⊓ Bob then ode running as Charlie annot aess either �le:
Charlie ⊲ filesystem "file1" ։ check {Admin}["data1"℄ err

Charlie ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄ errThe �lesystem ode an be assigned the following type, meaning that a aller mustpossess a role from eah of the ACLs in order to guarantee that aess heks will not fail.If, in addition, Admin ≥ Alice ⊓ Bob then the �nal role is equal to Admin.
⊢1 filesystem : String� 〈Admin ⊔ (Alice ⊓ Bob) ⊔ 000〉[String]In the above type, the �nal role 000 arises from the �unknown �le� branh that does not requirean aess hek. The lak of an aess hek explains the weaker ⊢2 type:
⊢2 filesystem : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ 000〉[String]This type indiates that filesystem has the potential to expose some information to unprivi-leged allers with role Admin⊓ (Alice⊓Bob)⊓000 .

= 000, perhaps ausing the ode to be �aggedfor seurity review.Example 20 (Web server). Consider a web server that provides remote aess to the �lesys-tem desribed above. The web server an use the role assigned to a aller to aess the�lesystem (unless the web server's aller withholds its role). To prevent an attaker deter-mining the non-existene of �les via the web server, the web server fails when an attempt ismade to aess an unknown �le unless the Debug role is ativated.
webserver

△

= λname. if name=="file1" then filesystem name

else if name=="file2" then filesystem name

else check {Debug}["error: file not found"℄For example, ode running as Alie an aess "file2" via the web server:
Alice ⊲ webserver "file2" ։ filesystem "file2" ։ ["data2"℄The aess hek in the web server does prevent the ��le not found� error message leakingunless the Debug role is ative, but, unfortunately, it is not possible to assign a role stritlygreater than 000 to the web server using the seond type system. The filesystem type does notreord the di�erent roles that must be heked depending upon the �lename argument.

⊢2 webserver : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ 000〉[String] (derivable)
6⊢2 webserver : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ Debug〉[String] (not derivable) �Example 21 illustrates how the Domain-Type Enforement (dte) aess ontrol meha-nism [6, 31℄, found in Seurity-Enhaned Linux (selinux) [17℄, an be modelled in λ-RBAC.Further disussion of the relationship between rba and dte an be found in [11, 13℄.Example 21 (Domain-Type Enforement). The dte aess ontrol mehanism grants ordenies aess requests aording to the urrent domain of running ode. The urrent domainhanges as new programs are exeuted, and transitions between domains are restrited inorder to allow, and also fore, ode to run with an appropriate domain. The restritions upondomain transitions are based upon a dte type assoiated with eah program to exeute. Forexample, the dte poliy in [31℄ only permits transitions from a domain for daemon proessesto a domain for login proesses when exeuting the login program, beause ode running inthe login domain is highly privileged. This e�et is ahieved by allowing transitions from

16 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYthe daemon domain to the login domain only upon exeution of programs assoiated witha partiular dte type, and that dte type is assigned only to the login program.The essene of dte an be aptured in λ-RBAC, using roles to model both domains anddte types, and the ontext role to model the urrent domain of a system. We start bybuilding upon the ode fragment λg.λy.B(g y), disussed in Example 7, that allows afuntion heking role B to be exeuted in the ontext of ode running at a di�erent role.We have the typing (for emphasis we use extra parentheses that are not stritly neessarygiven the usual right assoiativity for the funtion type onstrutor):
⊢α λg.λy.B(g y) : (T � 〈B〉[S])� (T � 〈000〉[S])To aid readability, and �xing types T and S for the remainder of this example, de�ne:

R △

= R � (T � 〈000〉[S])So that the previous typing beomes:
⊢α λg.λy.B(g y) : T� 〈B〉[S]To restrit the use of the privileged funtion λg.λy.B(g y), it an be guarded by a role Eating as a dte type, where the assoiation of the dte type E with a funtion is modelledin the sequel by ode that an ativate role E. The guarded funtion an be typed as:

⊢α {E}[λg.λy.B(g y)℄ : {E}[T� 〈B〉[S]]We now de�ne a funtion domtrans<A, E, B> for a domain transition from domain (role)
A to domain (role) B upon exeution of a funtion assoiated with dte type (also a role)
E. The funtion �rst veri�es that the ontext role dominates A, and then permits useof the privileged funtion λg.λy.B(g y) by ode that an ativate role E. The funtion
domtrans<A, E, B> is de�ned by:

domtrans<A, E, B> △

= λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ xWe have the typing:
⊢α domtrans<A, E, B> : {E}[T � 〈B〉[S]]� (T � 〈A〉[S])The above type shows that domtrans<A, E, B> an be used to turn a funtion heking role

