
1

Certificates for Verifiable Forensics
Radha Jagadeesan, CM Lubinski, Corin Pitcher, James Riely, and Charles Winebrinner

DePaul University

Abstract—Digital forensics reports typically document the
search process that has led to a conclusion; the primary means
to verify the report is to repeat the search process. We believe
that, as a result, the Trusted Computing Base for digital forensics
is unnecessarily large and opaque.

We advocate the use of forensic certificates as intermediate
artifacts between search and verification. Because a forensic
certificate has a precise semantics, it can be verified without
knowledge of the search process and forensic tools used to create
it. In addition, this precision opens up avenues for the analysis
of forensic specifications. We present a case study using the
specification of a deleted file.

We propose a verification architecture that addresses the
enormous size of digital forensics data sets. As a proof of concept,
we consider a computer intrusion case study, drawn from the
Honeynet project. Our Coq formalization yields a verifiable
certificate of the correctness of the underlying forensic analysis.

I. INTRODUCTION

Eoghan Casey, editor-in-chief of Digital Investigation, a
premier journal in computer forensics, recently editorialized
[1]:

Digital forensics can no longer tolerate software that
cannot be relied upon to perform specific functions.
The root of this problem is a lack of clearly defined
software requirements, which compels users and tool
testers to make educated guesses and assumptions
about how we expect digital forensic tools to work.
This makeshift approach results in untested errors
in our tools that can lead to verdicts based on
incorrect information and can damage the reputation
of individual practitioners and the field as a whole.

The Scientific Working Group on Digital Evidence has raised
similar concerns [2].

The complaint is not merely about the correctness of tools,
it is also about underspecification. For example, consider
recovery of deleted files. Precise recovery of deleted files is
impossible, in general, since information has been lost. As
a result, heuristics are used. Heuristics may have both false
positives (incorrectly reconstructing a file) or false negatives
(failing to return a deleted file). Informally, each heuristic is
intended to refine the specification of file recovery only under
certain assumptions.

Forensic tools that recover deleted files rarely describe the
heuristics that they implement, leaving practitioners to dis-
cover and share this information. For example, Casey reports
experiments demonstrating that two forensic tools differ in
recovering deleted files from FAT file system images [3]. The
WinHex tool attempts to recover the contents of a deleted file

Research supported by NSF 0915704 and 0916741.

by taking as many contiguous clusters as needed, whether or
not they are currently unallocated. The EnCase tool instead
takes as many unallocated clusters as needed, but skips over
currently allocated clusters. Consequently, both tools may have
false positives, and they may be different! Neither tool is buggy
with respect to their chosen heuristic: the problem lies with
the lack of information about their chosen heuristic and the
assumptions under which it is correct. [3] observes:

Ultimately, no single method will always be suc-
cessful in all circumstances. This emphasizes the
importance of using multiple tools and being aware
of the assumptions they make.

The use of forensic tools that implement complex and
undocumented heuristics raises doubts about the correctness
of forensic results. Practitioners do attempt to replicate results
with different forensic tools, but direct comparison of results
can be challenging. For example, what does it mean to say
that a disk image includes evidence that a visit to an incrim-
inating web page has been made a specific number of times?
Differences in results for this query have led to disputes over
the validity of digital forensic evidence in court [4].

A similar complaint can be lodged against the results
obtained by composing tools. A forensics report is typically
a narrative description of the forensic search: the report lists
the tools that have been used and provides an argument for
the conclusion based on the composition of those tools. The
validity of the conclusion depends upon the details of this
composition.

We see this as a problem of an overly large Trusted Comput-
ing Base (TCB). The forensic examiner relies upon tools being
correct, and the court relies upon the choices, interpretations,
and arguments made by the examiner. Our goals are to identify
what must be trusted, and remove the need to trust wherever
possible, thereby making digital forensics more trustworthy.

We are inspired by the use of certificates for SAT solvers:
one should not trust the SAT solver that produces a certificate,
only the verifier that checks it. In our approach, the forensic
search process produces a forensic certificate that precisely
identifies the claims and assumptions made, along with proofs
that the claims follow from the assumptions.

Using the Coq theorem prover, we have formalized parts of
two submissions to the Honeynet Project forensics challenge
[5] as forensics certificates. We describe one of these in
section V of this paper.

Specifications provide the foundation for trustworthy digital
forensics, and so it is important to develop confidence in
forensic specifications. In section VI of this paper we show
how to analyze heuristics (encoded as specifications) for the
recovery of deleted files.

2

The formalizations described in this paper are available at
http://fpl.cs.depaul.edu/projects/forensics/.

The remainder of this section introduces the key ingredients
of the forensic certificate architecture in the context of a sample
investigation.

A. Borland’s Report
The forensic report by Matt Borland was one of the top

five submissions to a Honeynet Project forensics challenge
[5]. The particular challenge was to identify a rootkit1 within
a Linux system. The evidence available to the participants
was an image of the Ext2 file system. The reports for this
challenge constitute informal, natural language arguments for
an interpretation of data within the file system image.

Borland’s challenge report states:
The rootkit was found on deleted inode 23 of the file

system. It is a tar/gzipped file containing the tools
necessary for creating a home for the attacker on
the compromised system.
Due to evidence within the installation program
contained within, I will call this rootkit ’lk.tgz.’ Here
are its contents:
drwxr-xr-x ... 2001-02-26 14:40:30 last/
-rwxr-xr-x ... 2002-02-08 07:08:13 last/ssh
-rw-r--r-- ... 2001-02-26 09:29:58 last/pidfile
-rwx------ ... 2001-03-02 21:08:37 last/install
-rwx------ ... 2001-02-26 09:22:50 last/linsniffer
-rwxr-xr-x ... 1999-09-09 10:57:11 last/cleaner

[...]
I used icat to extract the first file, specifying the inode
using the following commands:
$ icat honeynet/honeypot.hda8.dd 23 > recovered/file-23

Then using ’file,’ I am given a guess at the type of
file.
$ file recovered/file-23
recovered/file-23: gzip compressed data, deflated,

last modified: Fri Mar 2 21:09:06 2001, os: Unix

At this point, I could then say:
$ tar tzvf recovered/file-23

Which then lists the contents of the tar/gzipped file,
which in this case returns the listing I included in
my analysis of the rootkit.

This inclusion of tool names, input parameters and output
is typical of forensic reports. In general, these tools interpret
data structures or search for data. A report may not contain
the entire output from the tool; a reader may choose to believe
that the omitted output is irrelevant.

Borland’s report uses ils from The Coroner’s Toolkit to list
the inodes of deleted files, ils2mac to translate the output, and
mactime to extract access times for the inodes of deleted files.
ils honeynet/honeypot.hda8.dd > ilsdump.txt
ils2mac ilsdump.txt > deleted.txt
mactime -p ../hp/etc/passwd -b deleted.txt 1/1/2001

This kind of tool composition is also typical. Here, the
output of ils is fed to mactime. The examiner must also

1A rootkit typically contains tools used to gain and maintain administrator
or system privileges on a compromised machine.

Forensic Certificate Workflow

Traditional Workflow

SEARCH PROCESS
Honeynet Ext2 image
icat, file, tar, ils, etc.

FORENSIC CERTIFICATE
formal claims and hypotheses

Coq proofs EXTERNAL HYPOTHESIS VERIFICATION
partial map inclusion verifier
gunzip map inclusion verifier

PROOF VERIFICATION
verify Coq proofs

SEARCH PROCESS
Honeynet Ext2 image
icat, file, tar, ils, etc.

FORENSIC REPORT
natural language document

informal claims
tool results

VERIFICATION
expert manual review
re-execute search tools

Figure 1: Traditional and Forensic Certificate Workflows

massage the data from one format to another using ils2mac
to accommodate the ad hoc formats used by these tools.

The report also includes expert interpretation. For example,
the contents of the /root/.bash_history file suggest that
new software was installed.
mkdir /var/...; cd /var/...
ftp ftp.home.ro
tar -zxvf emech-2.8.tar.gz
cd emech-2.8
./configure; make; make install
./mech

This information is used in conjunction with timestamps to
form, and subsequently justify, a hypothesis about the in-
truder’s activities:

...their ftp to ftp.home.ro would explain the ~7
minutes between login at 8:45 and change of
/etc/ftpaccess at 8:52...

Borland’s report demonstrates the challenges involved in:
(a) identifying the precise semantics of tools and natural lan-
guage statements; and (b) independently verifying the behavior
of tools, their composition, and arguments involving expert
interpretation.

B. Formalizing Borland’s Conclusion
The traditional workflow for generation and verification of

forensic reports involves manual review by experts and re-
execution of forensic search tools to confirm results. Figure 1
shows how our forensic certificate workflow differs from the
traditional workflow. In the forensic certificate architecture, the
forensic report is replaced with formal claims and Coq proofs
of the claims. The proofs can be verified (without human
involvement) using the Coq theorem prover. The claims in
the forensic certificate may depend on hypotheses that are
verified by other tools; we discuss hypotheses in subsection I-C
and subsection I-D.

Borland’s primary claim is that there is a deleted file on
the disk that, when uncompressed, looks like a rootkit. Thus,
our primary claim is a predicate, defined in Coq, that explains
what has been found in a file system image:
Definition borland_rootkit (img : Map) : Prop :=

exists (file : File),

http://fpl.cs.depaul.edu/projects/forensics/

3

isOnDisk file img
/\ isDeleted file
/\ isGzip file img
/\ Tar.looksLikeRootkit (gunzip file img).

