
Local Memory via Layout Randomization
Radha Jagadeesan

DePaul University
Corin Pitcher

DePaul University
Julian Rathke

University of Southampton
James Riely

DePaul University

Abstract—Randomization is used in computer security as a tool
to introduce unpredictability into the software infrastructure. In
this paper, we study the use of randomization to achieve the
secrecy and integrity guarantees for local memory.

We follow the approach set out by Abadi and Plotkin (2010).
We consider the execution of an idealized language in two
environments. In the strict environment, opponents cannot access
local variables of the user program. In the lax environment,
opponents may attempt to guess allocated memory locations and
thus, with small probability, gain access the local memory of
the user program. We model these environments using two novel
calculi: λµhashref and λµproberef.

Our contribution to the Abadi-Plotkin program is to enrich
the programming language with dynamic memory allocation, first
class and higher order references and call/cc-style control. On the
one hand, these enhancements allow us to directly model a larger
class of system hardening principles. On the other hand, the
class of opponents is also enhanced since our enriched language
permits natural and direct encoding of attacks that alter the
control flow of programs.

Our main technical result is a fully abstract translation (upto
probability) of λµhashref into λµproberef. Thus, in the presence
of randomized layouts, the opponent gains no new power from
being able to guess local references of the user program. Our
numerical bounds are similar to those of Abadi and Plotkin;
thus, the extra programming language features do not cause a
concomitant increase in the resources required for protection via
randomization.

I. INTRODUCTION

Randomization is used in computer security as a tool to
introduce unpredictability. The aim is to harden the system
against opponents who rely on precise deterministic assign-
ment of resources. Examples include the following.
• Random canary values, as used in StackGuard (Cowan et al.

1999), add random values to the stack just before the return
address. It is difficult for buffer overflow attacks to overwrite
the return address without changing the canary.

• Instruction code randomization, as in (Portokalidis and
Keromytis 2010; Kc et al. 2003; Barrantes et al. 2005), is
intended to make it difficult for an attacker to carry out code
injection attacks.

• Address space layout randomization (ASLR) randomizes the
locations of the base of the executable, stack, libraries, etc.
For example, the randomized location of libraries is intended
to make it difficult for the opponent to carry out “return-to-
libc” attacks. ASLR is implemented in systems such as PAX
and Vista. (Shacham et al. 2004) studies the effectiveness
of ASLR and also traces the history of discovery of the
technique.
In this paper, we focus on the use of randomization to

achieve secrecy and integrity guarantees for local memory

in the presence of an active opponent. Strackx et al. (2009)
argue that memory secrecy is essential even for traditional
probabilistic countermeasures, such as the ones above, to
provide the expected protection. For example, buffer overflow
vulnerabilities that permit the opponent to read the private
memory of a process can be exploited to weaken the protection
provided by ASLR and stack canaries.

Our work is inspired by Abadi and Plotkin (2010), who
studied the secrecy and integrity guarantees afforded by layout
randomization. Abadi and Plotkin describe an idealized source
language, which has the properties expected of local variables,
and the translation of this source into a target language where
addresses are represented by integers. They model opponents
as programming language contexts in both source and target
languages; thus, the opponent’s power to distinguish user
programs is modelled via contextual equivalence. Opponents
in the target language can attempt to guess allocated memory
locations and thus gain access to local memory of the user
program. In this environment, equivalences expected by the
programmer do not necessarily hold with deterministic layout.

Consider for the following programs.

new x; x:=0; unit new x; x:=1; unit (∗)

The programs (∗) are equivalent in the source language,
because an opponent context in the source language is unable
to see the different values assigned to the local variable x. With
a deterministic layout strategy, the programs are distinguished
in the target language, because an opponent context in the
target language can guess the location of the local variable x
and read its contents.

The secrecy and integrity of local references can be re-
covered in target-language contexts using randomized layout.
The idea is to use a larger address space than necessary (say
twice the maximum required by the user program) and to
allocate memory using a stochastic process. In such a scenario,
an opponent is unable to find the locations that store the
private user program data with high probability. For a suitably
large memory, Abadi and Plotkin show that their translation
preserves contextual equivalences with high probability; that
is, the opponent can only access local user variables with low
probability.

In this paper, we revisit the Abadi-Plotkin program in the
context of a programming language enriched with dynamic
memory allocation, first-class and higher-order references, and
control operators.

These enhancements allow us to model a larger class of
system hardening principles. For example, first class refer-
ences permit us to simply encode a model of instruction set

randomization.
The class of opponents is also enhanced. The control

operators allow a natural and direct encoding of gotos and
therefore of attacks that alter the control flow of programs.

In contrast with Abadi and Plotkin, we permit dynamic
growth in the opponent’s knowledge of user memory via first-
class references. However, we still do not address deallocation
nor contiguous memory allocation, which is required to model
arrays and structures.

Our view of memory allocation is rich enough to support the
reasoning involved in several of the traditional Meyer-Sieber
examples (1988), which illustrate the properties of local state
in higher order programs.

Concretely, the starting point for our source language is
the λµ-calculus of Parigot (1992), which adds the control
operator µ to the λ -calculus. The λµρ-calculus of Støvring
and Lassen (2007) adds second class local state to λµ . Let
λµref denote the obvious variation of λµρ using ML-style
references. In λµref, references are first class; the language
includes operations to allocate new references, to read and
write references and to distinguish references from other
values (since the language is untyped).

λµref is not suitable for modeling implementation tech-
niques using pointers. We introduce two new calculi which
address these shortcomings. The λµhashref-calculus extends
λµref with null and hashref . The λµproberef-calculus extends
λµhashref with proberef .

• null represents a “bad location” or “unallocated reference”.
• hashref allows testing the hash of a reference against any

possible reference hash.
• proberef allows access to any reference, reversing its hash.

The hashref operator models the ability of the attacker to
compare references. The proberef operator models the ability
to access memory locations that are local to the user programs
(and therefore should be inaccessible).

In our execution model for λµproberef, the attacker does
not know the layout of memory. For a memory of size N,
there are N! possible layouts. A nondeterministic interpretation
of proberef provides too much power to the attacker. For
example, the attacker is able to distinguish the programs
(∗) given above, since there always exist layouts where the
attacker’s guess is successful. Instead, we exploit randomized
layout to provide a probabilistic interpretation of proberef .
Roughly, a proberef succeeds with probability of 1

N and fails
with the probability of 1− 1

N . Failures are not fatal; an attacker
continues to execute after a failed proberef .

Our main technical result is a fully abstract translation (upto
probability) of λµhashref into λµproberef, thus recovering
the results of Abadi and Plotkin for a richer language. In
the presence of randomized layouts, the opponent gains no
new power from being able to guess local references of the
user program. Our results prescribe a relationship between the
probability that an execution path succeeds, the number of
failed attacker guesses on that path, and the size of memory.
These bounds are essentially the same as those of Abadi and

Plotkin, so the extra programming language features do not
come at a great cost.

In the next section, we introduce the source language,
λµhashref, by example. We follow with formalities in Sec-
tion III. In Section IV, we introduce the target language,
λµproberef. We introduce an alternative characterization of
contextual equivalence in Section V and prove full abstraction
in Section VI.

II. λµhashref-CALCULUS: EXAMPLES

The allocation model for λµhashref differs from idealized
models of allocation in two ways: the number of allocations is
bounded and the allocation is deterministic. These differences
impact the derived theory of contextual equivalence. In this
section we provide an informal account of the allocation
model and its application to examples that benefit from layout
randomization.

We use several example programs due to (Meyer and Sieber
1988); their examples were originally used to demonstrate
the lack of full abstraction of different semantic models
of languages with idealized allocation. Perhaps surprisingly,
many of Meyer and Sieber’s examples can be modified to
account for a bounded and deterministic allocation model
(and control features arising from λµ). This suggests that the
bounded and deterministic allocation model yields a useful
theory of local state, albeit distinct from that of the usual
unbounded and non-deterministic allocation model.

Our full abstraction result in the sequel establishes that
the bounded and deterministic allocation model is sound
and complete for reasoning about an allocation model with
opponents that can probe arbitrary memory locations but are
hindered by layout randomization.

A. Bounded allocation

The bounded allocation model of λµhashref invalidates
contextual equivalences that hold for unbounded allocation
models, because the number of allocations performed by a
program can be observed indirectly.

Example 1 (Meyer-Sieber example 1). The first Meyer-Sieber
example states that (new x; t) and t are equivalent for any
program t where x is not free in t; that is, allocation has no
observable effect if the reference is unused in the program.
However, such equivalences do not hold in λµhashref be-
cause allocation is bounded. For example, (new x; unit) 6' unit,
where unit is the unit value. If the size of the store is N, these
programs are distinguished by the context

D = new y1; . . . ; new yN ; [–]

which performs N allocations. Then D[new x; unit] ends in an
error at the (N +1)th allocation, but D[unit] returns unit.