B into a funtion heking role A, but only when the role E is available�in ontrast to thetype (T � 〈B〉[S])� (T � 〈A〉[S]) that does not require E.In order to make use of domtrans<A, E, B>, we must also onsider ode that an ativate
E. We de�ne a funtion assign<E> that takes a funtion f and ativates E in order to aessthe privileged ode λg.λy.B(g y) from domtrans<A, E, B>. The funtion assign<E> isde�ned by:

assign<E> △

= λf.λx.λy. let g= E(check x);g f yAnd we have the typing:
⊢α assign<E> : (T � 〈B〉[S])� {E}[T � 〈B〉[S]]Therefore the funtional omposition of assign<E> and domtrans<A, E, B> has type:

(T � 〈B〉[S])� (T � 〈A〉[S])To show that in the presene of both assign<E> and domtrans<A, E, B>, ode running withontext A an exeute ode heking for role ontext B, we onsider the following redutions

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 17in role ontext A, where we take F
△

= λz.check {B}[unit℄ and underline terms to indiatethe redex:
domtrans<A, E, B> (assign<E> F) unit

= (λf.λx.check {A}[unit℄; f ({E}[λg.λy.B(g y)℄) x) (assign<E> F) unit

→ (λx.check {A}[unit℄; (assign<E> F) ({E}[λg.λy.B(g y)℄) x) unit

→ check {A}[unit℄; (assign<E> F) ({E}[λg.λy.B(g y)℄) unit

→ (assign<E> F) ({E}[λg.λy.B(g y)℄) unit

=
(

(λf.λx.λy. let g= E(check x);g f y) F
)

({E}[λg.λy.B(g y)℄) unit

→ (λx.λy. let g= E(check x);g F y) ({E}[λg.λy.B(g y)℄) unit

→ (λy. let g= E(check {E}[λg.λy.B(g y)℄);g F y) unit

→ let g= E(check {E}[λg.λy.B(g y)℄);g F unit

→ let g= E([λg.λy.B(g y)℄);g F unit

։ let g= [λg.λy.B(g y)℄; g F unit

→ (λg.λy.B(g y)) F unit

→ (λy.B(F y)) unit

→ B(F unit)
= B((λz.check {B}[unit℄) unit)
→ B(check {B}[unit℄)
→ B([unit℄)
։ [unit℄The strength of dte lies in the ability to fator aess ontrol poliies into two ompo-nents: the set of permitted domain transitions and the assignment of dte types to ode.We illustrate this by adapting the aforementioned login example from [31℄ to λ − RBAC. Inthis example, the dte mehanism is used to fore every invoation of user ode (runningat role User) from daemon ode (running at role Daemon) to our via trusted login ode(running at role Login). This is ahieved by providing domain transitions from Login to

User, and Daemon to Login, but no others. Moreover, ode permitted to run at Login mustbe assigned dte type LoginEXE, and similarly for User and UserEXE. Thus a full programrunning daemon ode M has the following form, where neither M nor N ontain diret rightsampli�ation.
let dtLoginToUser= domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= domtrans<Daemon, LoginEXE, Login>;
let shell= assign<UserEXE> (λ.M);
let login= assign<LoginEXE> (λpwd. if pwd=="seret" then dtLoginToUser shell unit else . . .);
Daemon(N)Beause login provides the sole gateway to the role User, the daemon ode N must providethe orret password in order to exeute the shell at User (in order to aess resoures thatare available at role User but not at role Daemon). In addition, removal of the domaintransition dtDaemonToLogin makes it impossible for the daemon ode to exeute any odeat User.

18 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELY5. Controlling rights amplifiationExample 22. Suppose that M ontains no diret rights ampli�ation, that is, no subtermsof the form ↑A(·). Then, in
let priv= [λx.↑A(V x)℄; ↓User(M)we may view V as a Trusted Computing Base (tb) � a privileged funtion whih mayesalate rights � and view M as restrited user ode. The funtion priv is an entry point tothe tb whih is aessible to user ode; that is, user ode is exeuted at the restrited role