This predicate indicates that (a) the file is found on the
image img, (b) the file is deleted, (c) the contents of file
is gzip-compressed, and (d) when decompressed, the result
is a tar archive that is consistent with a rootkit. For this
final predicate, Borland described the contents of the archive
as containing “necessary” files for a rootkit installation; we
used the list of names he provided in our formalization of
looksLikeRootkit.

While file systems must have clear semantics for non-deleted
files, heuristics for recovery of deleted files are often poorly
specified, complex, or both. Fortunately, deletion in an Ext2
file system is not very destructive; the inode is simply marked
as unused, and its link count zeroed. Therefore, we were able
to use a very simple predicate for isDeleted.

The primary challenge of the formalization lies with the
large volume of data common to digital forensics. The Ext2
file system image from the Honeynet challenge is 259MB. This
is an unusually small file system. Nevertheless, it is too large
to load into traditional theorem provers.

To gain a sense of the size limitations in existing theorem
provers, consider the representation of file system images as
maps using AVL trees from the Coq standard library, with
binary integers for the keys and values in the map. In this
representation, creating and looking up a single element in the
map {n 7→ n | 0 ≤ n ≤ 104} takes 10 seconds and 400MB
of RAM to compute, and the same operations for the map
{n 7→ n | 0≤ n≤ 105} take ~180 seconds and 1.2GB of RAM
to compute.

Is it possible to identify a subset of the file system image that
justifies the forensic claim and can be reasoned about using a
theorem prover? And, if so, is it sound to conclude that the
forensic claim holds for the entire file system image when it
holds for the subset?

In many cases, the answer to both questions is yes. For
example, consider a statement that a file exists within a file
system image. The relevant subset of the image includes file
system metadata and the sequence of directory entries leading
to the file.

Below we discuss a general approach, using externally-
verified hypotheses, to arguments that cannot be conducted
entirely within a traditional theorem prover.

C. Making Reliance on External Verifiers Explicit

Consider a forensic claim φ(Img) about a large file system
image Img. We wish to create and verify proofs of φ(Img), but
Img is too large to represent in a traditional theorem prover.

The first step is to present the argument for φ(Img) via the
following implication, for some hypothesis ψ(Img):

ψ(Img)⇒ φ(Img)

Since Img is too large, we cannot hope to prove this impli-
cation directly in a traditional theorem prover either. Instead,

we choose the hypothesis to ensure that a traditional theorem
prover can establish the statement:

∀img,(ψ(img)⇒ φ(img))

Here the concrete file system image Img is replaced with
the quantified variable img, thereby reducing the size of the
statement and its proof.

In order to conclude φ(Img), we rely on an external verifier
to check ψ(Img). For example, we make frequent use of
hypotheses about whether a partial map is a subset of a file
system image; it is trivial to write a program to test this
property efficiently.

Importantly, the creator of a forensic certificate neither uses
nor determines the external verifier implementations used by
a verifying party. If an external verifier incorrectly verifies a
hypothesis of the certificate, the implication of the forensic
certificate is still intact, but an unwarranted conclusion might
be drawn. Nevertheless, the reliance on a complex property is
made explicit via the hypothesis. Moreover, the reliance is on a
specification ψ(Img) not a particular implementation (external
verifier). This means that different verifying parties need not
use the same external verifier to check ψ(Img).

This separation is motivated by pragmatism. In practice,
we expect external verifiers to be relatively simple and easy
to validate, perhaps using multiple available implementations.
Any more complex reasoning should be proven using the
primary theorem prover.

At one extreme, if ψ(Img) = true, then the external verifier
does nothing. At the other extreme, if ψ(Img) = φ(Img), then
the argument shifts entirely from the traditional theorem prover
to the external verifier.

By making reliance on hypotheses explicit, we expose
such tension between using complex hypotheses (and external
verifiers) to simplify proofs and using simple hypotheses (and
external verifiers) that are easier to trust. This provides a frame-
work in which we can discuss simplification of hypotheses
(and external verifiers). For example, to assert that a file system
image contains precisely one JPEG file, it is necessary to show
that every other file is not a JPEG file. An external verifier to
check that a file is not a JPEG may be too complex for comfort.
However, an external verifier to check that a file does not have
a JPEG signature is much simpler, and can be shown to imply
that a file is not a JPEG in a traditional theorem prover. Thus
heuristics used by forensic search tools can be exposed and
treated formally.

D. Hypotheses for Borland’s Report

In the case of the Honeynet challenge, our case study shows
that Borland’s forensic claim can be justified using a subset of
~2,400 bytes from the file system image, declared as follows
(offset 1,024 is the beginning of the superblock):
Definition honeynet_img_partial : Map_N_Byte := [

1024 |-> ("216":Byte), 1025 |-> ("002":Byte), ...
]

Our main claim is then dependent on the assumption that
honeynet_img_partial v honeynet_img

4

where v is the subset ordering on maps represented as
functions. To make use of this inclusion, the predicates in the
forensic claim must be monotone with respect to v. More com-
plex strategies must be adopted to reason about non-monotonic
predicates, e.g., “there is no file named heist.doc” or the
more intricate “there are precisely 3 web pages in the browser
cache that refer to the heist”.

Similar difficulties arise with decompression. It is certainly
possible to formalize gunzip in Coq, but in practice this is
unattractive due to the volume of data involved. Instead, the
main theorem uses a second map, gunzipped_partial, and
postulates the relationship

gunzipped_partial v gunzip file23 honeynet_img
where file23 is bound to the particular deleted inode where
the rootkit was found.

Our formalization then consists of:
(a) a Coq-verified proof of the implication

Lemma borland_honeynet_final :
forall (img : Map),

honeynet_img_partial v img ->
gunzipped_partial v gunzip file23 img ->
borland_rootkit img.

(b) the claims that must be verified by external tools of the
relying party’s choice: (1) that honeynet_img_partial
is a subset of the entire file system image, and (2) that
gunzipped_partial is a subset of the content obtained
by decompressing file23.

This provides a formal, verifiable interpretation of Borland’s
report. In this paper, we focus on the Coq proof for (a).

We have written simple programs to verify the claims in (b).
In total the programs have fewer than 200 lines of Scala code,
not including library code such as file I/O and decompression.
These tools are not themselves formally verified. As we have
argued in the rest of this section, these tools are not forced on
the verifier of the certificate; indeed, they are free to use their
own tools.

E. Contributions

In this paper, we report the following contributions:
• A general framework for the representation and verification

of forensics certificates. The architecture is discussed in
the next section, techniques for scaling to large data sets
in section III, and generation of compact Coq proofs in
section IV.

• A case study formalization of Borland’s report for the
Honeynet challenge, which we describe in more detail in
section V.

• A novel approach to the specification and analysis of foren-
sic data-recovery heuristics based on providing patches that
restore data structures, presented in section VI.

We discuss related work in section VII.

II. ARCHITECTURE FOR FORENSIC CERTIFICATES

Our approach to obtaining sound, reproducible results is
based on the idea of forensic search tools producing forensic

Search Process

Forensic Certificate

Verification Process

EVIDENCE/SOURCES

volume images

memory images

logs

query

forensics search tools

external verifiers

CLAIM

logical proposition

...

logical proposition

JUSTIFICATION

indices

source fragments

deltas

PROOFS

proof

...

proof

theorem prover

composition prover

PROOF LIBRARY
lemmas

SPECIFICATION LIBRARY
definitions

Figure 2: Forensic Certificate Architecture

certificates that are verified by independent software. Im-
portantly, the verification of a forensic certificate can be
conducted:
• after the search has been completed, both by the creator of

the certificate and by independent experts during subsequent
legal proceedings,
• without access to the search software,
• with alternative specification libraries, and
• more efficiently than the original search.
The architecture is depicted in Figure 2. We discuss each major
component below.

Search process: The search process operates on a col-
lection of evidence/sources such as media images containing
volumes or file systems, memory images, log files, etc. An
investigator develops a query and executes search tools itera-
tively, refining the query based on search results.

The search process yields a claim that is supported by
justifying data identified during the search, as well as proofs.
We refer to the composite object as a forensic certificate. We
now consider each component of the forensic certificate.

Forensic Certificate: Claim: The claim is an assertion
about the evidence. We give three simple examples:

(a) a file exists at an absolute path within a file system
(b) a deleted file exists within a file system
(c) there are no occurrences of a particular file within a file

system (deleted or otherwise)
The meaning of (a) is clear. The meaning of (b) is uncertain,
because there is no canonical definition of what it means to
be a deleted file in a file system. In fact, different tools use
different definitions [3]. Unlike (a) and (b), (c) is a negative

5

assertion, and can only be validated by examining much of the
file system image. However, the scope of the examination is
uncertain.

We require claims to be formalized in an appropriate logic.
This formalization acts as an unambiguous interface, and thus
facilitates a clear separation between search and independent
verification of results.

Forensic Certificate: Justification: A naive approach to
verifying a claim is to execute a second search using alternative
trusted software, and compare the results with the original
claim. This is the approach taken by traditional testing, e.g.,
http://www.cftt.nist.gov. In addition to the obvious problems
with this technique (availability of alternate tools, need to
compare output with potentially different semantics, etc.), it
is also inefficient. Efficiency can be improved by insisting
that search software identifies the values that justify claims.
For example, if a deleted file is claimed, the location of the
file contents and/or a directory entry must be provided as a
justifying value. Thus the problem is shifted from one of search
to one of verification of a claim with justifying values.

We observe that the justifying values arise as witnesses for
existential quantifiers and disjunctions in logical specifications
of data structures such as file systems. For example, a logical
formula for “a file exists within a file system” would include
existentials representing the location of the file’s content
and the location of the directory entry for the file, amongst
other metadata structures. Thus logical specifications provide
a design criterion for the justifying data that is used to verify a
search result. This becomes more significant as the complexity
of file system structures grows.

