Research on Proof-Carrying Code for
Mobile-Code Security

A Position Paper

Peter Lee George Necula
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
{petel,necula}@cs.cmu.edu

DARPA Workshop on Foundations for Secure Mobile Code
March 26-28, 1997

1 Introduction

The advent of the World-Wide Web and the rising popularity of the Java pro-
gramming language have made the problem of mobile-code security one of the
focal points of research in Computer Science today. By allowing code to be
installed dynamically and then executed, a host system can provide an flexible
means of access to its internal resources. Of course, the idea of installing and
executing new software on a system is not new. What is new, however, is the
potential for a large number of anonymous agents to use the Internet to deliver
an extremely large number of code objects to hosts. Indeed, in some appli-
cations, such as the recently proposed “active networks,” [7] it is possible for
every network packet that is transmitted through a network bridge or router to
contain code to be installed and executed in that bridge or router.

There are many problems to be solved before such uses of mobile code can
become practical. Of particular interest in this position paper are the following:

e How can the host ensure that the mobile code will not damage it, for
example, by corrupting internal host data structures?

e How can the host ensure that the mobile code will not use too many
resources (such as CPU, memory, and so forth) or use them for too long
a time period?

e How can the host make these assurances without undue effort and delete-
rious effect on overall system performance?

There are, of course, many other practical problems, such as how to establish
accountability and authentication in such large-scale mobile-code environments.



Some of our thoughts regarding these kinds of issues are presented in a separate
essay [1]. For this position paper, we will focus on the problem of how to
establish guarantees about the intrinsic behavior of mobile programs. In a
sense, we will view the problem of mobile-code security as a problem of how
to construct efficient and reliable software systems from separate components:
we want intimate (that is, efficient) interactions amongst software components
(some of which might come from untrusted sources), but in such a way that
certain invariants held by each component will not be violated by the others.

Our position is that the theory of programming languages, including for-
mal semantics, type theory, and applications of logic, are critical to solving
the mobile-code security problem. To illustrate the possibilities of program-
ming language theory, we will briefly describe one rather extreme but promising
example, which is proof-carrying code (PCC).

2 Proof-Carrying Code

Proof-Carrying Code is a technique by which a code consumer (e.g., host) can
verify that code provided by an untrusted code producer (e.g., untrusted Internet
agent) adheres to a predefined set of safety rules. These rules, also referred to
as the safety policy, are chosen by the code consumer in such a way that they
are sufficient guarantees for safe behavior of programs.

The key idea behind proof-carrying code is that the code producer is required
to create a formal safety proof that attests to the fact that the code respects
the defined safety policy. Then, the code consumer is able to use a simple and
fast proof walidator to check, with certainty, that the proof is valid and hence
the foreign code is safe to execute.

Any implementation of PCC must contain at least four elements: (1) a
formal specification language used to express the safety policy, (2) a formal
semantics of the language used by the untrusted code, usually in the form of
a logic relating programs to specifications, (3) a language used to express the
proofs, and (4) an algorithm for validating proofs.

In our current implementation the untrusted code is in the form of machine
code for the DEC Alpha processor and the specifications are written in first-
order logic. As a means of relating machine code to specifications we use a form
of Floyd’s verification-condition generator that extracts the safety properties of
a machine code program as a predicate in first-order logic. This predicate must
then be proved by the code producer using axioms and inference rules supplied
by the code consumer as part of the safety policy.

Finally, we use the Edinburgh Logical Framework (LF) [2], which is essen-
tially a typed lambda calculus, to encode and check the proofs. The basic tenet
of LF is that proofs are represented as expressions and predicates as types. In
order to check the validity of a proof we only need to typecheck its represen-
tation. The proof validator is therefore an LF typechecker, which is not only
extremely simple and efficient but independent of the particular safety policy
or logic used. This realization of PCC is described in detail in [5].



Note the many instances where elements from logic, type theory and pro-
gramming language semantics arise in a realization of PCC. Extended use of
these formal systems is required in order to be able to make any guarantees
about the safety of the approach. In fact, we are able to prove theorems that
guarantee the safety of the PCC technique modulo a correct implementation of
the LF typecheker and a sound safety policy [6].

2.1 Advantages of proof-carrying code

There are many advantages in using PCC for mobile code. First, although there
might be a large amount of effort in establishing and formally proving the safety
of the mobile code, almost the entire burden of doing this is shifted to the code
producer. The code consumer, on the other hand, has only to perform a fast,
simple, and easy-to-trust proof-checking process. The trustworthiness of the
proof-checker is an important advantage over approaches that involve the use
of complex compilers or interpreters in the code consumer.

Second, the code consumer does not care how the proofs are constructed.
In our current experiments, we rely on a theorem prover, but in general there
is no reason (except the effort required) that the proofs could not be generated
by hand. We also believe that it is feasible to build a certifying compiler that
builds proofs automatically through the process of compilation. (More about
this below.) No matter how the proofs are generated, there is also an impor-
tant advantage that the consumer does not have to trust the proof-generation
process.