User, and rights ampli�ation may only our through invoation of priv.Non-trivial programs have larger tbs with more entry points. As the size of the tbgrows, it beomes di�ult to understand the seurity guarantees o�ered by a system whenrights ampli�ation is unonstrained, even if only in the tb. To manage this omplexity,one may enfore a oding onvention that requires rights inreases be justi�ed by earlierheks. As an example, onsider the following, where amplify is a unary role onstrutor.
let at<A>= [λf.check {amplify(A)}[λx.↑A(f x)℄℄;
let priv= at<A> V;
↓User(M)In a ontext with role amplify(A), this redues (using r-bind, r-app and r-hk) to

let priv= [λx.↑A(V x)℄; ↓User(M)In a ontext without role amplify(A), evaluation beomes stuk when attempting to exeuter-hk. The privileged funtion returned by at<A> (whih performs rights ampli�ation for
A) is justi�ed by the hek for amplify(A) on any aller of at<A>.One may also wish to expliitly prohibit a term from diret ampli�ation of some right
B; with suh a onvention in plae, this an be ahieved using the role modi�er ↓amplify(B).One may formalize the preeding example by introduing the unary role onstrutoramplify, where amplify(A) stands for the right to provide the role A by storing ↑A in ode.We require that amplify distribute over ⊔ and ⊓ and obey the following absorption laws:

A ⊔ amplify(A)
.
= amplify(A) A ⊓ amplify(A)

.
= AThus amplify(A) > A for any role A.To distinguish justi�ed use of role modi�ers from unjusti�ed use, we augment the syntaxwith heked role modi�ers.

M,N ::= · · · | ρA(M)Whenever a hek is performed on role M we mark role modi�ers in the onsequent toindiate that these modi�ers have been justi�ed by a hek. De�ne the funtion markAhomomorphially over all terms but for role modi�ers:markA(ρ(M)) = ρA(markA(M))markA(ρB(M)) = ρA⊔B(markA(M))Modify the redution rule for check as follows.
A ⊲ check {B}[M℄ → [markB(M)℄ A > B

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 19Thus, the hek in the example above will exeute as follows.amplify(A) ⊲ check {amplify(A)}[λx.↑A(f x)℄ → λx.↑Aamplify(A)(f x)In the residual, the abstration ontains a heked role modi�er, indiating that the roleampli�ation has been provided by ode that had the right to do so.We now de�ne role modi�ation errors so that ↑AB(M) produes an error if B doesnot dominate amplify(A).
↑B(M) moderr ↑BC(M) moderr

C 6> amplify(B)

M moderr

M N moderr

M moderr

let x= M;N moderr

M moderr

check M moderr

M moderr

ρ(M) moderrUsing this augmented language, unjusti�ed rights ampli�ation is noted as an error. Toprevent suh errors, we modify the typing system to have judgments of the form Γ;C ⊢α M :
T , where C indiates the aumulated guards on a term whih must be disharged beforethe term may be exeuted; sine M is guarded by C, it may inlude subterms of the form
↑A(·) when C > amplify(A). In addition to adding rules for heked role modi�ers, wealso modify t-grd and t-mod-up. The rule t-mod-up ensures that any ampli�ation isjusti�ed by C. The rule t-grd allows guards to be used in heking guarded terms; the ruleis sound sine guarded terms must be heked before they are exeuted.(t-grd′)

Γ;C ⊔ A ⊢α M : T

Γ;C ⊢α {A}[M℄ : {A}[T]

(t-mod-up′)
Γ;C ⊢α M : 〈B〉[T]

Γ;C ⊢α ↑A(M) : 〈B ⊓ A⋆〉[T]
C > amplify(A)(t-mod-dn-heked)

Γ;C ⊢α M : 〈B〉[T]

Γ;C ⊢α ↓AD(M) : 〈B〉[T]
if α = 1then A > B

(t-mod-up-heked)
Γ;C ⊢α M : 〈B〉[T]

Γ;C ⊢α ↑AD(M) : 〈B ⊓ A⋆〉[T]
C ⊔ D > amplify(A)One may not assume that top level terms have been guarded; therefore, let Γ ⊢α M : T beshorthand for Γ;000 ⊢α M : T .Example 23. The funtions domtrans and assign from Example 21 are not typable usingthis more restritive system. Reall the de�nitions:

domtrans<A, E, B> △

= λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ x

assign<E> △

= λf.λx.λy. let g= E(check x);g f yThe ampli�ation of B in domtrans is not justi�ed; neither is the ampli�ation of E in assign.The required form is:
domtrans<A, E, B> △

= {amplify(B)}[λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ x℄
assign<E> △