Justifying data need not be limited to parts of the original
evidence, but may also include information found during
computational search. Such justifying data includes param-
eters such as reconstructed RAID parameters and recovered
passwords / keys. More complex examples are possible. For
instance, one may provide a file that is consistent with a
remnant (such as a hash or file fragment) found in the evidence.

Forensic Certificate: Proofs: It is possible to write direct
verifiers for families of claims and justifying values, but
such verifiers inherit the complexity of the data structures
(and their specifications), and there is no a priori reason
to trust that they are correct. Instead we require claims to
be verified using a theorem prover. Semi-automated theorem
proving systems such as Coq, Isabelle, etc., allow users to
prove theorems interactively. We avoid this mode of operation,
and instead require that a forensic certificate includes a proof
of each component in the claim, using the justifying values as
witnesses. Proofs are specific to a particular theorem prover,
but justifying values are not. Proofs may use lemmas from a
proof library, which is not part of the TCB because the proofs
in the library can be verified. We discuss methods for creating
proofs in section IV.

Specification Library: The specification library provides
logical specifications of data structures for, e.g., file systems,
volume systems, or memory images. In particular, the spec-
ifications extend to partially-corrupted data structures, such
as definitions for remnants of a deleted file existing in a file
system. In such cases, there are often alternative definitions.

Making these definitions precise resolves ambiguity in forensic
search tools. We discuss reasoning about the correctness of
definitions in the specification library in section VI.

Verification Process: Theorem Prover: The theorem
prover takes as input logical formulas from the claim as well as
the proofs with justifying values. The prover verifies the proof
without human input. If the verification of the proof fails, the
forensic certificate is rejected. Formulas within the claim can
be verified independently of one another, facilitating parallel
or randomized testing of proofs within a set of results where
desirable. Note that the verification process does not require
access to the forensic search tools used to generate the forensic
certificate.

Perhaps surprisingly, the theorem prover does not use the ev-
idence directly: existing theorem provers are unable to manage
the quantity of data found in typical evidence. Instead we rely
on the search process to identify fragments of the evidence that
are relevant to particular propositions in a claim. The theorem
prover manipulates fragments instead of the original evidence.
These fragments are part of the justifying values in the forensic
certificate.

Although the architecture is not tied to a particular theorem
prover, we have used Coq. Thus our claims are written in
a typed, higher-order logic, and proofs are represented as
proof terms. We use computational reflection as a strategy for
generating compact proofs. See section IV.

Verification Process: External Hypothesis Verifiers: To
detect accidental or deliberate inaccuracies in the fragments,
the verifier must also establish that the fragments of evidence
used by the theorem prover are consistent with the original
evidence. The task is ill suited to general purpose theorem
provers due to the large quantity of data. We therefore verify
the relationship between fragments and the original sources
with separate tools. We refer to these tools as external verifiers,
because they verify propositions, from the claim, that are
hypotheses for the forensic claims verified by the theorem
prover. The external verifiers make use of justifying values
and the original evidence.

There are many verification tasks with similar qualities,
e.g., calculating cryptographic hashes of part of a media
image; scanning a media image to identify all occurrences of
regular expression matches; etc. Our architecture permits the
introduction of an external verifier for each task. By intent, this
part of the verification is low complexity (e.g., testing whether
the fragment is a contiguous subsequence of an original media
image).

Verification Process: Composition Verifier: The verifica-
tion of a forensic certificate is divided between the theorem
prover and external verifiers for reasons of scale and efficiency.
To ensure validity of the final conclusion, additional deductions
must be verified. These simple first-order deductions can be
verified using a theorem prover that is specialized to reason
about large data. The use of a separate composition verifier
avoids the need to modify the proof-checking kernel of a
sophisticated theorem prover such as Coq.

Integration with Existing Forensic Search Tools: In this
paper we focus on demonstrating the feasibility of the verifi-
cation process and analysis of forensic definitions in the spec-

http://www.cftt.nist.gov

6

ification library. We leave integration with existing forensic
search tools (creation of forensic certificates) to future work.
Nevertheless, there are reasons to believe that the integration
is less costly than might be expected.

The creation of logical propositions from queries is trivial
engineering. The development of a specification library varies
from routine to requiring considerable reverse engineering and
validation, but rigorous specifications are a useful goal in their
own right, and this effort can be amortized across multiple
forensic search tools.

The use of proof by reflection, as discussed in section IV,
shifts the burden of proof creation from forensic search tools
to the developers of proof libraries that can be developed
independently from forensic search tools. The Honeynet case
study of section V demonstrates feasibility of constructing such
proofs.

Thus the primary integration task is the generation of
justifying values for the forensic certificate. It appears that
in many cases of interest, simple post-processing of forensic
search tool output will suffice. For example, Garfinkel pro-
poses DFXML as a common intermediate format to facilitate
composition of forensic search tools [6]. It is unsurprising that
the same intermediate format also facilitates composition with
verification tools. In particular, justifying values appear in the
DFXML output from forensics search tools. As an example,
the fiwalk program (integrated with the well-known Sleuthkit
system) generates the following output for the rootkit file
in inode 23 of the Honeynet example (some elements and
attributes are omitted for brevity):

<fileobject>
<parent_object> <inode>2</inode> </parent_object>
<filename>lk.tgz</filename>
<partition>1</partition>
<name_type>r</name_type>
<filesize>520333</filesize>
<unalloc>1</unalloc> <used>1</used>
<inode>23</inode>
<mode>420</mode>
<nlink>0</nlink>
<uid>0</uid> <gid>0</gid>
<mtime>2001-03-16T01:36:48Z</mtime>
<ctime>2001-03-16T01:45:05Z</ctime>
<atime>2001-03-16T01:44:50Z</atime>
<dtime>2001-03-16T01:45:05Z</dtime>
<byte_runs>
<byte_run file_offset=’0’ fs_offset=’314368’ len=’12288’/>
<byte_run file_offset=’12288’ fs_offset=’327680’ len=’262144’/>
<byte_run file_offset=’274432’ fs_offset=’591872’ len=’245901’/>

</byte_runs>
<hashdigest type=’sha1’>4b0874...</hashdigest>

</fileobject>

There are two challenges in the use of DFXML output.
The first is that there is no rigorous, formal definition of the
semantics of DFXML, and different tools may use the same
representation with different meanings. This is a pre-existing
problem that would be detected by the verification process. The
second challenge is that forensic search tools may not output
all of the required justifying values, even when the search tool
has the values. For example, in the process of developing a
standalone verifier for DFXML output with the NTFS file
system, we discovered that some required values were not
included (specifically, DFXML only lists the first MFT entry
for each file, but there could be many for a single file). Such
missing values can usually be identified by an inexpensive, yet
redundant, local search, when it is not feasible to modify the

search tool to output the value.

III. FEASIBILITY OF FORMAL FORENSICS

The simplest formal model of data forensics assumes that
evidence can be referenced directly in formulas used by a the-
orem prover. However, such a simple model is infeasible in an
unmodified prover due to the size of the data to be examined.
While it is possible to modify a prover to provide efficient
access, this would require modifications to the trusted verifier
core of existing provers, prompting soundness concerns.

Instead, as described in the previous section, we factor
verification between a base verifier (such as Coq) and external
verifiers. The external verifiers are trusted to approve or repu-
diate statements of the base logic without formal proof. The
external verifiers are designed to efficiently check properties
of large data sets (for example, that certain bytes are present at
certain addresses). Results from the base verifier and external
verifiers are designed to be easy to compose with simple first-
order deduction.

A. Reasoning via Bounds
Let Img be a map from offsets to bytes, representing a file

system image. Suppose a search tool identifies that property
φ holds for Img. Let img be a fresh variable and let φ ′ be the
formula obtained by replacing all occurrences of Img by img
in φ ; thus φ = φ ′[img := Img]. Since Img is large in almost
all forensic applications, the formula φ will be too large for
existing theorem provers, even when φ ′ is small.

Many properties of interest in digital forensics do not
require that the entire image be examined. For example, file
identification tools often inspect only a few bytes at the start
or end of a file. Similarly, affirming the existence of a file with
a given pathname requires checking the bytes in a sequence
of directory entries and some metadata.

We therefore adopt partial maps as our standard repre-
sentation of disk images and seek to keep these as small
as possible. We rely on forensics search tools to isolate the
submap Bndv Img that is relevant to the property of interest.
The notation b v i indicates that when b is defined it agrees
with i and that b is undefined whenever i is undefined. The
proof for φ then consists of the following three components
(recall that φ = φ ′[img := Img]):

∀img. (Bndv img⇒ φ
′) (1)

Bndv Img (2)
{∀,⇒}-elimination to conclude φ (3)

If both Bnd and φ ′ are small, then (1) is small, and therefore
it can be checked by the base verifier. Since (2) includes
Img, this formula must be checked by an external assumption
verifier. Trust in the external verifier must be established
separately, but the decision procedure for map inclusion is
extremely simple. The deduction (3) is a first-order deduction
carried out by the composition verifier. That is, ∀-elimination
is used to deduce (Bnd v img⇒ φ ′)[img := Img] = (Bnd v
Img⇒ φ) from (1) by instantiating the variable img with the
file system image Img. Then, ⇒-elimination (modus ponens)
is applied to this result, along with (2), to deduce (3).