B. Control

The security of a program depends upon the entry points
for an opponent (compare with attack surface, see (Manadhata
and Wing 2004)). The entry points for an opponent in the
λ -calculus include invoking the entire program, invoking

2

functional arguments during a callback, and returning from
a callback (where callback refers to a call from the program
to the opponent). The last of these demonstrates an asymmetry
between calls and returns: an opponent cannot return from a
callback more than once. There is a mismatch between such
an asymmetric constraint on an opponent’s capabilities and
the use of jumps seen in attacks. For this reason, we adopt
the control primitive from Parigot’s λµ (1992) and thus allow
modelling of jumps, which in turn strengthens opponents.

Example 2 (Meyer-Sieber example 2). Consider the following
program, where Ω is a divergent term.

λ f.new x; x:=0; f unit; if !x 6= 0 then Ω else unit

In an unbounded allocation model without control, this pro-
gram diverges when applied to any argument, because the
function f cannot modify the contents of the local reference x.
This does not hold in the presence of λµ’s control primitive,
however, since f may transfer control to a µ name and
never return to the conditional; that is, we must compare
against (f unit; Ω) rather than Ω. Moreover, as in Example 1
the number of allocations must be equivalent whenever the
opponent f receives control; that is, we must compare against
(new x; f unit; Ω). Thus we have the following equivalence as
an adaptation of Meyer and Sieber’s example.

new x; x:=0; f unit; if !x 6= 0 then Ω else unit
'
new x; f unit; Ω

Example 3 illustrates a more subtle attack against local state
using control.

Example 3 (Multiple returns via control). The following
programs can be distinguished via λµ’s control.

λ f.new x; x:=0; f unit; if !x 6= 0 then Ω else (x:=1; unit)
6'
λ f.new x; x:=0; f unit; if !x 6= 0 then Ω else unit

In the first program, the continuation of the call to f per-
forms an update to x. In λµhashref, the programs can be
distinguished by an opponent that invokes the continuation
twice. Using the first program, the second invocation of the
continuation diverges because of the update to x.

C. Deterministic allocation and reference hashes

The choice of allocation model affects the ability of an
opponent to make inferences about references. In particular,
non-deterministic allocation may prevent attacks that are to
be addressed by layout randomization. To avoid obscuring the
behavior of layout randomization, we adopt a deterministic
allocation model: the deterministic allocation operator takes
the first reference from a list of unallocated references. This
list of unallocated references is established before the program
is executed.

We assume that opponents have knowledge of the list of
unallocated references. This is formalized using a contextual

equivalence that quantifies over all lists of unallocated refer-
ences (as well all contexts, representing opponent behavior).
Two programs are compared by execution in identical contexts
with identical lists of unallocated references.

However this is not sufficient for an opponent to take
advantage of the deterministic allocation model. We first
observe that contexts (for example, in the ν-calculus (Pitts and
Stark 1993)) are usually not permitted to contain unallocated
references because information hiding via local state would
be impossible. The problem then is that although an attacking
context may depend upon the list of unallocated references, an
attacking context cannot take advantage of such a dependency.
For example, it would not be possible for an attacking context
to test whether a reference received at runtime is equal to the
first reference from the initial list of unallocated references.

We resolve this problem by creating a distinction between
references and reference hashes that can be used in equality
tests. We assume a bijection between references and reference
hashes. Hashes of references from the initial list of unallocated
references are permitted to occur in an attacking context.
Reference hashes cannot be used to read or write to the
corresponding reference cell—only a reference can be used to
access memory. Reference hashes can only appear in equality
tests using the operator hashref . Given a reference hash h
and a reference r, the expression hashrefh r is true iff h is the
reference hash for r. Example 4 demonstrates the consequence
of hashref with deterministic allocation: leaked references are
not opaque to an opponent, and thus the order of allocation is
observable.

Example 4 (Deterministic allocation). The following two
programs are not equivalent.

new x; new y; x 6' new x; new y; y

To see why this equivalence does not hold, consider the list
of unallocated references: r1, r2, . . . , rN . Then a distinguishing
context for the programs above is

D M
= letz=[–] in(hashrefr1 z).

The program D[new x; new y; x] always evaluates to the
boolean true using the allocation order r1, r2, . . . , rN , since
new x will always allocate r1. In contrast, D[new x; new y; y]
will always evaluate to the boolean f alse.

Note that the syntax of λµhashref does not distinguish ref-
erences and reference hashes. Instead the subscripted argument
to hashref is not constrained by the usual scoping rules for
names, and the r1 in hashref should be considered a hash.

A similar distinction between references and integers (rep-
resenting reference hashes) can be found in Java. Java’s type
system prevents conversions from numeric types to references,
but the hashCode method of Java’s Object class is “typically
implemented by converting the internal address of the object
into an integer” (Java 6 API). With such a hashCode imple-
mentation it is possible to illustrate the essence of Example 4.
Consider the following Java class.

3

public class A {
public static void main (String[] args) {
Object x=new Object(); int i=x.hashCode (); // (1)
Object y=new Object(); int j=y.hashCode (); // (2)
System.out.println(

Integer.toHexString(i) + "," + Integer.toHexString(j));
}}

The Java class B is defined with the same code except
that lines (1) and (2) are interchanged. Running class A
with Java 1.6.0_23 on an Ubuntu 10.04 x64 system yielded
0x4830c221, 0x7919298d on 99 out of 100 runs. Running
class B yielded 0x7919298d, 0x4830c221 on 98 out of 100
runs. This particular implementation has an allocation model
that is more deterministic than might be expected, and this
determinism can be observed using hashCode.

Finally, we turn to the third Meyer-Sieber example. This
example fails in λµhashref because an opponent can observe
the allocation order of references that it receives.

Example 5 (Meyer-Sieber example 3). The following two
programs are not equivalent.

λ f.new x; new y; x:=0; y:=0; f xy
6'
λ f.new x; new y; x:=0; y:=0; f yx

A distinguishing context applies the context hole to a function
using hashref , similarly to Example 4.

D. Local state

In spite of deterministic allocation order, allocation still
yields local state that is not directly accessible by a context if
its reference is kept secret. Thus a λµhashref context may test
references using hashref but cannot manufacture references.
This distinguishes λµhashref from λµproberef.

Example 6 (Local state). Allocation order is unimportant
when local state is accessed by an opponent via reader/writer
functions instead of references as in the following example,
where (_ , _) denotes a pair and λ.t abbreviates λ z.t where
z does not occur free in t.

new x; new y;
(
(λ.!x), (λ z.x:=z)

)
'
new x; new y;

(
(λ.!y), (λ z.y:=z)

)
Importantly, the form of local state in λµhashref does support
invariants.

Example 7 (Meyer-Sieber example 5). The fifth Meyer-Sieber
equivalence holds in λµhashref.

λ f.(new x; let addtwo=(λ.x:=2+!x) inx:=0; f addtwo;
if (!xmod2) = 0 then Ω else unit)

'
λ f.(new x; let addtwo=(λ.x:=2+!x) inx:=0; f addtwo;

Ω)

The invariant that x is even is maintained because an opponent
f can only modify x by calling addtwo.

Full abstraction tells us that Example 6 and Example 7 hold for
the probabilistic contextual equivalence of λµproberef where
attackers may attempt to guess and modify x and y inside f .

E. Safety of a stored return address

Many attacks upon programs involve overwriting an area
of memory containing the address of code to jump to; for
example, by overwriting a stored return address on the call
stack via a buffer overflow (Levy 1996). These attacks are
sensitive to (a) the opponent’s ability to inject data into
memory; and (b) the memory layout used by the program
(partly determined by the implementation of the programming
language).

Example 8 formalizes a simple safety property for systems
that store return addresses in memory, where return addresses
are modelled as functions that transfer control via λµ . In this
example, we (a) permit opponents to execute arbitrary code
to inject data into memory, as opposed to modelling buffer
overflows; and (b) make the relevant memory of the program
(the stored return address) explicit in the program as local
state.

Example 8 (Safety of stored return address). The following
equivalent programs both allocate a reference return, call
a function f , and jump with the result to a free µ-name
previous. In the first program, the jump is via a function
stored at return. In the second program, the jump is direct
and return is unused. In both programs, the call to f could
fail to return due to divergence or a jump to a µ-name.

λ f.λx.new return;
return:=(λy.µa.JpreviousKy);
letresult=(f x) in
!returnresult

'
λ f.λx.new return;

letresult=(f x) in
µa.JpreviousKresult

In these programs the function f may be an opponent. Taken
in conjunction with our full abstraction result, the equivalence
above establishes that a “return address” can be safely stored
in memory with randomized allocation layout. This holds even
in the presence of opponent code — injected via f — that can
probe and modify arbitrary memory locations.