= {amplify(E)}[λf.λx.λy. let g= E(check x);g f y℄

20 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYThe login example must now be modi�ed in order to disharge the guards. Again themodi�ations are straightforward:
let dtLoginToUser= check domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= check domtrans<Daemon, LoginEXE, Login>;
let assignXUser= check assign<UserEXE>;
let assignXLogin= check assign<LoginEXE>;
let shell= assignXUser (λ.M);
let login= assignXLogin (λpwd. if pwd=="seret" then dtLoginToUser shell unit else . . .);
Daemon(N)Thus modi�ed, the program types orretly, but will only exeute in a ontext that dominatesthe four roles amplify(User), amplify(UserEXE), amplify(Login), and amplify(LoginEXE).This ensures that domain transitions and assignments are reated by authorized ode.Proposition 25 establishes that the typing system is su�ient to prevent role modi�a-tion errors. The proof of Proposition 25 relies on the following lemma, whih establishes therelation between typing and mark .Lemma 24. If Γ;C ⊔ A ⊢α M : T then Γ;C ⊢α markA(M) : T .Proof. By indution on the derivation of the typing judgment, appealing to the de�nitionof mark .Proposition 25. If ⊢α M : T and A ⊲ M ։ N then ¬(N moderr)Proof Sketh. That ¬(M moderr) follows immediately from the de�nition of role modi�-ation error, ombined with t-mod-up′ and t-mod-up-heked. It remains only to showthat typing is preserved by redution. We prove this for the type systems of Setion 3 inthe next setion. The proof extends easily to the type system onsidered here. The onlywrinkle is the evaluation rule for check, whih is handled using the previous lemma.6. Proof of Type Safety TheoremsThe proofs for the �rst and seond systems are similar, both relying on well-studiedtehniques [23℄. We present proofs for the seond system, whih is the more hallenging ofthe two.De�nition 26 (Compatibility). Types T and S are ompatible (notation T ≈ S) if T = Sor T = 〈A〉[R] and S = 〈B〉[R], for some type R.The following lemmas have straightforward indutive proofs.Lemma 27 (Compatibility). If ⊢α T <: T ′ then T ≈ S i� T ′ ≈ S.Lemma 28 (Substitution). If Γ ⊢α M : T and Γ, x : T ⊢α N : S, then Γ ⊢α N{x := M} : S.Lemma 29 (Bound Weakening). If Γ, x:S ⊢α M : T and ⊢α S′ <: S, then Γ, x : S′ ⊢α M : T .

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 21Lemma 30 (Canonial Forms).(1) If ⊢2 V : T � S then V has form (λx.M) where x:T ⊢2 M : S.(2) If ⊢2 V : 〈A〉[T] then V has form [M℄ where ⊢2 M : T and A = 000.(3) If ⊢2 V : {A}[T] then V has form {B}[M℄ where ⊢2 M : T and B > A.Proof.(1) By indution on derivation of ⊢2 V : T � S. The only appliable ases are t-sub andt-abs.(t-sub) We know ⊢2 V : T ′�S′, where ⊢2 V : T �S and ⊢2 T �S <: T ′�S′, so ⊢2 T ′ <: Tand ⊢2 S <: S′. By the IH, V has form (λx.M) where x:T ⊢2 M : S. By Lemma 29and subsumption, x:T ′ ⊢2 M : S′.(t-abs) Immediate.(2) By indution on derivation of ⊢2 V : 〈A〉[T]. The only appliable ases are t-sub andt-unit.(t-sub) We know ⊢2 V : 〈A′〉[T ′], where ⊢2 V : 〈A〉[T] and ⊢2 〈A〉[T] <: 〈A′〉[T ′], so
⊢2 T <: T ′ and A > A′. By the IH, V has form [M℄ where ⊢2 M : T and A = 000, so
A′ = 000. By subsumption, ⊢2 M : T ′.(t-unit) Immediate.(3) By indution on derivation of ⊢2 V : {A}[T]. The only appliable ases are t-sub andt-grd.(t-sub) We know ⊢2 V : {A′}[T ′], where ⊢2 V : {A}[T] and ⊢2 {A}[T] <: {A′}[T ′], so
⊢2 T <: T ′ and A > A′. By the IH, V has form {B}[M℄ where ⊢2 M : T and B > A,so B > A′. By subsumption, ⊢2 M : T ′.(t-grd) Immediate.Proposition 31 (Preservation). If ⊢2 M : T and A ⊲ M → N then there exists S suh that