7

Monotonicity: Often, formula (1) above can be established
by demonstrating that φ ′ is monotone with respect to v
and then establishing φ ′[img :=Bnd]. That is, the following
statements are established in the base verifier, then (1) is
deduced.
• Monotonicity of φ ′:

∀img1, img2. (img1 v img2∧φ ′[img := img1]⇒ φ ′[img := img2])

• φ ′ is shown to hold for Bnd: φ ′[img :=Bnd]
Such monotonicity properties are reminiscent of those that
arise in model theory for positive existential formulas.

Example III.1 (Monotonicity of Parsing Ext2 Superblocks).
Monotonicity results are often obtained compositionally, and
the intermediate results may have additional quantification.
For example, the procedure to compute a superblock record
from an Ext2 file system image is monotone in the image. This
is captured in the following Coq lemma from our Honeynet
development (where the Found constructor indicates a
successful operation):
Lemma findAndParseSuperBlock_subset :

forall (img1 img2 : Map) (superblock : SuperBlock),
img1 v img2 ->

findAndParseSuperBlock img1 = Found superblock ->
findAndParseSuperBlock img2 = Found superblock.

B. Spatial Decomposition
A search for documents in a file system often produces

thousands of files. In such cases, the claim for a forensics
search yields a formula that is too large to represent in
existing theorem provers such as Coq. Fortunately, forensics
search results are often naturally represented as conjunctions
of subformulas that refer to distinct areas of an image. Sub-
formulas are checked by the base verifier, and conjunctions
of those subformulas are checked by the simpler composition
verifier, facilitating, e.g., parallel or randomized verification of
components of forensics results.

Consider a statement φ
M
=

∧
i∈I φi, where Img appears in each

subformula φi. As an example of such a statement, each φi
may describe the existence of a file in Img. Assume a family
of partial maps (Bndi | i ∈ I) and formulas (φ ′i | i ∈ I) such
that φi = φ ′i [img := Img], each φ ′i contains no occurrences of
Img, and each ψi is provable with the base verifier, where:

ψi
M
= ∀img : Map. (Bndi v img⇒ φ

′
i) (∀i ∈ I)

Now the size of the conjunction
∧

i∈I ψi may still be too large
for the base verifier because of the size of Σi∈I |Bndi|. For
example, if φi represents a statement about the contents of
a file in a file system, then each Bndi could be the entire
file contents. Moreover, if I ranges over all files within a file
system, then the size of the statement

∧
i∈I ψi is linear in the

size of the allocated space within the file system. For this
reason, the final deduction of φ must be performed by the
composition verifier.

The proof for φ then consists of three components:

∀img. (Bndi v img⇒ φ
′
i) (∀i ∈ I) (4)

Bndi v Img (∀i ∈ I) (5)
{∀,⇒}-elimination and {∧}-introduction to conclude φ (6)

Again (4) is checked by the base verifier, (5) by an external
verifier, and (6) by the composition verifier.

More generally, it may not be possible to find small partial
maps as above. For example, consider the statement that a
directory exists at an absolute path /d0/d1/.../dN−1. If φ ′i
states that there is a directory entry with name di and a path
from the root directory, then establishing φ ′i requires additional
bounds on img:

∀img. (
∧

0≤ j≤i

Bnd j v img)⇒ φ
′
i) (∀i ∈ I) (7)

However, Σ0≤ j≤i|Bnd j| may be too large. Instead, we establish
φ as above, replacing (4) with:

∀img. (((
∧

0≤ j≤i−1

φ
′
j)∧Bndi v img)⇒ φ

′
i) (∀i ∈ I) (8)

Note that the upper bound on j is i− 1, rather than i, and
that the ith formula in (8) contains exactly 1 partial map
(Bndi) rather than the i+ 1 partial maps in the subformula
(
∧

0≤ j≤i Bnd j v img) of (7). Perhaps unusually, this applica-
tion of cut serves to reduce the size of the formulas under
consideration rather than the size of derivations.

C. Sound and Complete Search Results
Consider a forensics search for a set of offsets X satisfying

a property P, e.g., occurrences of regular expression matches.
Here we consider proofs that:

(a) each offset in X satisfies P (soundness), and that
(b) X contains every offset satisfying P (completeness).

Soundness: We must establish that each offset in X satisfies
P. Let dom(Img) = [0,N) for some N. The soundness of the
search can be expressed as follows.

φ
M
= ∀n,0≤ n < N⇒ (n ∈ X ⇒ P(Img,n))

As before, we assume an indexed collection of partial maps
(Bndn | n ∈ X) such that the following is provable with the
base verifier:

∀img. Bndn v img⇒ P(img,n) (n ∈ X)

Now Σn∈X |dom(Bndn)| may be large, so the base verifier
cannot generally deduce:

∀img. (
∧

n∈X (Bndn v img))⇒
∀n,0≤ n < N⇒ (n ∈ X ⇒ P(img,n))

Instead, we use the base verifier to establish that individual
results about each Bndn, for n ∈ X , can be combined using
formula (10) below. The complexity of (10) arises from the
quantification over bounds used for partial maps (eliminated in
the subsequent composition verifier deduction). The complex-
ity is justified by the reduction in size of the formula presented
to the base verifier, and by the simplicity of the composition
verifier. The proof for soundness has the following steps:

∀img. Bndn v img⇒ P(img,n) (n ∈ X) (9)

8

∀(bndn | n ∈ X).
(
∧

n∈X (∀img. bndn v img⇒ P(img,n)))⇒
∀img. ((

∧
n∈X bndn v img)⇒

(∀n. n ∈ X ⇒ P(img,n)))

(10)

Bndn v Img (n ∈ X) (11)

{∀,⇒}-elimination and {∧}-introduction to conclude φ

(12)

Here (9) and (10) can be checked by the base verifier, (11)
by the external verifier, and (12) by the composition verifier.
Note that the universally-quantified variables (bndn | n ∈ X)
in (10) are instantiated with the partial maps (Bndn | n ∈ X)
in the composition verifier.

Completeness: Now we must establish that every offset
satisfying P appears in X :

φ
M
= ∀n. 0≤ n < N⇒ (P(Img,n)⇒ n ∈ X)

Since the entirety of Img must be examined in general, e.g.,
for regular expression matches, it is unlikely that small partial
maps can be used directly for such proofs. Instead we consider
how to use assumptions about intervals where the property P
does not hold. This is useful when the number of intervals
is significantly smaller than the total size of the intervals.
The assumptions must be checked using external verifiers that
understand P.

To illustrate, consider a family of pairs I ⊂Z×Z represent-
ing the intervals where P does not hold, i.e.:

{n | (x,y) ∈ I∧ x≤ n < y}= dom(Img)\X

We use trusted external verifiers to check the family of results:

∀n. x≤ n < y⇒¬P(Img,n) ((x,y) ∈ I)

Then the proof for completeness consists of:

∀img. (
∧

(x,y)∈I(∀n. x≤ n < y⇒¬P(img,n)))
⇒∀n. 0≤ n < N⇒ (P(img,n)⇒ n ∈ X)

(13)

∀n. x≤ n < y⇒¬P(Img,n) ((x,y) ∈ I) (14)

{∀,⇒}-elimination and {∧}-introduction to conclude φ

(15)

(13) is checked by the base verifier, (14) by an external verifier,
and (15) by the composition verifier. The proof of (13) uses
the fact that:

∀n. 0≤ n < N⇒ n ∈ X ∨ (
∨

(x,y)∈I

x≤ n < y).

Example III.2 (Counting Deleted Files). Consider a forensic
claim that there is exactly one deleted file in an Ext2 file
system image. To make “deleted” precise, we mean that there
is an inode with a link count of zero [7]. The link count is
stored in 2 bytes within an inode. The Ext2 Honeynet image
has 66,264 inodes, and so the naive formalization that uses
a subset of the file system image with all inode link counts
requires a partial map with 132,528 entries, which is large
enough to be problematic in a theorem prover.

Fortunately, inodes are stored consecutively within a small
number of block groups, and this can be used to reduce the
size of the partial map used within a theorem prover. First,
define the predicate φ(img,s,m,n,v,X) so that X is the set of
offsets in s, s+m, s+2m, . . . , s+(n−1)m, where a value v
occurs in two bytes within img. That is:

φ(img,s,m,n,v,X)
M
=

X = { j | 0≤ j < n
∧ img[s+ j ∗m]+256∗ img[s+ j ∗m+1] = v}

A simple external verifier can be constructed to verify φ .
For the Honeynet challenge image there are 2,008 inodes

per block group, and suppose that s0, s1, s2, . . . , s32 are the
offsets for the inode tables within each block group. There are
128 bytes per inode, and the link count is stored in offsets
26-27 within an inode. If the conclusion of the forensic claim
is that the deleted file occurs in the 20th inode of block group
zero, the hypothesis used within the base verifier is then:

φ(img,s0 +26,128,2008,0,{19})∧
φ(img,s1 +26,128,2008,0,{})∧
φ(img,s2 +26,128,2008,0,{})∧
. . .
φ(img,s32 +26,128,2008,0,{})

With the above hypothesis, the definition of φ , and file system
metadata from the superblock, it is possible to establish that
there is exactly one deleted file. Note that the conclusion
of the forensic claim is formulated in terms of the Ext2
file system structure. In contrast, the hypothesis does not
require any knowledge of file system structure, i.e., the theorem
prover verifies arguments about the interpretation of data in the
file system. With this approach, the formula (an implication)
checked by the theorem prover is linear in the number of
block groups (33 in the Honeynet example), as opposed to
being linear in the number of inodes (66,264 in the Honeynet
example) by the large partial map. 2

D. Composition Verifier

The arguments above, in (3), (6), (12) and (15), demonstrate
that, by design, results from the base verifier and external
verifiers can be composed using intuitionistic propositional
reasoning and a restricted form of ∀-elimination that allows
top-level quantification over images. In some cases, these
deductions are simple enough that mechanization adds little.
This is arguably true for the case study presented in section V,
which requires one application of ∀-elimination and two ap-
plications of ⇒-elimination.