More generally, Example 8 suggests a strategy for formalizing
safety against attacks on the memory locations used for a
chosen compilation strategy and runtime system. For example,
one might also investigate explicit representations of call
stacks or closures using local state, by analogy with the
explicit representation of a return location presented above. We
speculate that the congruence of equivalence would facilitate
the verification of safety for compositional translations that
transform a program into its explicit representation, e.g.,
introducing closures.

4

F. Instruction set randomization

We now consider formalization of a basic property of
instruction set randomization using program equivalence.

Example 9 (Instruction set randomization). We model an in-
struction set as a collection of locally-allocated references and
a function that interprets an instruction. References represent-
ing instructions are kept secret from attackers. The interpre-
tation function uses reference-equality tests to determine the
code to execute for an instruction. If the instruction received
does not match any of the known instructions, control is
thrown to a µ name invalid, modelling an exception.

In the first function below, the ith instruction insti is
executed using the closed term ti. This is equivalent to the
second function, which always throws control to invalid.

new inst1; . . . ; new instn;
λx.if hashref inst1 x then t1 else
· · ·
if hashref instn x then tn else
µa.JinvalidKunit

'
new inst1; . . . ; new instn;
λx.µa.JinvalidKunit

This equivalence demonstrates that an opponent cannot
manufacture instructions for the interpretation function in
λµhashref. Using full abstraction, we conclude that the in-
terpretation function is resistant to λµproberef attackers that
guess instructions (encoded as references).

Here we are using random allocation only to generate
random numbers. These happen to be locations, but they
are used here like names in the ν-calculus (Pitts and Stark
1993). More generally, programs that store instructions in
memory would also rely upon the fact that we have layout
randomization in particular, as opposed to any other type of
randomization, in order to be resistant to λµproberef attackers
that probe memory to find stored instructions.

III. THE λµhashref-CALCULUS: FORMALITIES

Here we provide formal underpinnings for the examples
given in the previous section. We give the syntax and eval-
uation semantics for the λµhashref-calculus and define the
contextual equivalence (') used in Section II.

A. Syntax

We assume disjoint sets of variables (x, y, z), names (a,
b) and locations (ι , κ). Names include the reserved name
error. The syntax of named terms is built up using definitions
for references, values and terms. To avoid syntactic bloat, we
identify references and reference hashes. We define hashref
(and proberef) as reference-indexed families of operations,
with the index being the “hash” of a reference which otherwise
may not be accessible.

The basic syntax is from the untyped λµ-calculus, as
reported by Støvring and Lassen (2007); we refer the reader

there for motivations and examples. To this basis we add one
new form for values and five new forms for terms.

r, q ::= ι | null (References)
v, w ::= r | x | λx.t (Value)
t, u ::= v | v1 v2 | letx= t1 in t2 | µa.nt (Term)

| alloc | !v | v1:=v2 | isref v
| hashrefr v

nt ::= JaKt (Named term)
E ::= [–] | letx=E in t (Evaluation context)

NE ::= JaKE (Named evaluation context)

From ML, we add first class locations with dynamic al-
location. If memory is not full, the alloc operator allocates
and returns a new location, initialized to null; otherwise alloc
blocks (see Example 12, below). The ! and := operators read
and write locations, as usual. The isref operator returns true if
its argument is a reference and false otherwise, using Church’s
encoding of the Booleans.

λµhashref extends this basic setup with a value to represent
nonallocated memory, null, and a family of operators hashrefr
for comparing the “hash” of r to the “hash” of a program
value. References include null; we use the term location for
non-null references.

There are no binders for references. References may occur
in terms as values or as indices in hashref. We define functions
vrefs and hrefs which determine the sets of references occur-
ring in these two roles. For example, vrefs(letx=!r inx:=q) =
{r, q}, hrefs(letx=!r inx:=q)= /0, vrefs(hashrefr q)= {q}, and
hrefs(hashrefr q) = {r}.

The variable x is bound in value λx.t with scope t. The
variable x is bound in term letx= t1 in t2 with scope t2. The
name a is bound in term µa.nt with scope nt. The reserved
name error may not be bound. We identify syntax up to
renaming of bound variables and names. We adopt the standard
definitions of free variables (notation fv) and free names
(notation fn). A term t is closed if fv(t) = fn(t) = /0.

We write t{[v/x]} for the capture-avoiding substitution of v
for x in t, and nt{[NE/a]} for the capture-avoiding substitution
of NE for a in nt. The definition of substitution extends to
other syntactic categories in the obvious way. In an evaluation
context, [–] represents the hole. We write NE[t] for the term
which results by replacing the hole with t.

In examples, we adopt the standard precedence rules and
other conventions of the lambda calculus. We use conventional
abbreviations. For example (t1; t2) stands for (letx= t1 in t2)
where x /∈ fv(t2). Similarly, (λ.t) stands for (λx.t) where
x /∈ fv(t). (new x; t) stands for (letx=alloc in t). We use the
following abbreviations.

tru
M
= λx.λy.x err

M
= µa.JerrorKnull

fls
M
= λx.λy.y unit

M
= λ.err

if v then t else u M
= v(λ.t)(λ.u)unit Ω

M
= (λx.xx)(λx.xx)

We use other notations in examples, such as integers and
pairs, which can be encoded in the λ -calculus. We often
elide explicit sequencing, using terms in the place of values;
these should be interpreted left to right, for example (t1 t2)

5

〈s, NE[letx=v in t]〉−→· 〈s, NE[t{[v/x]}]〉
〈s, NE[(λx.t)v]〉 −→· 〈s, NE[t{[v/x]}]〉
〈s, NE[µa.nt]〉 −→· 〈s, nt{[NE/a]}〉
〈s, NE[alloc]〉 −→Aι

〈s]{ι:=null}, NE[ι]〉 if η(s) = ι

〈s, NE[ι:=v]〉 −→Wι ,v 〈s[ι:=v], NE[v]〉
〈s, NE[null:=v]〉 −→Wnull,v〈s, NE[err]〉
〈s, NE[!ι]〉 −→Rι

〈s, NE[v]〉 if s(ι) = v
〈s, NE[!null]〉 −→Rnull

〈s, NE[err]〉
〈s, NE[isref v]〉 −→· 〈s, NE[tru]〉 if isref (v)
〈s, NE[isref v]〉 −→· 〈s, NE[fls]〉 if ¬isref (v)
〈s, NE[hashrefr v]〉−→· 〈s, NE[tru]〉 if r = v
〈s, NE[hashrefr v]〉−→· 〈s, NE[fls]〉 if r 6= v

Fig. 1. Evaluation in λµhashref (η ` C →α C ′)

stands for (letx1 = t1 in (letx2 = t2 in x1 x2)), where x1 /∈ fv(t2).
A usual names are not first class, but can be encoded:
â M
= (λx.µb.JaKx).

B. Evaluation and contextual equivalence

Evaluation is defined using stores, allocation orders, config-
urations and annotations. Locations can store both references
and functions, not simply integers.

s ::= {ι1:=v1, . . . , ιn:=vn} (Store)
η ::= ι1, . . . , ιN (Allocation order)
C ::= 〈s, nt〉 (Configuration)
α ::= · | Ar | Wr,v | Rr (Annotation)

A store is a partial map from locations to values. We adopt
standard notation for partial maps. If s= {ι1:=v1, . . . , ιn:=vn},
then define dom(s) M

= {ι1, . . . , ιn}. If s and s′ have disjoint
domains, then s] s′ denotes their disjoint union. If s = s′]
{ι:=v} then define s(ι) M

= v and s[ι:=v′] M
= s′]{ι:=v′}.

Our semantics is parameterized with respect to an allocation
order η , which is a sequence of locations. Suppose η =
ι1, . . . , ιN . If dom(s) = {ι1, . . . , ιk} and k < N then define
η(s) M

= ιk+1, otherwise η(s) M
= null.

Define isref (v) to be true whenever v is a reference and
false otherwise.

A configuration C is a pair of a store and a named term.
An annotation α marks information about how the term has

reduced. Annotations are used to define probabilities and to
state composition/decomposition lemmas. They can be ignored
on first reading. Most reductions are annotated with the silent
annotation “·”, which often elide, writing “−→·” as “−→”.
The annotation Ar indicates that r has been allocated, Wr,v
indicates that r has been written with value v, and Rr indicates
that r has been read.

Evaluation is defined in Figure 1 as an annotated relation
on configurations, parameterized by an allocation order (η `
C −→α C ′). Since η is constant throughout, we have elided
it from the rules. Let =⇒ be the reflexive transitive closure of
−→α , ignoring annotations.

Define η ` nt a to mean that there exists s such that

η ` 〈 /0, nt〉=⇒ 〈s, JaKnull〉.