S ≈ T and ⊢2 N : S and if A ≥ S then A ≥ T .Proof. By indution on the derivation of ⊢2 M : T . The indution hypothesis inludes thequanti�ation over A, N . For values, the result is trivial; thus we onsider only the rules fornon-values.(t-sub) We know ⊢2 M : T ′, where ⊢2 M : T and ⊢2 T <: T ′, and A ⊲ M → N . Applying theIH to ⊢2 M : T and A ⊲ M → N yields S suh that ⊢2 N : S and S ≈ T and if A ≥ Sthen A ≥ T . By Lemma 10, this extends to if A ≥ S then A ≥ T ′. In addition, byLemma 27, we have S ≈ T ′.(t-app) We know ⊢2 M N : T2, where ⊢2 M : T1 � T2 and ⊢2 N : T1, and A ⊲ M N → L.There are two subases depending on the redution rule used in A ⊲ M N → L.(M is a value) By Lemma 30, M = λx.M ′ and x:T1 ⊢2 M ′ : T2. The redution yields
L = M ′{x := N}. By Lemma 28, ⊢2 L : T2. The remaining requirements on T2 areimmediate.(M has a redution) Therefore A ⊲ M → M ′ and L = M ′ N . Applying the IH to
⊢2 M : T1�T2 and A ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈ T1�T2, whihimplies that S = T1 � T2. Hene ⊢2 L : T2. The remaining requirements on T2 areimmediate.(t-fix) We know ⊢2 fix M : T , where ⊢2 M : T � T and A ⊲ fix M → L. There are twosubases depending on the redution rule used in A ⊲ fix M → L.

22 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELY(M is a value) By Lemma 30, M = λx.M ′ and x:T ⊢2 M ′ : T . The redution yields
L = M ′{x := M}. By Lemma 28, ⊢2 L : T . The remaining requirements on T areimmediate.(M has a redution) Therefore A ⊲ M → M ′ and L = fix M ′. Applying the IH to
⊢2 M : T � T and A ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈ T � T , whihimplies that S = T � T . Hene ⊢2 L : T . The remaining requirements on T areimmediate.(t-hk) We know ⊢2 check M : 〈A1〉[T], where ⊢2 M : {A1}[T], and A ⊲ check M → L.There are two subases depending on the redution rule used in A ⊲ check M → L.(M is a value) By Lemma 30, M = {A2}[M ′℄ and ⊢2 M ′ : T and A2 > A1. Theredution yields L = [M ′℄ and from the redution we dedue A > A2, so A > A1always holds. We assign type ⊢2 L : 〈000〉[T], where 〈000〉[T] ≈ 〈A1〉[T], and we havealready shown that A > 000 implies A > A1.(M has a redution) Therefore A ⊲ M → M ′ and L = check M ′. Applying the IH to
⊢2 M : {A1}[T] and A ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈ {A1}[T],so S = {A1}[T]. Hene ⊢2 L : 〈A1〉[T]. The remaining requirements on 〈A1〉[T] areimmediate.(t-bind) We know ⊢2 let x= M;N : 〈A1 ⊔ A2〉[T2], where ⊢2 M : 〈A1〉[T1] and x:T1 ⊢2 N :

〈A2〉[T2], and A ⊲ let x=M;N → L. There are two subases depending on the redutionrule used in A ⊲ let x= M;N → L.(M is a value) By Lemma 30, M = [M ′℄ and ⊢2 M ′ : T1 and A1 = 000, so A1 ⊔ A2 = A2.The redution yields L = N{x := M ′}. By Lemma 28, ⊢2 L : 〈A2〉[T2]. The remainingrequirements on T2 are immediate.(M has a redution) Therefore A ⊲ M → M ′ and L = let x= M ′;N . Applying the IHto ⊢2 M : 〈A1〉[T1] and A ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈ 〈A1〉[T1]and if A ≥ S then A ≥ 〈A1〉[T1]. Hene S = 〈A3〉[T1], for some A3, and A > A3implies A > A1. We dedue ⊢2 L : 〈A3⊔A2〉[T2], where 〈A3⊔A2〉[T2] ≈ 〈A1⊔A2〉[T2].Finally, suppose A ≥ 〈A3 ⊔ A2〉[T2], i.e., A > A3 ⊔ A2, so A > A3 and A > A2. Bythe above, this entails A > A1, so A > A1 ⊔ A2. Therefore A ≥ 〈A1 ⊔ A2〉[T2], asrequired.(t-mod-up) We know ⊢2 ↑A1(M) : 〈A2⊓A⋆1〉[T], where ⊢2 M : 〈A2〉[T], and A ⊲ ↑A1(M) →
L. There are two subases depending on the redution rule used in A ⊲ ↑A1(M) → L.(M is a value) Therefore L = M and ⊢2 L : 〈A2〉[T], where 〈A2〉[T] ≈ 〈A2 ⊓ A⋆1〉[T]. ByLemma 30, M = [M ′℄ and ⊢2 M ′ : T and A2 = 000, and the remaining requirement on