For more complex uses of propositional connectives, mech-
anization may be desirable. Such a composition verifier would
be quite simple — much simpler than the kernel of a theorem
prover for a more sophisticated logic. The only interesting
requirement is that the composition verifier support the large
maps arising from file system images, memory images, etc. For
example, formulas might refer to the names of files containing
the large maps, as opposed to having the large maps embedded
within the formulas.

9

IV. GENERATION OF PROOFS

An important design principle for the architecture is that
generation of forensic certificates must be automated, and must
not require additional effort by forensic examiners. Forensic
certificates contain justifying data, claims, and proofs. Existing
forensic search tools often produce enough information to
create the first two via an automated post-processing step,
given sufficient knowledge of the search tools’ behaviour.
Formal proofs however are more difficult to recreate from
the output of forensic search tools. In addition, the size of
proofs must be minimized, as discussed in section III. Here we
illustrate the issues using the Coq theorem prover, and outline
how to generate compact proofs using a proof by reflection
strategy.

Coq is a semi-automated type-checker for a powerful
dependently-typed programming language, and is used as a
theorem-proving framework. Although proof terms in Coq can
be written directly, they are often constructed using a tactic
language. A proof term constructed by tactics is type-checked,
or verified, and can be saved for subsequent standalone veri-
fication.

Thus there are two competing methods for distributing
proofs. The first is to distribute the tactics script, which is often
easier to understand or modify than a proof term; however,
verifying the script is potentially expensive because it entails
repeating the same proof search, and tactics are less robust
than proof terms because of the potential for changes in the
proof search algorithms. The second method is to distribute the
proof term. For the content of forensic certificates, the second
method is preferable because of the potential inefficiency and
non-robustness of tactic scripts.

It remains to generate the proof term to be stored in the
forensic certificate. One approach is to develop custom tactics
that are specific to the claims produced by forensic search
tools. The custom tactics conduct an automated proof search on
behalf of the forensic examiner. Following the original design
principle, custom tactics are expected to find a proof if one
exists, so that the forensic examiner need not be involved with
the theorem prover.

Our experiments suggest that proof search for forensic
claims is challenging to execute efficiently, and easily leads
to proof terms that are too large to type check with Coq. In
particular, the size of proof terms can be proportional to the
number of cases in a proof, and naive proofs about forensic
claims do generate very large numbers of cases.

A. Proof by Reflection
Rather than use tactics based search, we have adopted

a proof by reflection strategy for the generation of proof
terms. Proof by reflection [8] replaces a proof search with
a computational procedure, when the computational procedure
has been proven correct.

Proof by reflection relies on the following type inference
rule. It allows a term M to be type checked with type U if M
has type T and the types T and U are convertible.

Γ `M : T T ≡U
Γ `M : U

The convertibility relation includes computation. For example,
consider a boolean-valued function f. The previous typing rule
can be instantiated to show that the proof term for reflexivity of
equality eq_refl has type f x= true whenever true≡ f x,
i.e., when executing f x results in true.

Γ ` eq_refl : true= true (true= true)≡ (f x= true)

Γ ` eq_refl : f x= true

If it is possible to deduce a property P x from the computation
of f x returning true, then f can be seen as certified code for
the property P. This would be established as a lemma sound
of the following form:

Γ ` sound : ∀x,f x= true→ P x

If the reverse implication holds, f is a decision procedure for
P.

If there is a lemma sound with type as above, then a proof
of P v, for some literal value v, has a simple tactics script of
the following form. It uses the sound lemma, and then checks
that computing f v yields true.
Lemma result : P v.
Proof. apply sound; reflexivity. Qed.

B. Application to Forensic Certificates
In the context of forensic certificates with large sources and

the limitations of existing theorem provers, the size of the tac-
tics script is less important than the size of the corresponding
proof term that it creates. In the case of result above, the
proof term is:

sound v (@eq_refl bool true)

In particular, for forensic claims, the literal value v may be a
large fragment of a disk image. Naive proof terms generated
by custom tactics can have size that is quadratic or worse in the
size of v, and so the single occurrence of v in the proof term
above is a significant improvement (recall from section I that
a single occurrence of a map with 105 elements uses 1.2GB
of RAM in the Coq process).

In addition to decreasing the size of proof terms, our
experiments suggest that it is easier to develop computational
procedures than custom tactics for proving forensic claims.
Moreover, the procedures are for verification of justifying data
from a forensic certificate, as opposed to searching for the
same data, and so the procedures are simpler than forensic
search tools. However, the procedures to be developed even
for simple file system claims have more variety than the code
found in a file system driver, because they may verify prop-
erties of partially-corrupted data structures, e.g., for verifying
claims about deleted files.

The correctness of the computational procedures is estab-
lished by lemmas such as sound above. This allows the
specification for forensic claims to be defined declaratively
(e.g., via a graph logic statement encoded in Coq) rather than
via a reference implementation. The former is more convenient
for the type of analysis discussed in section VI.

Finally, the use of computational procedures for verifying
forensic certificates facilitates reasoning about the complete-
ness of the procedure, as opposed to custom tactics. This can

10

remove the risk that a forensic search produces a claim that
cannot be proven despite testing of the process to generate a
proof.

C. Runtime Performance
To verify each proof in a forensic certificate, the theorem

prover must re-execute the computational procedure. For this
reason, we must pay attention to the efficiency of reduction
in theorem provers. Our experiments in this area suggest that,
with care, the Coq theorem prover can perform computations
for our formalization of a forensics challenge from the Hon-
eynet project within a few seconds. In section VII we discuss
related work on increasing runtime performance necessitated
by the use of a proof by reflection style.

V. CASE STUDY: COMPUTER INTRUSION

In this section, we return to our formalization of Matt
Borland’s forensic report for one of the Honeynet Project’s
challenges [5]. The formalization involves verification of re-
sults using both Coq and external verifiers, in addition to
deduction between the components as discussed in section III.
The following discussion reflects the fact that almost all of
the development effort lay in the specification and verification
using Coq.

The Coq development for this case study is available at
http://fpl.cs.depaul.edu/projects/forensics/.

A. Forensic Claim
Recall the Coq definition of the predicate for the claim of

Borland’s report:
Definition borland_rootkit (img : Map) : Prop :=

exists (file : File),
isOnDisk file img
/\ isDeleted file
/\ isGzip file img
/\ Tar.looksLikeRootkit (gunzip file img).

This predicate indicates that there is a deleted file within
the file system image img, it is a gzip-compressed file, and
the result of decompressing the file is a tar archive that is
consistent with a rootkit.

The File type represents metadata about the file, including
its size, the location of the file’s content, and whether or not
the file is deleted. The isOnDisk predicate establishes that
the metadata given in file exists in img. The definition of
the isOnDisk predicate is specific to the Ext2 file system. We
leave the modular specification of other file systems to future
work.

The isGzip predicate is a simple signature-based check of
the contents of the file. This predicate examines the actual
file content from img, where the location of the content is
determined by file. The decision to refer to file content by
indirection to img, as opposed to storing a copy of the file
content in file, makes it easier to avoid duplication of the
content in the resulting proof term’s witness for the existential.

The Tar.looksLikeRootkit predicate examines the struc-
ture of a tar file, and tests whether two or more names

of archive entries are on a blacklist, reflecting Borland’s
discussion. Borland’s report does not contain an analysis of
the malicious executables within the tar file. We discuss the
use of gunzip below.

B. Proof Outline
If there were no limits on the size of data that could be

handled by Coq, we would like to prove:
Lemma attempt1 : borland_rootkit honeynet_img.
where honeynet_img is a data structure holding the entire
259MB file system image. However, as discussed in the intro-
duction, this data structure is many orders of magnitude larger
than Coq can handle. Our second attempt is to identify a subset
honeynet_img_partial of honeynet_img, and prove:
Lemma attempt2 : borland_rootkit honeynet_img_partial.
This is useful in the presence of a monotonicity result of the
form (recall that v is the inclusion order on maps represented
as functions):
Lemma borland_rootkit_mono :

forall (img1 img2 : Map),
img1 v img2 ->
borland_rootkit img1 ->
borland_rootkit img2.

Assuming a proof term inclusion for the order:
inclusion : honeynet_img_partial v honeynet_img
we would then have the following proof term for the original
lemma attempt1 above:
borland_rootkit_mono

honeynet_img_partial
honeynet_img
inclusion
attempt2

: borland_rootkit honeynet_img.
Since honeynet_img, and consequently inclusion, cannot
be defined in Coq, this final conclusion must be checked by a
composition verifier rather than Coq. Additionally, the proof of
honeynet_img_partial v honeynet_img involves running
a simple external verifier that has access to the partial image
used in Coq and the full file system image.

C. Decompression
It remains to prove attempt2. This proof is complicated

by the presence of decompression in borland_rootkit (the
forensics claim). There are two issues. The first is that a
Coq coding of the gzip decompression algorithm is non-trivial
to develop. The second is that the decompression algorithm
uses the entire compressed input to produce the entire decom-
pressed output, and the entire compressed input file is also
too large to represent in Coq. This is unfortunate because the
predicate Tar.looksLikeRootkit requires only part of the
decompressed file, by analogy with the use of honeynet_-
img_partial above. It is possible to describe relationships
between partial input and partial output for the decompression
algorithm, but these relationships are particularly complex.