〈s, NE[proberefr]〉−→Yr 〈s, NE[r]〉 if r ∈ dom(s)
〈s, NE[proberefr]〉−→Nr〈s, NE[null]〉 if r /∈ dom(s)

Fig. 2. Additional evaluation rules for λµproberef

Definition 10 (Contextual equivalence for λµhashref).
Closed values v and w are contextually equivalent with
memory size N (notation v 'N w) if for any allocation order
η such that |η | ≥ N and for any named evaluation context
NE such that vrefs(NE) = /0 and hrefs(NE) ⊆ η , and for any
a ∈ fn(NE),

η ` NE[v] a implies η ` NE[w] a

and symmetrically for w. We extend this notion to closed terms
by defining t 'N u whenever λ.t 'N λ.u.

We drop the script on 'N when it is universally quantified
(for N > 1) or can be inferred from context.

We have defined contextual equivalence on values using
evaluation contexts. This is equivalent to the definition using
more general contexts D, since 〈s, JaKletx=v inD[x]〉 −→ 〈s,
JaKD[v]〉 This observation can be elaborated to prove the
following.

Proposition 11. ' is a congruence on terms.

We conclude this section with some short examples to
explain the status of errors in the language.

Example 12. Unlike Abadi and Plotkin, we allow null refer-
ences. Consequently we have the following.

λx.Ω 6' λx.!x; Ω

The distinguishing context applies the function to null.
Once all memory is allocated, alloc blocks.

alloc; unit 6' unit alloc; Ω ' Ω

As noted in Example 1, given memory η , the distinguishing
context allocates |η | references, then runs the term.

Other behaviors for alloc on a full memory are possible,
with subtle effects on the equivalence. If alloc returns null,
then both pairs of terms above are equated. If alloc evaluates
to err, then both pairs are distinguished. Our results are easily
adapted to these alternative semantics.

IV. THE λµproberef-CALCULUS

In this section, we define λµproberef and its probabilistic
semantics. We first present the minor syntactic changes. We
then provide a series of examples to show that the standard
contextual equivalence is very fine in λµproberef with de-
terministic layout. This motivates the study of randomized
layouts. To calculate the relevant probabilities, we must record
the set of references known to the environment. We describe
the encoding of knowledge in Section IV-C and the calculation
of probabilities in Section IV-D. Finally we define probabilistic
contextual equivalence in Section IV-E.

6

A. Syntax
λµproberef includes a new reference-indexed family of

operators. The evaluation rules for the new construct are given
in Figure 2 using two new annotations.

t, u ::= · · · | proberefr (Unnamed term)
α ::= · · · | Yr | Nr (Annotation)

Following hashref , we have vrefs(proberefr) = /0, and
hrefs(proberefr) = {r}. The annotation Yr that r has been
probed with a yes response, and Nr indicates that r has been
probed with a no response.

B. Examples
The next two examples demonstrate that references with

hashref /proberef and deterministic allocation are no more
abstract than pointers, which represent memory locations as
integers. We distinguish references from other values in order
to compute the knowledge of the context, where pointers
must be distinguished from other integers. This can also be
accomplished by tagging integers with provenance information
to indicate whether it is a pointer or not. The approach we have
chosen is equivalent, but easier to work with.

Example 13. Given allocation order ι1, . . . , ιN , one can encode
pointer arithmetic. For example, x+1 can be written

if hashrefι1 x then ι2 else
if hashrefι2 x then ι3 else
· · ·
if hashrefιN x then ι1 else err.

Example 14. Consider the exposed terms (new x; x:=null; x)
and (new x; x:=unit; x), which publish their storage, and the
concealed terms (new x; x:=null) and (new x; x:=unit), which
do not.

The exposed terms can be distinguished by the λµhashref
context (letx= [–] in!x). The concealed terms cannot be distin-
guished by any λµhashref context. However, given allocation
order ι1, . . . , ιN , the concealed terms can be distinguished by
the λµproberef context

([–]; letx=proberefι1
in!x).

We refer this as the lucky context.
The situation changes with randomization. We assume a

uniform distribution of allocation orders over {ι1, . . . , ιN}.
The exposed terms are distinguished by the given λµhashref

context with probability 1.
The concealed terms are distinguished by the lucky context

with probability (N−1)!
N! = 1

N . This context fails with probability
1− 1

N = N−1
N , evaluating to err on both concealed terms. (It

must be lucky to succeed!)
Consider the following hard-working context (where ¬ is

implemented by swapping the branches of the conditional).

[–]; letx=proberefι1
in if ¬hashrefnull x then !x else

letx=proberefι2
in if ¬hashrefnull x then !x else

· · ·
letx=proberefιn in if ¬hashrefnull x then !x

A single branch of the hard-working context is no more likely
to succeed than the lucky context, distinguishing the concealed
terms with probability 1

N . Taken as a whole, however, the
hard-working context succeeds in distinguishing the concealed
terms with probability 1.

The different results for exposed and concealed terms in
Example 14 indicate that we must record the knowledge of
the context, i.e., the set of references known to the context.

Example 15. We narrate the execution of a particular user
executing against an opponent encoded as a λµproberef
context. Assume a uniform distribution of allocation orders
over a memory of size N where N > 3. The allocation order
is not known to the opponent and the store is initially empty.

(1) In the first two steps of evaluation, suppose the user
allocates two new locations and therefore store has size 2.

(2) Suppose the opponent now executes proberefr, guessing
that one of the two allocated references is r 6= null. What is
the probability that one of the two allocated references is r?
There are N! possible permutations of the allocation order,
with (N−1)! permutations that have r in any given position.
Thus there are 2× (N − 1)! permutations with r in first or
second position and the chance of success is 2×(N−1)!

N! = 2
N .

Let us assume that the probe fails. The above probability
calculation yields that the possible sample space is now
reduced to N!× N−2

N = (N−1)!× (N−2).
(3) Consider a further evolution where the user gives the

opponent a reference, say ι . The opponent knows that ι is one
of the two allocated references and that r is not an allocated
reference as yet. The possible sample space is (N−2)!×2×
(N−2). That is N−2 for r, 2 for ι and N−2! for the rest.

(4) Consider another probe of the opponent, say proberefq,
where q /∈ {null, r}. The opponent succeeds if the two allo-
cated references are ι and q. There are 2× (N−2)! permuta-
tions that start with ι and q. Thus the chance that the second
probe succeeds is 1

N−2 .
Let us again assume that the opponent probe fails. The

opponent then knows that ι is one of the first two allocated
references and that r and q are not in the first two allocated
references. The above probability calculation yields the size of
the potential sample space to be (N−2)!×2×(N−2)× N−3

N−2 =
(N−2)!×2× (N−3).

(5) Suppose that the user allocates another reference.
(6) Consider a third opponent probe, repeating the quest

for reference r. Under the above circumstances, opponent
succeeds if and only if the third allocated reference is r.

The number of permutations with ι in one of first two
positions, r in third position, and q not in first two positions
is 2×(N−3)×1×(N−3)!. That is 2 for ι , N−3 for q, 1 for
r and N−3! for the rest. The probability of success is 1

N−3 .

C. Encoding knowledge

As demonstrated by Example 15, the probability that a
opponent probe succeeds depends upon the set of references
known to the opponent. Determining this set is complicated by
the fact that opponents are defined as contexts. The separation

7

between context and term is not preserved by evaluation, and
thus we must somehow instrument the evaluation relation. One
approach is to define an LTS, as we do in the following section.
Another approach is extend the syntax with tags to record the
provenance of terms.

Here we define a transformation T to record accumu-
lated knowledge in an isolated kernel memory. We apply
the transformation to opponent contexts, but not user terms.
Define kmem to be a function on allocation orders such
that |kmem(η)| = |η | and (kmem(η)∩η) = /0. Suppose η =
ι1, . . . , ιN and kmem(η) = κ1, . . . , κN .
• Define korder(η)

M
= ι1, . . . , ιN ,κ1, . . . , κN .

• Define kstore(η)
M
= {κ1:=null, . . . , κn:=null}.

• Define Ks
M
= {ιi | s(κi) 6= null}.

For a store s with kernel memory, Ks is the set of user
references known to the context.

An alternative characterization is given in Section V. The
remainder of this subsection can be skipped on first reading.

The side-effecting function setkη is a map over η ∪{null},
defined as follows. setkη(v) immediately returns null if v /∈ η ,
otherwise if η = ι1, . . . , ιN and kmem(η) = κ1, . . . , κN then
setkη(ιi) writes κi:=unit and returns ιi. For any η , setkη can
be internalized as a value in our language (as an abstraction
using hashrefιi for 1≤ i≤ N).

We define the transformation function T as follows, where
setkη(t) is shorthand for lety= t in setkη(y) and similarly for
setkη(E).

T (v) M
=

{
λx.T (t) if v = λx.t
v otherwise

T (t) M
=

letx=T (t1) in T (t2) if t = letx= t1 in t2
setkη(alloc) if t = alloc
t otherwise

T (E) M
=

{
setkη([–]) if E = [–]
letx=T (E) in setkη(T (t)) if E = letx=E in t

Define T (JaKt) M
= JaKT (t) and T (JaKE) M

= JaKT (E).