〈A2〉[T], that A ≥ 〈A2〉[T] implies A ≥ 〈A2 ⊓ A⋆1〉[T], is immediate.(M has a redution) Therefore ↑A1LA M ⊲ M → M ′ and L = ↑A1(M ′). Applying theIH to ⊢2 M : 〈A2〉[T] and ↑A1LA M ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈
〈A2〉[T], so S = 〈A3〉[T] for some A3, and if ↑A1LA M ≥ S then ↑A1LA M ≥ 〈A2〉[T],i.e., A ⊔ A1 > A3 implies A ⊔ A1 > A2. We have ⊢2 ↑A1(M ′) : 〈A3 ⊓ A⋆1〉[T] and
〈A3 ⊓ A⋆1〉[T] ≈ 〈A2 ⊓ A⋆1〉[T]. Finally, if A ≥ 〈A3 ⊓ A⋆1〉[T], then A > A3 ⊓ A⋆1, so
A ⊔ A1 > (A3 ⊓ A⋆1) ⊔ A1 = (A3 ⊔ A1) ⊓ 111 = A3 ⊔ A1. Hene A ⊔ A1 > A3, so
A ⊔ A1 > A2, and A ⊓ A⋆1 = (A ⊓ A⋆1) ⊔ 000 = (A ⊔ A1) ⊓ A⋆1 > A2 ⊓ A⋆1. Therefore
A > A2 ⊓ A⋆1 and A ≥ 〈A2 ⊓ A⋆1〉[T], as required.(t-mod-dn) We know ⊢2 ↓A1(M) : 〈A2〉[T], where ⊢2 M : 〈A2〉[T], and A ⊲ ↓A1(M) → L.There are two subases depending on the redution rule used in A ⊲ ↓A1(M) → L.(M is a value) Therefore L = M and ⊢2 L : 〈A2〉[T], and we are done.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 23(M has a redution) Therefore ↓A1LA M ⊲ M → M ′ and L = ↓A1(M ′). By A > ↓A1LA Mand Lemma 4, we have A ⊲ M → M ′. Applying the IH to ⊢2 M : 〈A2〉[T] and
A ⊲ M → M ′ yields S suh that ⊢2 M ′ : S and S ≈ 〈A2〉[T], so S = 〈A3〉[T] for some
A3, and if A ≥ S then A ≥ 〈A2〉[T]. Hene ⊢2 ↓A1(M ′) : 〈A3〉[T], whih ompletesthe subase.Corollary 32. If ⊢2 M : T and A ⊲ M ։ V , then A ≥ T .Proof. By indution on the length of the redution sequene A ⊲ M ։ V . For the basease, M = V and Lemma 30 implies that A ≥ T , beause every non-omputation typeis dominated by any role, and in a omputation type T = 〈B〉[S] Lemma 30 tells us that

B = 000. For the indutive step, there exists N suh that A ⊲ M → N and A ⊲ N ։ V . ByProposition 31, there exists S suh that ⊢2 N : S and if A ≥ S then A ≥ T . Applying theIH to ⊢2 N : S and A ⊲ N ։ V yields A ≥ S, hene A ≥ T as required.Proposition 33 (Progress). For all A, if ⊢2 M : T then either M is a value, A ⊲ M err,or there exists N suh that A ⊲ M → N .Proof. By indution on the derivation of ⊢2 M : T . We need only onsider the ases when
M is not a value.(t-sub) We know ⊢2 M : T ′, where ⊢2 M : T and ⊢2 T <: T ′. Immediate by the IH.(t-app) We know ⊢2 M N : T2, where ⊢2 M : T1 � T2 and ⊢2 N : T1. Apply the IH to