For these reasons, we rely on an external program to
decompress the file. The external decompressor becomes part

http://fpl.cs.depaul.edu/projects/forensics/

11

of the TCB, in addition to the Coq type checking kernel, the
specification library, and other external verifiers. While not
ideal, including decompression in the TCB seems to be a be-
nign compromise: we believe that errors in forensic claims are
more likely to be associated with specialized, domain-specific
tools and arguments rather than with standard decompression
tools.

In addition to executing the decompression algorithm out-
side Coq, we also leave the decompression algorithm uninter-
preted within the Coq specification and proof of the forensic
claim. That is, the Coq script includes the declaration of a free
variable for the decompression function:
Variable gunzip : File -> Map -> File.

Note that the File type may optionally include file content,
and this is important for gunzip because the result of decom-
pressing cannot normally be found in the file system image.

We have already seen that the uninterpreted gunzip function
appears in the forensic claim borland_rootkit. In order to
establish a property of the results of gunzip, we require a
hypothesis about gunzip in the forensic claim. The hypothesis
is that there is a subset gunzipped_partial of the decom-
pressed data obtained from the compressed file file23 (the
file for inode 23 in the Honeynet challenge image) within the
file system image, written as follows:
gunzip_inclusion :

gunzipped_partial v gunzip file23 honeynet_img

The proof of borland_rootkit is then based on factoring
it into the following lemma about the subsets honeynet_-
image_partial and gunzipped_partial of the file system
image and the decompressed file respectively:
Lemma attempt3 :

isOnDisk file23 honeynet_img_partial
/\ isDeleted file23
/\ isGzip file23 honeynet_img_partial.
/\ Tar.looksLikeRootkit gunzipped_partial.

Monotonicity results are used to extend the above lemma
to larger file system images. For the first three predicates,
monotonicity results resemble borland_rootkit_mono. For
the last predicate, we show that Tar.looksLikeRootkit is
monotone in its File argument:
Lemma looksLikeRootkit_mono :

forall (f1 f2 : File),
f1 v f2 ->
Tar.looksLikeRootkit f1 ->
Tar.looksLikeRootkit f2.

The individual monotonicity results are combined as:
Lemma borland_rootkit_mono_revised :

forall (img1 img2 : Map) (file f1 f2 : File),
img1 v img2 ->
f1 v f2 ->
(isOnDisk file img1
/\ isDeleted file
/\ isGzip file img1
/\ Tar.looksLikeRootkit f1) ->

(isOnDisk file img2
/\ isDeleted file
/\ isGzip file img2
/\ Tar.looksLikeRootkit f2).

Outside Coq, this monotonicity result can be used with the
large honeynet_image to create the following proof term:
borland_rootkit_mono_revised

honeynet_img_partial honeynet_img
file23
gunzipped_partial (gunzip file23 honeynet_img)
inclusion gunzip_inclusion
attempt3 :

(isOnDisk file23 honeynet_img
/\ isDeleted file23
/\ isGzip file23 honeynet_img
/\ Tar.looksLikeRootkit (gunzip file23 honeynet_img)).

Within Coq, we instead finalize the formalization of the
forensic claim as:
Lemma borland_honeynet_final :

forall (img : Map),
honeynet_img_partial v img ->
gunzipped_partial v gunzip file23 img ->
borland_rootkit img.

Then the conclusion (borland_rootkit honeynet_image)
depends only on external verification of the two properties:
inclusion :

honeynet_img_partial v honeynet_image
gunzip_inclusion :

gunzipped_partial v gunzip file23 honeynet_img

As discussed in section I, we have implemented external
verifiers for these properties in fewer than 200 lines of Scala
code.

D. Coq Development

The Coq development for Borland’s report has two compo-
nents:

(a) The specification of the forensic claim, including the defi-
nition of data structures for the Ext2 file system.

(b) Procedures used in proof by reflection, and proofs of lem-
mas.

Code in (a) is part of the TCB, in addition to the Coq standard
library definitions and the Coq type checking kernel, and is
approximately 800 lines of code. Code in (b) is not part of the
TCB, and is approximately 1,800 lines of code.

The proof of concept currently lacks integration with ex-
isting forensics search tools. For example, we have used
simple custom tools to extract honeynet_image_partial
and gunzipped_partial for insertion into Coq statements.
These custom tools are not part of the TCB.

Verifying the entire development, including both the foren-
sic claim and proofs of correctness, takes approximately
26 seconds. We use Coq’s vm_compute tactic to normalize
terms with the virtual machine, as opposed to the default
normalization mechanism, for reasons of speed. The default
normalization mechanism requires 267 seconds to complete the
proof for attempt3, whereas the virtual machine mechanism
completes the same proof in 4.6 seconds. The reported times
are for Coq 8.4pl2 and Linux kernel 3.2.0, executing on a Xeon
E3-1230 running at 3.20GHz with 16GB of RAM.

12

VI. ANALYSIS OF FORENSICS SPECIFICATIONS

It is relatively straightforward to specify the interpretation of
the current contents of a file system image. We refer to such a
specification as the standard specification. The standard spec-
ification can be validated against a running implementation.
For example, one can easily test that the specified contents of
a directory are the same as the interpretation under a given file
system driver.

Forensics is also concerned with inferring the past contents
of a file system. Assuming that backups are not available,
such past properties must be inferred from the current contents
of the file system; we refer to the specification of such
past properties as a nonstandard specification. A nonstandard
specification typically interprets data structures in the file
system that are partially destroyed. For example, when a file
is deleted, only part of the directory entry may be deleted by
a particular implementation. In this case, it may be impossible
to validate the nonstandard specification against a running
implementation: the file system driver will likely ignore the
corrupted entry. Other examples of nonstandard specifications
are found in memory forensics and when data has been
deliberately hidden by anti-forensics tools [9].

We now consider how to validate nonstandard specifications.
The validation is intended to convince the relying parties that
recovered data has not been fabricated by the search process.
We describe our approach in subsection VI-A and present
a case study in subsection VI-B. The case study formalizes
reasoning about deletion in the FAT filesystem. We refer to this
example informally in subsection VI-A. It is sufficient to note
that when a FAT file is deleted, the list of allocated clusters is
lost — only the first cluster and file length are known. For a
deleted file containing n clusters, only one is known; the other
n− 1 clusters could have been anywhere on the disk, in any
order.

A. Validation of Nonstandard Specifications via Patches
Since there are many possible nonstandard specifications for

recovery of information from deleted files, or more generally
undefined and invalid data structures, how do we know whether
a particular choice of specification is reasonable? We consider
patches to an image. A patch is intended to restore an
undefined or invalid data structure to a valid state. Patches
provide a deterministic, concrete explanation of changes.

We represent a patch as a partial map ∆ from offsets
to bytes, and write Img � ∆ for the partial map where ∆

updates Img. If a nonstandard specification justifies recov-
ery of a deleted file from Img, does there exist a par-
tial map ∆ such that Img � ∆ satisfies the standard spec-
ification? In the case of file deletion, let fileExists be the
standard specification and fileExistsDeleted be the nonstan-
dard specification. Diagrammatically, we have the following.

Img�∆ Img

(clusters,content) (clusters,content)

fileExists

∆

fileExistsDeleted

Without any constraint, of course, patching is too powerful
to be useful. The entirety of the disk can be overwritten!
Constraints can be used to establish that a patch is reasonable.

The simplest form of constraint limits the size of a patch.
For example, a patch for the recovery of a deleted (but not
overwritten) JPEG image file would be suspicious if it modi-
fied more than a few hundred bytes. Nevertheless, constraints
on patch size may not identify patches that modify, e.g., EXIF
metadata in a JPEG image file (to suggest that a photo was
taken at a particular location and time), or the contents of a
spreadsheet.

For this reason, it is important to understand the contents of
a patch in terms of file system semantics. Often the domain of
a patch determines whether it is acceptable. In the case of FAT
file deletion, the patch modifies only one byte of the directory
entry and several bytes in the FAT; only metadata is altered,
not data. This is sufficient to argue that the contents of the
file has not been manufactured by the forensics process. In the
next subsection, we provide a more formal account.

B. Case Study: Deleted Files in the FAT File System

The FAT file system stores the contents of files in clus-
ter chains, consisting of one or more clusters that may be
contiguous or fragmented across the file system [10]. The
File Allocation Table (FAT) is a data structure that records
both the allocation status of clusters and the order of clus-
ters that make up a file. Conceptually, the FAT is a partial
map FAT : Z ⇀ {UN,TM} ∪Z. For a cluster number n, if
FAT(n)=UN, then cluster n is unallocated. If FAT(n)= n′ ∈Z,
then cluster n is allocated and it is followed by cluster n′ in
a cluster chain. If FAT(n) = TM, then cluster n is allocated
and is the terminal entry in a cluster chain. A FAT should not
have occurrences of UN in cluster chains. A directory entry in
a FAT file system image contains the filename, the file size,
and the starting cluster number. A file system driver accesses
a file’s contents by calculating the cluster chain from the FAT.

Typically, when a file is deleted, the first byte of the filename
is overwritten with a distinguished value (marking the directory
entry as unallocated), and the entire cluster chain is marked as
unallocated in the FAT. A side effect of the FAT representation
is that the cluster chain is overwritten by the deallocation.

A nonstandard specification for the existence of a deleted
file in a FAT file system then has to identify: (a) an unallocated
directory entry, including file size; and (b) a cluster chain
storing the file contents.

It is reasonable to justify (a) either by exhibiting a path from
the root directory to the directory entry, or by showing that the
contents matches the form of a directory entry.