D. Computing probabilities

Following Abadi and Plotkin, we give an explicit formula
to characterize of the probabilities associated with evaluation
sequences. We follow up by showing that the calculations in
the style of Example 15 agree with our formulas to calculate
probabilities. We elide the precise statement of the theorem
equating these two approaches. (The proof of the unstated
theorem follows Example 15.)

Let ϖ range over evaluation paths of the form

korder(η) ` Ci−1 −→αi Ci for 1≤ i≤ n.

Given such an evaluation path, we define several sets of
interest, where Ci = 〈si, ...〉.
• Define Nϖ

M
= |η | be the size of user memory.

• Define sϖ

M
= dom(sn) \ kmem(η) be the final set of user

references allocated.
• Define Kϖ

M
= Ksn be the final set of user references known

to the context.

• Define Nϖ

M
= {r | ∃i.Ci−1 −→Nr Ci} be the set of user

references for which proberef has failed.
The following definitions split a path at a failed proberef .
• Define upto(ϖ , r) to be the largest prefix of ϖ whose final

transition is annotated Nr, if one exists, and to be the empty
path ε otherwise.

• Define after(ϖ , r) to be the suffix of ϖ after upto(ϖ , r).
Let ε represent an empty path and let ϖ −→α represent a path
whose final transition is −→α .

We can now define the probability of a path ϖ in the
evaluation relation as follows:

δϖ (r)
M
=

|sϖ \ (supto(ϖ ,r)∪Kϖ)|
Nϖ −|supto(ϖ ,r)∪Kϖ |− |Nafter(ϖ ,r)|

φ(ε)
M
= 1

φ(ϖ −→α)
M
=

φ(ϖ)×δϖ (r) if α = Yr,r 6∈ Kϖ

φ(ϖ)× (1−δϖ (r)) if α = Nr,r 6= null
φ(ϖ) otherwise

Observe that in the special case where no previous failed
checks on reference r have occurred then φ(ϖ) becomes
identical to the corresponding formula of Abadi and Plotkin.
This is because Kϖ represents the public references PubLoc,
sϖ \Kϖ represents the private references PriLoc, supto(ϖ ,r) is
empty, and |Nafter(π,r)| counts the number of distinct probes
that do not hit any of the private references. In our setting, it is
not sufficient to only consider the set of distinct probes over a
trace. This is due to the presence of dynamic allocation in our
model: a failed probe may on a subsequent occurrence become
a successful probe. Therefore our model takes in to account
the list of failed probes over a trace. Indeed, if we were to
allow deallocation of references also then we would need to
consider the list of all probes, including successful ones over
a trace. We can however render our calculation as an iterated
version of that of Abadi and Plotkin: consider a path ϖ and
any r such that ϖ has no Yr but kr many Nr annotations. Let
ϖkr = ϖ and ϖi−1 = upto(ϖi, r) so that ϖi = ϖi−1after(ϖi, r).
We can write φ(ϖ) as

∏
r∈ϖ

(∏
i≤kr

(1−δϖi(r))).

Now, for any given i we write

Ni
M
= Nϖ −|sϖi−1 |

PubLoci
M
= Kϖi \Kϖi−1

Storei
M
= sϖi \ sϖi−1

PriLoci
M
= Storei \PubLoci

Ni
M
= Nϖi\ϖi−1

We see then that sϖi \ (supto(ϖi,r) ∪Kϖi) is Storei \PubLoci,
which is just PriLoci. Also note that, Nϖi−|supto(ϖi,r)∪Kϖi |−
|Nafter(ϖi,r)| is equal to Ni− |PubLoci| − |Ni|. Therefore we
can write

δϖi(r) =
|PriLoci|

Ni−|PubLoci|− |Ni|
as it appears in Abadi and Plotkin.

8

Example 16. We revisit Example 15 in the light of the calcu-
lations above, describing a particular evaluation path. Initially,
the user store and opponent knowledge are empty. We use ϖ

to stand for the trace so far, at each point of the evaluation.
Let N be the constant Nϖ

(1) The user allocates twice. sϖ = {ι , κ1} and Kϖ = /0.
(2) The opponent executes proberefr. upto(ϖ , r) = ε and

after(ϖ , r) = ϖ . The calculation above gives the probability
of success as 2

N .
Assume that the proberef failed.
(3) The user reveals ι . sϖ = {ι , κ1} and Kϖ = {ι}.
(4) The opponent executes proberefq. upto(ϖ , q) = ε and

after(ϖ , q)=ϖ . The calculation above gives supto(ϖ ,q) = /0 and
Nafter(ϖ ,q) = {r}. The calculation above gives the probability
of success as 2−1

N−1−1 = 1
N−2 .

Assume that the proberef failed.
(5) The user allocates once. sϖ = {ι , κ1, κ2} and Kϖ = {ι}.
(6) The opponent executes proberefr. upto(ϖ , r) gives the

path up to step (2) and after(ϖ , r) gives the path after-
wards. The calculation above gives supto(ϖ ,r) = {ι , κ1} and
Nafter(ϖ ,r) = {q}. We have sϖ \ (supto(ϖ ,r)∪Kϖ) = {κ2} and
supto(ϖ ,r)∪Kϖ = {ι , κ1}. The chance of success is therefore

1
N−2−1 = 1

N−3 .
These calculations agree with the derivation of Exam-

ple 15.

E. Contextual equivalence

The lucky context of Example 14 shows that contextual
equivalence must ignore low-probability execution paths. The
subsequent hard-working context indicates that it must also
ignore executions in a single proberef conveys too much
information. When a probe fails, subsequent probes convey
more information, and therefore (Abadi and Plotkin 2010)
limit the number of failed probes. We generalize their results
to include dynamic allocation. The set of references which
can be unfruitfully probed are those which are unallocated
and unprobed. Therefore we bound the sum of the number of
references allocated and the number of failed probes.

We define paths with parameters for the probability (p) and
the sum of the references allocated and the number of failed
probes (n).

Define η `C =⇒p,n C ′ to hold whenever there exists a path
ϖ with the given source configuration and target configuration
such that

p = φ(ϖ) and n = |sϖ |+ |Nϖ |.

Define η ` nt p,n a to mean that there exists s such that

korder(η) ` 〈kstore(η), nt〉=⇒p,n 〈s, JaKnull〉.

We define contextual equivalence with bounds for the min-
imum probability (ε) and maximum number of failed probes
(B).

Definition 17 (Contextual equivalence for λµproberef).
Closed values v and w are contextually equivalent up to ε and
B with memory size N (notation v'N

ε,B w) if for any allocation
order η such that |η | ≥ N and for any named evaluation

context NE such that vrefs(NE) = /0 and hrefs(NE) ⊆ η , and
for any a ∈ fn(NE),

η `T (NE)[v] p,n a and p > ε and n≤ B
implies η `T (NE)[w] p,n a

and symmetrically for w. We extend this notion to closed terms
by defining t 'N u whenever λ.t 'N

ε,B λ.u.

We can now state the main result of the paper.
Theorem 18 (Full abstraction). For closed λµhashref terms t
and u and for values of N, ε and B such that B≤ εN:

t 'N u iff t 'N
ε,B u

PROOF. The⇐ direction is immediate, since every λµhashref
context is a λµproberef context. The ⇒ direction is Corol-
lary 29 in Section VI.

V. LABELLED TRANSITION SYSTEM

We develop a labelled transition system model for
λµproberef (and λµhashref) and define a suitable notion of
trace equivalence. We relate these to contextual equivalence in
Section VI.

A. The LTS

Each node of the LTS includes a reference set and valu-
ation, recording the knowledge of the opponent context. We
distinguish two types of nodes, indicating whether the term or
context has control.

K ::= {r1, . . . , rn} (Reference set)
V ::= {x1:=v1, . . . , xn:=vn, (Valuation)

a1:=NE1, . . . , am:=NEm}
N ::= 〈s, nt,V, K〉 (Term node)

| 〈s, __,V, K〉 (Context node)
` ::= τττ | tvfa y | tvra r | tafa xy | tara xr (Label)
| cvfa x | cvra r | cafa yx | cara yr
| crfa r x | crra r q | craa | crga r | crpa ι

Define 〈v〉 M
= 〈 /0, __, {x:=v}, {null}〉, where x /∈ fv(v), to be the

initial node of v.
The LTS for λµproberef is defined in Figure 3 as a labeled

and annotated relation on nodes, parameterized by an alloca-
tion order (η ` N `−→α N). A in Figure 1, η is constant
throughout and we have elided it from the rules.