⊢2 M : T1 � T2 and role A. If M is a value, then, by Lemma 30, M has form (λx.L), so
A ⊲ M N → L{x := N}. If A ⊲ M err, then A ⊲ M N err. Finally, if A ⊲ M → L,then A ⊲ M N → L N .(t-fix) We know ⊢2 fix M : T , where ⊢2 M : T�T . Apply the IH to ⊢2 M : T�T and role A.If M is a value, then, by Lemma 30, M has form (λx.L), so A ⊲ fix M → L{x := (λx.L)}.If A ⊲ M err, then A ⊲ fix M err. Finally, if A ⊲ M → L, then A ⊲ fix M → fix L.(t-hk) We know ⊢2 check M : 〈A1〉[T], where ⊢2 M : {A1}[T]. Apply the IH to ⊢2 M :
{A1}[T] and role A. If M is a value, then, by Lemma 30, there exists B, L suh that
M = {B}[L℄, so either A ⊲ check M → [L℄ or A ⊲ check M err depending on whether
A > B holds or not. If A ⊲ M err, then A ⊲ check M err. Finally, if A ⊲ M → L,then A ⊲ check M → check L.(t-bind) We know ⊢2 let x= M;N : 〈A1 ⊔ A2〉[T2], where ⊢2 M : 〈A1〉[T1] and x:T1 ⊢2
N : 〈A2〉[T2]. Apply the IH to ⊢2 M : 〈A1〉[T1] and role A. If M is a value, then, byLemma 30, M has form [L℄, so A ⊲ let x= M;N → N{x := L}. If A ⊲ M err, then
A ⊲ let x= M;N err. Finally, if A ⊲ M → L, then A ⊲ let x= M;N → let x= L;N .(t-mod-up) We know ⊢2 ↑A1(M) : 〈A2 ⊓ A⋆1〉[T], where ⊢2 M : 〈A2〉[T]. Apply the IHto ⊢2 M : 〈A2〉[T] and role ↑A1LA M. If M is a value, then A ⊲ ↑A1(M) → M . If
↑A1LA M ⊲ M err, then A ⊲ ↑A1(M) err. Finally, if ↑A1LA M ⊲ M → L, then
A ⊲ ↑A1(M) → ↑A1(L).(t-mod-dn) We know ⊢2 ↓A1(M) : 〈A2〉[T], where ⊢2 M : 〈A2〉[T]. Apply the IH to
⊢2 M : 〈A2〉[T] and role ↓A1LA M. If M is a value, then A ⊲ ↓A1(M) → M . If
↓A1LA M ⊲ M err, then A ⊲ ↓A1(M) err. Finally, if ↓A1LA M ⊲ M → L, then
A ⊲ ↓A1(M) → ↓A1(L).Theorem (12). If ⊢2 M : T and A 6≥ T , then either A ⊲ M →ω or there exists N suh that

A ⊲ M ։ N and A ⊲ N err.Proof. We use a oindutive argument to onstrut a redution sequene that is either in�niteor terminates with a role hek failure. When ⊢2 M : T and A 6≥ T , we know that M is

24 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYnot a value by Lemma 30. By Proposition 33, either A ⊲ M err or there exists N suhthat A ⊲ M → N . In the former ase, we are done. In the latter ase, using Proposition 31,there exists S suh that ⊢2 N : S and if A ≥ S then A ≥ T . However, we know that A 6≥ T ,so A 6≥ S, as required. 7. ConlusionsThe fous of this paper is programmati approahes, suh as jaas/.net, that use rba.From a software engineering approah to the design of omponents, rba failitates a sepa-ration of onerns: the design of the system is arried out in terms of a role hierarhy withan assoiated assignment of permissions to roles, whereas the atual assignment of users toroles takes plae at the time of deployment.We have presented two methods to aid the design and use of omponents that inludesuh aess ontrol ode. The �rst � admittedly standard � tehnique enables users ofode to dedue the role at whih ode must be run. The main use of this analysis is tooptimize ode by enabling the removal of some dynami heks. The seond � somewhatmore novel � analysis alulates the role that is veri�ed on all exeution paths. Thisanalysis is potentially useful in validating arhitetural seurity requirements by enablingode designers to dedue the protetion guarantees of their ode.We have demonstrated the use of these methods by modeling Domain Type Enfore-ment, as used in SELinux. As future work, we will explore extensions to role polymorphismand reursive roles following the tehniques of [8, 4℄.AknowledgmentsThe presentation of the paper has greatly improved thanks to the omments of thereferees. Referenes[1℄ M. Abadi. Aess ontrol in a ore alulus of dependeny. SIGPLAN Not., 41(9):263�273, 2006.[2℄ M. Abadi, A. Banerjee, N. Heintze, and J. G. Rieke. A ore alulus of dependeny. In POPL '99,pages 147�160. ACM Press, 1999.[3℄ M. Abadi, G. Morrisett, and A. Sabelfeld. Language-based seurity. J. Funt. Program., 15(2):129, 2005.[4℄ R. M. Amadio and L. Cardelli. Subtyping reursive types. ACM TOPLAS, 15(4):575�631, 1993.[5℄ S. Barker and P. J. Stukey. Flexible aess ontrol poliy spei�ation with onstraint logi program-ming. ACM Trans. Inf. Syst. Seur., 6(4):501�546, 2003.[6℄ W. E. Boebert and R. Y. Kain. A pratial alternative to hierarhial integrity poliies. In CSS '85,1985.[7℄ C. Braghin, D. Gorla, and V. Sassone. A distributed alulus for role-based aess ontrol. In CSFW,pages 48�60, 2004.[8℄ M. Brandt and F. Henglein. Coindutive axiomatization of reursive type equality and subtyping. Fun-dam. Inf., 33(4):309�338, 1998.[9℄ S. Chong and A. C. Myers. Seurity poliies for downgrading. In CCS '04, pages 198�209, 2004.[10℄ A. Compagnoni, P. Garralda, and E. Gunter. Role-based aess ontrol in a mobile environment. InSymposium on Trustworthy Global Computing, 2005.[11℄ D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Aess Control. Computer SeuritySeries. Arteh House, 2003.[12℄ D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standardfor role-based aess ontrol. ACM Trans. Inf. Syst. Seur., 4(3):224�274, 2001.

λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 25[13℄ J. Ho�man. Implementing RBAC on a type enfored system. In Computer Seurity Appliations (AC-SAC '97), pages 158�163, 1997.[14℄ R. Jagadeesan, A. Je�rey, C. Pither, and J. Riely. λ-RBAC: Programming with role-based aessontrol. In ICALP '06, volume 4052 of Leture Notes in Computer Siene, pages 456�467. Springer,2006.[15℄ S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple aessontrol poliies. ACM Trans. Database Syst., 26(2):214�260, 2001.[16℄ J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforement mehanisms for run-time seuritypoliies. Int. J. Inf. Se., 4(1-2):2�16, 2005.[17℄ P. A. Losoo and S. D. Smalley. Meeting ritial seurity objetives with Seurity-Enhaned Linux.In Ottawa Linux Symposium, 2001.[18℄ S. Malhotra. Mirosoft .NET Framework Seurity. Premier Press, 2002.[19℄ J. C. Mithell. Programming language methods in omputer seurity. In POPL '01, pages 1�26, 2001.[20℄ A. C. Myers, A. Sabelfeld, and S. Zdanewi. Enforing robust delassi�ation. In CSFW, pages 172�186, 2004.[21℄ S. Osborn, R. Sandhu, and Q. Munawer. Con�guring role-based aess ontrol to enfore mandatoryand disretionary aess ontrol poliies. ACM Trans. Inf. Syst. Seur., 3(2):85�106, 2000.[22℄ J. S. Park, R. S. Sandhu, and G.-J. Ahn. Role-based aess ontrol on the web. ACM Trans. Inf. Syst.Seur., 4(1):37�71, 2001.[23℄ B. Piere. Types and Programming Languages. MIT Press, 2002.[24℄ A. Sabelfeld and A. C. Myers. Language-based information-�ow seurity. IEEE J. Seleted Areas inCommuniations, 21(1):5�19, Jan. 2003.[25℄ A. Sabelfeld and A. C. Myers. A model for delimited information release. In ISSS, pages 174�191, 2003.[26℄ R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based aess ontrol models. IEEE Computer,29(2), 1996.[27℄ F. B. Shneider, G. Morrisett, and R. Harper. A language-based approah to seurity. In Informatis�10 Years Bak, 10 Years Ahead, volume 2000 of LNCS, pages 86�101, 2000.[28℄ F. Siewe, A. Cau, and H. Zedan. A ompositional framework for aess ontrol poliies enforement. InFMSE '03, pages 32�42, 2003.[29℄ E. G. Sirer and K. Wang. An aess ontrol language for web servies. In SACMAT '02, pages 23�30,2002.[30℄ S. Tse and S. Zdanewi. Translating dependeny into parametriity. In ICFP, pages 115�125, 2004.[31℄ K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petka, D. L. Shermann, and K. A. Oostendorp.Con�ning root programs with Domain and Type Enforement (DTE). In USENIX Seurity Symposium,1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	1.1. An overview of our technical contributions
	1.2. Related work
	1.3. Rest of the paper

	2. The Language
	2.1. Roles
	2.2. Language overview
	2.3. Syntax
	2.4. Evaluation and role error

	3. Typing
	3.1. Subtyping
	3.2. Type systems
	3.3. Simple examples

	4. Examples
	5. Controlling rights amplification
	6. Proof of Type Safety Theorems
	7. Conclusions
	Acknowledgments
	References