For (b), Carrier describes two simple heuristics for choosing
a cluster chain for deleted files [7], based on the forensics
tools reviewed in [3] (see section I). To see the heuristics for
a deleted file, consider a cluster chain map cluster : [0,L)→ Z
of length L

M
= d(fileSize/clusterSize)e. The fileSize is stored

in the directory entry and is not destroyed when the file is
deleted. We insist that cluster(0) = init is the starting cluster
number given in the directory entry for non-empty files, and

13

that all clusters in the chain are unallocated:

∀0≤ i < L. FAT(cluster(i)) = UN

The specification for the first heuristic states that the cluster
chain is contiguous:

∀0≤ i < L. cluster(i) = init+ i

The second heuristic generalizes the first. The specification
allows the cluster chain to be fragmented, but each fragment
must be filled with allocated clusters:
∀0≤ i < L.

cluster(i) =
init+ i+ |{ j | 0≤ j < cluster(i)∧FAT(init+ j) 6= UN}|
Coq Development: Our Coq development (approximately

9,700 lines of Coq code) provides standard and nonstandard
specifications for files in the FAT162 file system. We prove
that nonstandard specifications corresponding to the heuristics
above can be represented as patches to the file system image;
and that the domains of those patches are restricted to changing
the allocation status of the directory entry and the FAT. These
constraints on patches ensure that the directory entry is not
modified to point to a different file, file content is not modified,
etc.

We represent a patch ∆ by a list of (offset, value) pairs. The
constraints on the domain of ∆ are formalized using predicates
InDirEntAlloc and InFat, which test that an offset refers to
the allocation state byte of a particular directory entry or lies
within the FAT respectively:
Definition goodPatch
(dirEnt : Z) (img : Map) (∆ : list (Z * Z)) : Prop :=
forall (offset : Z) (value : Z),
In (offset, value) ∆ ->
(InDirEntAlloc (offset, dirEnt, img) \/
InFat (offset, img)).

Our primary lemma in this development abstracts from the
heuristics discussed above by assuming that a recovered cluster
chain is given. We restrict attention to chains that: have no
cycles; start with the cluster listed in a given directory entry;
and stay within a range of values determined by parameters in
the boot block of the file system image. The nonstandard spec-
ification fileChainDeleted requires that a given directory
entry is unallocated and a given cluster chain satisfies these
properties. The standard specification fileChain requires that
a given directory entry is allocated and a given cluster chain
is found in the file system image. We have then proved that if
the nonstandard specification applies to a directory entry and
cluster chain, then a patch satisfying goodPatch exists for the
standard specification on the patched file system image:
Lemma fat_deleted_yields_good_patch :
forall (dirEnt : Z) (clusters : list Z) (img : Map),
fileChainDeleted dirEnt clusters img ->
(exists (∆ : list (Z * Z)),

fileChain dirEnt clusters (img � ∆) /\
goodPatch dirEnt img ∆).

2FAT file systems may use 12, 16, or 32 bits for an entry in the File
Allocation Table; the semantics of some metadata depends on the size of
entries.

Within the proof, goodPatch is essential to show that informa-
tion required to parse the directory entry has not been altered
by the patch. Similarly, this property is crucial when applying
the lemma to the two heuristics described above. File content
in a file system image with a deleted file is almost unchanged
after a patch satisfying goodPatch is applied: the only possible
change occurs when a file’s content includes its own directory
entry; and this pathological case is therefore excluded by the
definition of fileExistsDeleted for each heuristic. This means
that file content determined by a cluster chain in a file system
image agrees with file content in a patched image if the patch
writes the given cluster chain into the file system image.

VII. RELATED WORK

In this section we describe related work in digital forensics
and theorem proving.

A. Declarative Models of Forensics
Stalland and Levitt describe a declarative encoding of data

invariants and a decision tree format to codify the deductions
performed by a forensic examiner [11]. Their prototype tool
uses an expert system to search for possible deductions,
whereas we use a theorem prover to verify deductions. Simi-
larly, Kahvedžić and Kechadi present an ontology for digital
forensic knowledge [12], and provide semantics via inference
rules written in the Semantic Web Rule Language [13].

Forensic procedures have been also been analyzed via
formal models. [14] discusses the effectiveness of forensic
procedures against attackers in the context of a simple formal
model. In [15], Carrier and Spafford describe digital forensic
methodologies in terms of an abstract model of a system and its
history, but they do not consider the specification of concrete
models.

Van den Bos and van der Storm pioneer the tool-independent
specification of file formats for creation of file recognizers for
forensics purposes [16].

B. Validation of Computer Forensics Software and Results
Guo et al develop and classify detailed requirements for

forensic tool testing [17]. Lyle describes undesirable and
inconsistent behavior of forensics tools [18], and this has led to
a subsequent program of testing [19]. The Scientific Working
Group on Digital Evidence [2] identify soundness problems
in the output and interpretation of forensics tools, as well as
completeness issues discussed in section III.

C. Proof Generation
Proof by Reflection: In section IV, we described the

construction of proofs in forensic certificates via proof by
reflection. This technique has been used in computationally-
intensive formalizations, e.g., [20]. We have not yet investi-
gated the use of architectures developed to assist with reflection
[21], [22]. In [23], Chaieb and Nipkow argue that decision
procedures used in proof by reflection should be abstract
enough to share between theorem provers; the goal of reducing
dependency on a particular theorem prover is relevant to
forensic certificates.

14

Runtime Performance: To improve the performance of
proof checking within Coq, Grégoire and Leroy show how
to perform strong reduction (reduction under λ -abstractions)
on a variant of the ZAM abstract machine (for the Objective
Caml bytecode interpreter) using symbolic weak reduction
and a readback scheme [24]. More recent work on untyped
Normalization by Evaluation [25] compiles Coq programs to
Objective Caml programs [26], [27].

Our formalization described in section V uses the imple-
mentation of binary integers in the Coq standard library. The
extension of Coq with machine integers and persistent arrays
[28] has potential to improve the runtime performance of our
formalization.

Richer Programming Models: Coq’s type theory is
strongly normalizing and stateless, and so it can be awkward to
encode some computational procedures. Several recent works
[29], [30] have shown how computation in richer programming
models (including, e.g., non-termination and state) can be
reflected into Coq.

D. Verified SAT Solvers and Certificates
The forensic certificate architecture closely resembles

that of SAT solver certificates. A SAT solver performs a
computationally-intensive search for solutions, and produces
a certificate for either a solution or a proof that the formula
is unsatisfiable [31]. The certificate is verified by independent
software. The code for the verifier, the TCB, is smaller and
simpler than the code of the solver.

Two approaches have been used to integrate SAT solving
with the Coq theorem prover. The first defines a SAT solver in
Coq and establishes its correctness [32], [33], [34], i.e., proof
by reflection is used in the search. The second uses external
SAT solvers for search, and then verifies the witnesses within
Coq [31], [35]. The verification is conducted by certified code,
i.e., proof by reflection is used in the verification. The latter
approach avoids the need to certify the complex optimizations
used in a SAT solver and the limitations of the runtime
systems in existing theorem provers. Our forensic certificate
architecture follows the latter approach.

One glaring dissimilarity between SAT solver certificates
and our forensic certificate architecture lies in the treatment
of negation. For SAT solver certificates, unsatisfiability is
witnessed by a resolution proof. For forensic certificates, as
discussed in subsection III-C, the absence of occurrences of
a property in a large interval of an image may be dealt with
using external verifiers in conjunction with deduction using
traditional theorem provers. The external verifiers may be, e.g.,
extracted from certified implementations.

VIII. CONCLUSION AND FURTHER WORK

There are severe consequences for errors in digital forensics.
In a recent trial, the defendant’s computer had a record of at
least one visit to a web page about chloroform [4]. Forensic
examiners found that one forensic tool reported 1 visit but a
second tool reported 84 visits. After the trial testimony, the
cause of the discrepancy was identified by the tool developers
[36], [37]: the web brower’s database format only stores a

record of the number of visits when the number is strictly
greater than 1; and the tool reporting 84 visits read the number
of visits for the next URL in the database. The bug was
not evident, despite manual review of the data, because the
database format in question is complex and poorly specified.

The end goal of this research is trustworthy digital forensics.
Practitioners and researchers have identified the opacity of
software tools as a significant impediment to making digital
forensics trustworthy. Ongoing work in the community to
address this situation has borrowed two important ideas from
classical software engineering: (a) the clarification of software
requirements for digital forensics tools, so as to identify what
they are really doing, and (b) the facilitation of composition
between tools to enable the construction of complex software
artifacts from simpler pieces.

Our work borrows yet another idea from software construc-
tion: for software that is difficult to verify directly, one should
focus instead on the correctness of individual executions. This
has led us to design an architecture for forensic certificates that
can be validated independently of the tools that created them
in the first place. Our formal treatment of forensic certificates
aims to:

• eliminate ambiguity in the forensic claims that are made;
• prevent erroneous deductions when composing the results

of multiple forensic tools;
• avoid reliance on unspecified black box tools;
• make explicit reliance on unverified tools.

In this paper, we have explored the challenges in con-
structing such an architecture, specifically in the domain of
file system forensics. In the process, we have been forced to
clarify the semantics of file system specifications and the trust
relationships that are often left implicit in presenting the results
of forensics analysis. Our case study from a forensics challenge
provides some evidence for the viability of our approach.