We obtain an LTS for λµhashref by omitting the transition
rule for probes (Context Ref Probe) and the evaluation rules
of Figure 2. We say that the inaccessibility of local references
is strict in λµhashref and lax in λµproberef. We therefore
refer to the LTS for λµhashref as the strict LTS, and that for
λµproberef as the lax LTS.

Note that the LTS is bipartite. Term evaluation is determin-
istic and therefore only one transition is available to each term
node. Context nodes have many transitions, each of which give
control to a term node.

Context transitions labeled cr? are always followed imme-
diately by two term transitions, labeled τττ and tv?. Context
transitions labeled cv? and ca? may cause any number of

9

(Term Evaluation) 〈s, nt,V, K〉 τττ−→α 〈s′, nt′,V, K〉 if 〈s, nt〉 −→α 〈s′, nt′〉
(Term Value Fun) 〈s, JbKv,V, K〉 tvfb x−−−→· 〈s, __,V]{x:=v}, K〉 if ¬isref (v) and x fresh
(Term Value Ref) 〈s, JbKv,V, K〉 tvrb v−−−→· 〈s, __,V, K∪{v}〉 if isref (v)
(Term Apply Fun) 〈s, NE[yv],V, K〉 tafa yx−−−−→·〈s, __,V]{a:=NE}]{x:=v}, K〉 if a fresh and ¬isref (v) and x fresh
(Term Apply Ref) 〈s, NE[yv],V, K〉 tara yv−−−−→· 〈s, __,V]{a:=NE}, K∪{v}〉 if a fresh and isref (v)
(Context Value Fun) 〈s, __,V, K〉 cvfb x−−−→· 〈s, NE[x],V, K〉 if V (b) = NE and x fresh
(Context Value Ref) 〈s, __,V, K〉 cvrb q−−−→· 〈s, NE[q],V, K〉 if V (b) = NE and q ∈ K
(Context Apply Fun) 〈s, __,V, K〉 cafa yx−−−−→·〈s, JaK(vx),V, K〉 if a fresh and V (y) = v and x fresh
(Context Apply Ref) 〈s, __,V, K〉 cara yq−−−−→·〈s, JaK(vq),V, K〉 if a fresh and V (y) = v and q ∈ K
(Context Ref Fun) 〈s, __,V, K〉 crfa r x−−−−→· 〈s, JaK(r:=x),V, K〉 if a fresh and r ∈ K and x fresh
(Context Ref Ref) 〈s, __,V, K〉 crra r q−−−−→· 〈s, JaK(r:=q),V, K〉 if a fresh and r ∈ K and q ∈ K
(Context Ref Get) 〈s, __,V, K〉 crga r−−−→· 〈s, JaK(!r),V, K〉 if a fresh and r ∈ K
(Context Ref Alloc) 〈s, __,V, K〉 craa−−→· 〈s, JaKalloc,V, K〉 if a fresh
(Context Ref Probe) 〈s, __,V, K〉 crpa r−−−→· 〈s, JaKproberefr,V, K〉 if a fresh

Fig. 3. Labeled transition system (η `N →̀α N ′)

term τττ transitions, ending in a term transition labeled tv? or
ta?.

The knowledge of the context increases on term transitions
labeled t?r.

Transitions labeled ca? model applicative tests (Gordon
1995), performed symbolically (Sangiorgi 1996; Lassen 2005,
2006; Jagadeesan, Pitcher, and Riely 2009). Transitions la-
beled cv? model the context control tests. Both ca? and cv?
transitions use stored information, and thus the tests may
be performed repeatedly. Transitions labeled cr? model the
context’s ability to manipulate references.

Example 19. Consider an execution path for LTS generated by
the left-or operator (λx.λy.x tru y). Let

V1 = {z1:=(λx.λy.x tru y)},
V2 =V1]{z2:=(λy.x′ tru y)}, and
V3 =V2]{a:=JaK([–]y′), z3:= tru}.

Then the LTS includes the following.

〈 /0, __,V1, /0〉
cafa z1 x′−−−−−→ 〈 /0, JaK(λx.λy.x tru y)x′,V1, /0〉

τττ−→ 〈 /0, JaK(λy.x′ tru y),V1, /0〉
tvfa z2−−−−→ 〈 /0, __,V2, /0〉

cafa z2 y′−−−−−→ 〈 /0, JaK(λy.x′ tru y)y′,V2, /0〉
τττ−→ 〈 /0, JaK(x′ tru y′),V2, /0〉

tafa x′ z3−−−−−→ 〈 /0, __,V3, /0〉

This prefix of the path is sufficient to see the difference with
the right-or operator (λx.λy.y tru x). Let

V ′1 = {z1:=(λx.λy.y tru x)},
V ′2 =V1]{z2:=(λy.y tru x′)}, and
V ′3 =V2]{a:=JaK([–]x′), z3:= tru}.

Starting with 〈 /0, __,V ′1, /0〉, execution proceeds with the same
labels as before, except that the final transition is labeled
tafa y′ z3. The context can observe the difference between
the final labels, thus distinguishing the left-or and right-or
operators.

Example 20. Consider an execution path for LTS generated by
the first process of Example 4, new x; new y; x. Executing with
allocation order ι1, ι2, and eliding τττ-annotations, we observe
the following path.

〈 /0, JaKnew x; new y; x, /0, /0〉
τττ−→ τττ−→ 〈{ι1:=null}, JaKnew y; ι1, /0, /0〉
τττ−→ τττ−→ 〈{ι1:=null, ι2:=null}, JaKι1, /0, /0〉
tvra ι1−−−→ 〈{ι1:=null, ι2:=null}, __, /0, {ι1}〉

This prefix of the path is sufficient to see the difference with
the second process of Example 4, new x; new y; y, whose final
transition is labelled tvra ι2.

Example 21. Consider a variation of the first process given in
Example 3. Let

V ′′1 = {z1:=(λ f.new x; x:=fls; f unit;
!x(λ.Ω)(λ.x:= tru; unit)unit)},

V ′′2 =V ′′1]{b:=JaK([–]; !ι (λ.Ω)(λ.ι:= tru; unit)unit),
z2:=unit}, and

V ′′3 =V ′′2]{z3:=unit}.

Executing with allocation order ι , and again eliding τττ-
annotations, we observe the following path.

〈 /0, __,V ′′1 , /0〉
cafa z1 f ′−−−−−→ τττ−→ 〈 /0, JaKnew x; x:=fls; f ′ unit;

!x(λ.Ω)(λ.x:= tru; unit)unit,V ′′1 , /0〉
τττ−→+ 〈{ι:=fls}, JaK f ′ unit;

!ι (λ.Ω)(λ.ι:= tru; unit)unit,V ′′1 , /0〉
tafb f ′ z2−−−−−→ 〈{ι:=fls}, __,V ′′2 , /0〉

cvfb x′−−−−→ 〈{ι:=fls}, JaKx′;
!ι (λ.Ω)(λ.ι:= tru; unit)unit,V ′′2 , /0〉

τττ−→+ 〈{ι:=fls}, JaKι:= tru; unit,V ′′2 , /0〉
τττ−→+ 〈{ι:= tru}, JaKunit,V ′′2 , /0〉

tvfa z3−−−−→ 〈{ι:= tru}, __,V ′′3 , /0〉
cvfb x′′−−−−→ 〈{ι:= tru}, JaKx′′;

!ι (λ.Ω)(λ.ι:= tru; unit)unit,V ′′2 , /0〉
τττ−→+ 〈{ι:= tru}, JaKΩ,V ′′2 , /0〉
τττ−→+ 〈{ι:= tru}, JaKΩ,V ′′2 , /0〉

10

This path is not possible for the second process given in
Example 3, since ι remains fls.

The path illustrates how the LTS formalism uses (Term Ap-
ply Fun) transitions provide the programmatic power available
in λµ to capture continuations, and (Context Value Fun) to
use and reuse them. In contrast, our earlier work on LTSs
for aspects (Jagadeesan, Pitcher, and Riely 2009) maintained
a stack for the current evaluation context, enforcing a linear
regime that prohibits the reuse of evaluation contexts.

B. Trace Equivalence

Let π range over LTS paths of the form

η `Ni−1
`i−→αi Ni for 1≤ i≤ n.

A path is strict if it contains no transitions labeled crp or
annotated Y or N. A path is balanced if the first and last
nodes are context nodes.

LTS paths contain all of the information required to compute
probabilities. Define Nπ , Nπ , upto(π, r) and after(π, r) as in
Section IV-D. When Ni = 〈si, ..., ..., Ki〉, define sπ = dom(sn)
and Kπ = Kn. Given these notations, the definition of φ(ϖ) in
Section IV-D lifts directly to define φ(π) on LTS paths, simply
replacing ϖ with π .

As before, define (η `N `=⇒p,n N ′) to be a path π with
the given source node, target node and label sequence such
that p = φ(π) and n = |sπ |+ |Nπ |.