We have introduced a novel approach for the specifica-
tion and analysis of forensic data-recovery heuristics based
on providing patches that restore data structures. We have
discussed this in the context of recovering deleted files. More
generally, forensic certificates containing patches (with seman-
tic constraints) can explain forensics results that do not have
commonplace operations. As two examples:

• A forensics search tool may find a partially-overwritten file
in a disk image and provide a patch that fills in the missing
data. The missing data might be taken from an older copy of
the file found in a backup. The patch can describe precisely
how much of the file is present on the original disk and how
much is reconstructed from the backup.
• A simple anti-forensics tool that changes the size of clusters

in the metadata can make a file system appear corrupt. A
forensics search tool can create a patch that undoes the
alteration and justifies that the change is consistent with
other information in the file system. In other cases, tools
may show that no such patch is possible.

We intend this paper as part of an ongoing research program
to encompass other areas of digital forensics such as timeline
analysis and memory forensics.

15

Acknowledgements We gratefully acknowledge the com-
ments and suggestions of the anonymous referees.

REFERENCES

[1] E. Casey, “Editorial - cutting the Gordian knot: Defining requirements
for trustworthy tools,” Digital Investigation, vol. 8, no. 3–4, pp. 145 –
146, 2012.

[2] Scientific Working Group on Digital Evidence, “Error mitigation re-
port,” https://www.swgde.org/documents/Released%20For%20Public%
20Comment, 2013.

[3] E. Casey, “Tool review - WinHex,” Digital Investigation, vol. 1, no. 2,
pp. 114–128, 2004.

[4] L. Alvarez, “Software designer reports error in Anthony trial,” The New
York Times. http://www.nytimes.com/2011/07/19/us/19casey.html?_r=
2&hp, July 2011.

[5] Honeynet Project, “Scan of the month 15,” http://old.honeynet.org/
scans/scan15/, 2001.

[6] S. L. Garfinkel, “Digital forensics XML and the DFXML toolset,”
Digital Investigation, 2012.

[7] B. Carrier, File System Forensic Analysis. Addison Wesley, 2005.
[8] J. Harrison, “Metatheory and reflection in theorem proving: A survey

and critique,” 1995.
[9] S. L. Garfinkel, “Anti-forensics: Techniques, detection and countermea-

sures,” in The 2nd International Conference on i-Warfare and Security
(ICIW), Naval Postgraduate School, Monterey, CA, 2007.

[10] Microsoft Corporation, “Microsoft extensible firmware initiative FAT32
file system specification, FAT: General overview of on-disk format,”
Microsoft Corporation, Tech. Rep., 2000, version 1.03.

[11] T. Stallard and K. Levitt, “Automated analysis for digital forensic
science: Semantic integrity checking,” in ACSAC. IEEE Computer
Society, 2003.

[12] D. Kahvedžić and T. Kechadi, “Dialog: A framework for modeling,
analysis and reuse of digital forensic knowledge,” Digital Investigation,
vol. 6, Supplement, no. 0, pp. S23 – S33, 2009, the Proceedings
of the Ninth Annual {DFRWS} Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S174228760900036X

[13] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “Swrl: A semantic web rule language combining owl and
ruleml,” World Wide Web Consortium, W3C Member Submission,
2004. [Online]. Available: http://www.w3.org/Submission/SWRL

[14] R. Leigland, “A formalization of digital forensics,” International Jour-
nal of Digital Evidence, vol. 3, no. 2, pp. 114–128, 2004.

[15] B. D. Carrier and E. H. Spafford, “Categories of digital investigation
analysis techniques based on the computer history model,” Digital
Investigation, vol. 3, pp. 121–130, 2006.

[16] J. Van den Bos and T. Van der Storm, “Bringing domain-specific
languages to digital forensics,” in ICSE, 2011, pp. 671–680.

[17] Y. Guo, J. Slay, and J. Beckett, “Validation and verification of computer
forensic software tools — searching function,” Digital Investigation,
vol. 6, pp. s12–s22, 2009.

[18] J. Lyle, “Quirks uncovered while testing forensic tool,” http://www.cftt.
nist.gov/presentations/ENFSC-Lyle-Oct-08.ppt, 2008.

[19] ——, “Forensic tool testing results,” http://www.cftt.nist.gov/
presentations/NeFX-10-lyle-CFTT-test-strategy.pdf, 2010.

[20] G. Gonthier, “The four colour theorem: Engineering of a formal proof,”
in ASCM, ser. LNCS, D. Kapur, Ed., vol. 5081. Springer, 2007, p.
333.

[21] G. Gonthier and A. Mahboubi, “An introduction to small scale reflection
in Coq,” Journal of Formalized Reasoning, vol. 3, no. 2, pp. 95–152,
2010.

[22] G. Malecha, A. Chlipala, T. Braibant, P. Hulin, and E. Z. Yang,
“Mirrorshard: Proof by computational reflection with verified hints,”
CoRR, vol. abs/1305.6543, 2013.

[23] A. Chaieb and T. Nipkow, “Proof synthesis and reflection for linear
arithmetic,” J. Autom. Reason., vol. 41, no. 1, pp. 33–59, Jul. 2008.

[24] B. Grégoire and X. Leroy, “A compiled implementation of strong
reduction,” in ICFP. ACM, 2002, pp. 235–246.

[25] U. Berger, M. Eberl, and H. Schwichtenberg, “Normalization by eval-
uation,” in Prospects for Hardware Foundations, ser. LNCS, B. Möller
and J. Tucker, Eds. Springer Berlin Heidelberg, 1998, vol. 1546, pp.
117–137.

[26] M. Boespflug, “Conversion by evaluation,” in PADL, ser. LNCS,
M. Carro and R. Peña, Eds., vol. 5937. Springer, 2010, pp. 58–72.

[27] M. Boespflug, M. Dénès, and B. Grégoire, “Full reduction at full
throttle,” in CPP, ser. LNCS, J.-P. Jouannaud and Z. Shao, Eds., vol.
7086. Springer, 2011, pp. 362–377.

[28] M. Armand, B. Grégoire, A. Spiwack, and L. Théry, “Extending Coq
with imperative features and its application to SAT verification,” in ITP,
ser. LNCS, M. Kaufmann and L. C. Paulson, Eds., vol. 6172. Springer,
2010, pp. 83–98.

[29] G. Claret, L. D. C. González-Huesca, Y. Régis-Gianas, and B. Ziliani,
“Lightweight proof by reflection using a posteriori simulation of effect-
ful computation,” in ITP, ser. LNCS, vol. 7998. Springer, 2013, pp.
67–83.

[30] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis, “Mtac: a monad for typed tactic programming in Coq,” in
ICFP, G. Morrisett and T. Uustalu, Eds. ACM, 2013, pp. 87–100.

[31] A. Darbari, B. Fischer, and J. Marques-Silva, “Industrial-strength certi-
fied SAT solving through verified SAT proof checking,” in ICTAC, ser.
LNCS, A. Cavalcanti, D. Déharbe, M.-C. Gaudel, and J. Woodcock,
Eds., vol. 6255. Springer, 2010, pp. 260–274.

[32] S. Lescuyer and S. Conchon, “A reflexive formalization of a SAT solver
in Coq,” in Emerging Trends of the 21st International Conference on
Theorem Proving in Higher Order Logics, 2008.

[33] ——, “Improving Coq propositional reasoning using a lazy CNF con-
version scheme,” in Frontiers of Combining Systems, 7th International
Symposium, Proceedings, ser. LNCS, S. Ghilardi and R. Sebastiani,
Eds., vol. 5749. Trento, Italy: Springer, Sep. 2009, pp. 287–303.

[34] S. Lescuyer, “Formalizing and implementing a reflexive tactic for
automated deduction in coq,” Ph.D. dissertation, Université Paris-Sud,
2011.

[35] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner,
“A modular integration of SAT/SMT solvers to Coq through proof
witnesses,” in CPP, ser. LNCS, J.-P. Jouannaud and Z. Shao, Eds.,
vol. 7086. Springer, 2011, pp. 135–150.

[36] Digital Detective, “About digital evidence discrepancies – Casey An-
thony trial,” http://wordpress.bladeforensics.com/?p=357, 2011.

[37] CacheBack, “Computer evidence in the Casey Anthony trial - a
post mortem,” http://pdfserver.amlaw.com/ltn/Computer_Evidence_in_
the_Casey_Anthony_Trial_a_Post_Mortem.pdf, July 2011.

[38] J.-P. Jouannaud and Z. Shao, Eds., Certified Programs and Proofs
(CPP), ser. LNCS, vol. 7086. Springer, 2011.

https://www.swgde.org/documents/Released%20For%20Public%20Comment
https://www.swgde.org/documents/Released%20For%20Public%20Comment
http://www.nytimes.com/2011/07/19/us/19casey.html?_r=2&hp
http://www.nytimes.com/2011/07/19/us/19casey.html?_r=2&hp
http://old.honeynet.org/scans/scan15/
http://old.honeynet.org/scans/scan15/
http://www.sciencedirect.com/science/article/pii/S174228760900036X
http://www.w3.org/Submission/SWRL
http://www.cftt.nist.gov/presentations/ENFSC-Lyle-Oct-08.ppt
http://www.cftt.nist.gov/presentations/ENFSC-Lyle-Oct-08.ppt
http://www.cftt.nist.gov/presentations/NeFX-10-lyle-CFTT-test-strategy.pdf
http://www.cftt.nist.gov/presentations/NeFX-10-lyle-CFTT-test-strategy.pdf
http://wordpress.bladeforensics.com/?p=357
http://pdfserver.amlaw.com/ltn/Computer_Evidence_in_the_Casey_Anthony_Trial_a_Post_Mortem.pdf
http://pdfserver.amlaw.com/ltn/Computer_Evidence_in_the_Casey_Anthony_Trial_a_Post_Mortem.pdf