Definition 22 (Trace equivalence). Closed values v and w are
trace equivalent up to ε and B with memory size N (notation
v≈N

ε,B w) if for any allocation order η such that |η | ≥ N and
any context node N ,

η ` 〈v〉 `=⇒p,n N and p > ε and n≤ B
implies η ` 〈w〉 `=⇒p,n N ′

and symmetrically for w. We extend this notion to closed terms
by defining t ≈N u whenever λ.t ≈N

ε,B λ.u.

The same definition is suitable for the strict LTS. All strict
paths have probability 1, eliminating the need to count allo-
cations and failed probes. This means we may safely omit the
annotations on strict paths, writing simply (η `N `=⇒N ′).
We write (t ≈N u) to denote trace equivalence over the strict
LTS and note that this is shorthand for (t ≈N

0,∞ u).

VI. FULL ABSTRACTION

We now turn our attention to the main results of the
paper. We will show that contextual equivalences in λµhashref
are preserved probabilistically as contextual equivalences in
λµproberef. We do this via the labelled transition system
model by showing that contextual equivalence in λµhashref
implies trace equivalence in the LTS model with no probes. We
then describe how trace equivalence is preserved probabilisti-
cally when probes are included as possible trace actions. Fur-
thermore, we prove that trace equivalence implies contextual
equivalence in λµproberef. We begin by arguing that balanced
traces with sufficiently high probability are in fact strict traces.

Given a balanced path π as η ` 〈t〉 `=⇒p,n N ′ in the LTS
we write ↑ π to be the path π with all occurrences of the
sequence of three edges crpa r−−−→ τττ−→Nr

tvra null−−−−→ removed. We also
remove all occurrences of π

crpa r−−−→ τττ−→Yr
tvra r−−−→ where r ∈ Kπ .

If π contains no other transitions annotated with Yr it is not
too hard to see that ↑ π is actually a balanced path of the strict
LTS. This is formalized in the following lemma.

For closed, strict terms t and u and for values of N, ε and
B such that B≤ εN:

Lemma 23. If 〈t〉 `=⇒p,n N ′ is a balanced path π then p > ε

and n≤ B implies ↑ π is a strict path.

PROOF. We proceed by induction over the length of the
balanced path. We need to establish that the path π contains
no reduction edges annotated with Yr, from which it follows
that ↑ π is a strict path. For the inductive case, we also need
to ensure that the final node of ↑ π is the same as the final
node of π .

The base case of the induction, in which the path is empty,
is trivial. Suppose then that the path π is π ′ `1`2==⇒p,n N ′ and
suppose that p > ε . If `1 is anything other than a crpa r
action then by the inductive hypothesis we know that there
is a balanced strict path ↑ π ′. As the final node of π ′ and
↑ π ′ are the same, this path clearly extends to the strict path
↑ π ′ `1`2==⇒N ′ .

In the case that π is π ′ crpa r−−−→ τττ−→Nr
tvra null−−−−→, or

π ′ crpa r−−−→ τττ−→Yr
tvra r−−−→ with r ∈ Kπ ′ , we have, by the inductive

hypothesis, that ↑ π ′ is a strict path. Notice also that, in this
case, ↑ π =↑ π ′ and moreover, the final node of ↑ π ′ is the
same as the final node of π . Therefore ↑ π is a strict path as
required.

Finally, the case π is π ′ crpa r−−−→ τττ−→Yr
tvra r−−−→ where r 6∈ Kπ ′

cannot arise. If π were of this form we would have:
p = φ(π ′)×δπ(r)
≤ δπ(r)
≤ |sπ |/(Nπ −|Nπ |)
≤ (|sπ |+ |Nπ |)/Nπ

= n/Nπ ≤ B/Nπ ≤ ε

This contradicts the assumption that p > ε .

Theorem 24 (Preservation). v ≈N w implies v ≈N
ε,B w when-

ever B≤ εN
PROOF. Take any η and any balanced path π as η ` 〈v〉 `=⇒p,n
N ′ of the LTS such that p > ε and n ≤ B. By the previous
Lemma we have that ↑ π is a strict path originating at 〈v〉.
Therefore, by the hypothesis, there is a path π ′ of the form
η ` 〈w〉 `

′
=⇒ such that `

′
and ` differ only in that ` may contain

failed probes or probes on known references. We insert all such
missing probes in to the path π ′ in line with π to obtain a path
of the LTS proper η ` 〈w〉 `=⇒p,n as required. It is easy to check
that this path has probability p and bound n as required.

Theorem 25 (Completeness of λµhashref). v 'N w implies
v≈N w
PROOF. Take any η and a balanced path π of the form η `
〈v〉 `=⇒N . We must show that there is a matching path from

11

〈w〉. To do this we build a named evaluation context Dη

`
with

the property that η ` Dη

`
[v0] a iff η ` 〈v0〉 `=⇒N0 for some

N0. We omit the details of this construction here. Once we
have this however, it is clear to see that

η ` Dη

`
[v] a

which implies by hypothesis that

η ` Dη

`
[w] a

and hence by construction of Dη

`
we have η ` 〈w〉 `=⇒N ′ as

required.

At this point, as a technical convenience, we introduce an
intermediate representation for terms that allows a transition
system closer in spirit to the LTS semantics than the evaluation
relation. We will call this the dual LTS. The nodes of this
model, ranged over by M , are of the form

〈s, ct,W, nt,V 〉

where s is a (symbolic) store, ct is __ or a named term that
represents computation provided by the evaluation context,
W is a binding of “opponent” variables to lambda terms
originating from the context, nt is __ or a named term under
investigation, and V is a binding of “player” variables to
lambda terms originating from the named term. An invariant
that is maintained on these nodes is that the only free variables
in nt and V are “opponent” variables and similarly, the only
free variables in ct and W are “player” variables. The store
s does not hold any lambda abstractions, but rather variables
which are bound in V or W . Another useful invariant is that
if ct is not __ then nt is and if nt is not __ then ct is. We will
use the notation (ct|nt) to mean ct if nt is __, nt if ct is __
and __ otherwise. We will also write s[WV]∗ and nt[WV]∗ to
represent the store and term, respectively, after iterating the
substitutions in W and V on them to a fixed point.

The initial dual configuration for a given allocation order
η , named evaluation context NE and value v is:

〈〈NE, v〉〉η = 〈kstore(η), __, {a0:=NE}, Ja0Kx0, {x0:=v}〉

The transitions of the dual LTS are derived from those of the
LTS model but fewer of the actions are used. After the Term
Evaluation rule, we only make use of the Term Value, Term
Apply, Context Value and Context Apply rules of Figure 3.
The two main rules are

〈s[V], nt,V, Ks〉 `−→α 〈s[V], nt′,V ′, K′〉
〈s, ct,W, nt,V 〉 · :`−−→α 〈s[K′], ct,W, nt′,V ′〉

〈s[W], ct,W, Ks〉 `−→α 〈s[W], ct ′,W ′, K′〉
〈s, ct,W, nt,V 〉 ` : ·−−→α 〈s, ct ′,W ′, nt,V 〉

where s[K′] is the store s but with an updated system memory
to record K′. As well as these rules we need special cases for
actions that interact with the store:

〈s[V], nt,V, Ks〉 `−→Ar 〈s[V]]{r:=null}, nt′,V, Ks〉
〈s, ct,W, nt,V 〉 · :`−−→Ar 〈s]{r:=null}, ct,W, nt′,V 〉

〈s[V], nt,V, Ks〉 `−→Rr 〈s[V], nt′,V, Ks〉
〈s, ct,W, nt,V 〉 · :`−−→Rr 〈s, ct,W, nt′[V],V 〉

〈s[V], nt,V, Ks〉 `−→Wr,v 〈s[V]]{r:=v}, nt′,V, Ks〉
〈s, ct,W, nt,V 〉 · :`−−→Wr,v 〈s]{r:=x}, ct,W, nt′,V]{x:=v}〉

There are dual versions of these for transitions originating in
the ct term also. As for the LTS we use the notation j :`==⇒p,n

α
to

denote a path in the dual LTS. The calculations of probabilities
on these paths lifts in the obvious way by making use of the
annotations α . We are now ready to state the Lemma that
relates evaluation and the dual LTS.

Lemma 26 (Decomposition/Composition). If

korder(η) ` 〈kstore(η), NE[v]〉=⇒p,n 〈s, nt〉

then there exists a dual transition sequence:

korder(η) ` 〈〈NE, v〉〉η j :`==⇒p,n
α
〈s′, ct,W, nt′,V 〉

such that s = s′[WV]∗ and nt = (ct|nt′)[WV]∗.
Moreover, for any other w such that

korder(η) ` 〈〈NE, w〉〉η j :`==⇒p,n
α
〈s′′, ct ′,W ′, nt′,V ′〉

we have ct = ct ′, W =W ′ and

korder(η) ` 〈kstore(η), NE[w]〉=⇒p,n
〈s′′[W ′V ′]∗, (ct ′|nt′)[W ′V ′]∗〉

PROOF. We outline how the proof of this Lemma is con-
structed but for the sake of brevity omit the full details. We
use an induction over the length of the evaluation sequence
and a case analysis on the possible single step evaluations
from 〈s[WV]∗, nt[WV]∗〉. Assume (wlog by symmetry) that we
have reached a node 〈s, __,W, nt,V 〉 in the decomposed dual
trace. Now, if 〈s, nt〉 performs the next single evaluation step
independently then we embed that directly as a transition of
the dual system. Otherwise, nt is a stuck term such that the
substitution nt[WV]∗ enables the next evaluation step. There
are two possibilities here: nt is of the form NE[xv] and W binds
x to a lambda abstraction λ z.t, say, or nt is of the form Ja0Kv
and W binds a0 to a named evaluation context. We illustrate
the proof by showing the former case and by assuming that
v is a lambda abstraction. Note that nt would generate a taf
action in the LTS. In this case we decompose as follows:

〈s, __,W, NE[xv],V 〉 · :tafa′ xy−−−−−→·〈s, __,W, __,V ′〉
cafa′ xy : ·−−−−−→·〈s, Ja′K(λ z.t)y,W, __,V ′〉

τττ : ·−−→· 〈s, Ja′Kt{[y/z]},W, __,V ′〉

where V ′ is V] {a′:=NE}] {y:=v}. Note, that, after the
substitution [WV ′]∗, the named term here exactly what is
required as the target of the evaluation step.

The dual transition system provides a useful stepping-stone
towards extracting the contribution of a given term in its
interaction with an enclosing context. We now complete this
step by describing how to project a path in the dual LTS
down to a path in the LTS proper. For the most part this is
straightforward: a node 〈s, ct,W, nt,V 〉 maps to a node 〈s[V],

12

nt,V ′, Ks〉 where V ′ differs from V only on variables created
in the write annotated dual transitions to maintain a symbolic
store. Any transition · :`−−→α maps directly to the same transition
in the LTS in the obvious way. Otherwise, transitions are of
the form j : ·−−→α . In this case we inspect the annotation α —
if it is empty then we simply drop this transition from the
projection. In all other cases, three transitions are generated
in the projected trace: for example, for annotation Ar we have
transitions

craa−−→· τττ−→Ar
tvra r−−−→·

similar projections use crga r actions for read annotations,
crfa r x actions for write annotations and crpa r actions for
probe annotations.

Lemma 27 (Projection). If

korder(η) ` 〈〈NE, v〉〉η j :`==⇒p,n
α

M

then there exists a projected trace η ` 〈v〉 `
+

=⇒p,n N such that
for any other η ` 〈w〉 `

+

=⇒p,n N ′ then

korder(η) ` 〈〈NE, w〉〉η j :`==⇒p,n
α

M ′

for some M ′.

Theorem 28 (Soundness of λµproberef). v ≈N
ε,B w implies

v'N
ε,B w

PROOF. Take any η and any context NE such that vrefs(NE)=
/0 and hrefs(NE) ⊆ η , and suppose that η ` T (NE)[v] p,n a
with p> ε and n≤B. We know by the Decomposition Lemma
above that there is a dual transition path

korder(η) ` 〈〈NE, v〉〉η j :`==⇒p,n
α M

for some `, j,α,M . Note that M must contain JaKnull in
the context-term or term position (we write M a for this).
Further, by projection we know that this yields a trace
η ` 〈v〉 `

+

=⇒p,n N for some `
+

and N . It is easy to check
that either this trace is balanced, or may be deterministically
extended to a balanced one. This follows because M a and
thus either the trace is balanced and node contains the __
marker or N a. In the latter case, we simply extend the
trace with a tvra null transition. By hypothesis we therefore
also have η ` 〈w〉 `

+

=⇒p,n N ′ and hence, by Lemma 27, we
know

korder(η) ` 〈〈T (NE), w〉〉η j :`==⇒p,n
α M ′

Also note that M ′ a holds because either the context-term has
converged to null as above, or N ′ a is guaranteed by trace
equivalence. Now, Lemma 26 tells us that η `T (NE)[w] p,n a
as required.

Corollary 29. For closed λµhashref terms, t 'N u implies
t 'N

ε,B u whenever B≤ εN

PROOF. Suppose t 'N u. By definition this tells us that λ.t 'N

λ.u and so by Theorem 25, Theorem 24, and Theorem 28 we
have λ.t 'N

ε,B λ.u. This is sufficient to establish the result.

VII. CONCLUSION

Abadi and Plotkin (2010) initiated the language-based study
of the security properties afforded by randomized layout. Their
results demonstrate that the expected locality properties of
local variables in a high-level user language are preserved with
high probability in a low-level implementation language where
memory locations are integers and the opponent has the ability
to construct attacks to expose user memory by guessing these
locations.

Abadi and Plotkin leave open the question of whether these
results continue to hold in the presence of more powerful
attackers (in terms of control and probability) and for more
realistic languages (with memory management and first class
references).

In this paper, we take a further step along the way towards
establishing a fully general foundational infrastructure to study
the general subject of layout randomization. We consider more
powerful programming language constructs such as dynamic
memory allocation, first class references and continuations.
Even with these enhancements, our bounds on the extra size
of the memory required to achieve effective randomization are
similar to that of Abadi and Plotkin.

While we do not develop the details in this paper, our
framework is easily adapted to model probabilistic contexts,
which allow opponents to use randomization, thus restoring
the symmetry between the user program and opponent.

In our study, we have not formalized the interaction of
layout randomization with data structures that are usually laid
out contiguously in memory, such as stacks and arrays. We
propose to investigate this in future work.

This research was supported by NSF CCF-0915704.

13

REFERENCES

M. Abadi and G. Plotkin. On protection by layout random-
ization. Computer Security Foundations Symposium, 0:337–
351, 2010.

E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović.
Randomized instruction set emulation. ACM Trans. Inf. Syst.
Secur., 8:3–40, February 2005. ISSN 1094-9224.

C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and
E. Walthinsen. Protecting systems from stack smashing
attacks with stackguard. In In Linux Expo, 1999.

A. D. Gordon. Bisimilarity as a theory of functional program-
ming. Electr. Notes Theor. Comput. Sci., 1, 1995.

R. Jagadeesan, C. Pitcher, and J. Riely. Open bisimulation
for aspects. T. Aspect-Oriented Software Development, 5:
72–132, 2009.

Java 6 API. http://download.oracle.com/javase/6/docs/api/,
2011.

G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and
communications security, CCS ’03, pages 272–280, New
York, NY, USA, 2003. ACM. ISBN 1-58113-738-9.

S. B. Lassen. Eager normal form bisimulation. In LICS, pages
345–354. IEEE Computer Society, 2005. ISBN 0-7695-
2266-1.

S. B. Lassen. Head normal form bisimulation for pairs and
the λ µ-calculus. In LICS, pages 297–306. IEEE Computer
Society, 2006.

E. Levy. Smashing the stack for fun and profit. Phrack, 49,
1996.

P. Manadhata and J. M. Wing. Measuring a system’s attack
surface. Technical report, IN, 2004.

A. R. Meyer and K. Sieber. Towards fully abstract semantics
for local variables. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’88, pages 191–203, New York, NY,
USA, 1988. ACM.

M. Parigot. Lambda-mu-calculus: An algorithmic interpreta-
tion of classical natural deduction. In A. Voronkov, editor,
LPAR, volume 624 of Lecture Notes in Computer Science,
pages 190–201. Springer, 1992. ISBN 3-540-55727-X.

A. Pitts and I. Stark. On the observable properties of higher
order functions that dynamically create local names. In In
Mathematical Foundations of Computer Science, Proc. 18th
Int. Symp, pages 122–141. Springer-Verlag, 1993.

G. Portokalidis and A. D. Keromytis. Fast and practical
instruction-set randomization for commodity systems. In
Proceedings of the 26th Annual Computer Security Appli-
cations Conference, ACSAC ’10, pages 41–48, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0133-6.

D. Sangiorgi. A theory of bisimulation for the pi-calculus.
Acta Inf., 33(1):69–97, 1996.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM conference

on Computer and communications security, CCS ’04, pages
298–307, New York, NY, USA, 2004. ACM. ISBN 1-58113-
961-6.

K. Støvring and S. B. Lassen. A complete, co-inductive syn-
tactic theory of sequential control and state. In M. Hofmann
and M. Felleisen, editors, POPL, pages 161–172. ACM,
2007. ISBN 1-59593-575-4.

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lach-
mund, and T. Walter. Breaking the memory secrecy assump-
tion. In Proceedings of the Second European Workshop on
System Security, EUROSEC ’09, pages 1–8, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-472-0.

14