Third, PCC programs are “tamperproof,” in the sense that any modification
(either accidental or malicious) will result in one of three possible outcomes: (1)
the proof will no longer be valid (that is, it will no longer typecheck), and so
the program will be rejected, (2) the proof will be valid, but will not be a safety
proof for the program, and so again the program will be rejected, or (3) the
proof will still be valid and will still be a safety proof for the program, despite
the modifications. In the third case, even though the behavior of the program
might have been changed, the guarantee of safety still holds.

Fourth, no cryptography or trusted third parties are required because PCC
is checking intrinsic properties of the code and not its origin. In this sense,
PCC programs are “self-certifying.” On the other hand, PCC is completely
compatible with other approaches to mobile-code security. For example, in
another essay [1], we discuss how trust management and PCC can be used
together for mobile code security. We also have some experience in using PCC
to determine the correctness of applying Software Fault Isolation [3] to network
packet filters [4]. In engineering terms, combining approaches leads to different
tradeoffs (e.g., less effort required in proof generation at the cost of slower run-
time performance) that lead to greater system design flexibility.

Fifth, because the untrusted code is verified statically, before being exe-
cuted, we not only save execution time but we detect potentially hazardous
operations early, thus avoiding the situations when the code consumer must kill
the untrusted process after it has acquired resources or modified state.



These five advantages are essentially statements about the advantage of
static checking over dynamic checking. We believe that static checking is es-
sential for mobile-code security, and that system designers in general have a
somewhat limited view of how static checking can be used.

2.2 Early experience

In order to gain more experience with PCC and to measure its costs we have
performed a series of experiments. We started with simple but practical appli-
cations such as machine code implementations of network packet filters and the
IP checksum routine. For these early experiments the safety policy was focused
on fine-grained memory safety. Our packet filters were about 30% to 10 times
faster than comparable filters implemented using other approaches, while the
safety proofs were smaller than 800 bytes and required no more than 3ms on a
DEC Alpha to be validated [4].

We continued our experimentation with more complex safety policies. In
one experiment, the “active ping,” we write extensions of packet filters that can
also allocate and deallocate memory, acquire and release locks and send network
packets. In addition to the memory safety we also check that all of the acquired
resources are released within a specified time bound. We also put bounds on the
quantity of resources used, including the total number of packets sent and total
number of instructions executed. For this example, the safety proof increased
to 3.5Kbytes and the validation time to 18ms. However we believe that we have
only touched the surface of possible proof encoding techniques and much more
efficient representations are possible.

2.3 Limitations and current research problems

There are, of course, several serious obstacles to making proof-carrying code a
practical approach to mobile-code security. The most basic obstacle is how to
generate the proofs. In our current experiments we have used a simple theorem
prover, but we have doubts that such an approach will scale to larger and more
complex programs. (On the other hand, we have been surprised at our ability to
generate proofs with a naive theorem prover for programs such as “active ping,”
and so perhaps we are being overly pessimistic.) We believe that the notion of a
“certifying compiler” will be critical for scaling up the PCC approach, and this
is indeed the main focus of our current research. A certifying compiler would
generate a proof automatically along with the target code. The idea is to show,
in the proof, that certain properties of the source program are preserved in
the target program. Since only easily obtained properties (such as type safety)
will be compiled and no theorem-proving will be needed, it becomes possible
to imagine handling large programs. Note that it is an advantage of the PCC
approach that one does not have to trust the certifying compiler, as the recipient
of the target programs will always retain the ability to verify quickly and easily
the safety of the code.



Another fundamental problem is in the axiomatization of arithmetic. In our
current experiments, we have freely added axioms to the theorem prover and
the proof-checker, on an as-needed basis. Clearly, this is not an approach that
will scale well, and there is a philosophical problem as to whether such ad hoc
extension of the logic should be allowed at all. So, it seems that the host will
have to be willing do some computation to check the validity of statements about
arithmetic that appear in the proofs. The exact nature of such statements, and
their impact on the expressiveness of the proofs, the size of the proofs, and
on proof-checking time are all key issues that require in-depth development,
analysis, and experimentation.

There is also the matter of the language of specifications and the logic used
to prove the safety of programs. So far, we have used simple extensions of first-
order logic, but it is possible that other logics (such as temporal logic, linear
logic, etc.) might be more suitable for practical applications that demand, for
example, reasoning about timing constraints. Again, a great deal of research
and experience is needed here.

Finally, we see a basic need for a great deal more experimentation, even with
the system and logics that we have already developed. Basic questions about
how big the proofs get in practice, and whether some scaling up can be achieved
by modular construction of proofs and programs, have yet to be answered in
an experimental framework. We strongly encourage further research into such
experimentation.

3 Summary

It is our position that the theory of programming languages, which we take
to include formal semantics, type theory, and logic, provides methods and sys-
tems that will be critical to achieving a high level of security in mobile-code
applications. We have briefly described one approach, proof-carrying code, that
illustrates the potential of programming-language theory in this arena, essen-
tially through the exploitation of static checking. While there are still many
difficult research problems to be solved, we believe that the past and current
results show enough potential to warrant a great deal of further work.

References

[1] J. Feigenbaum and P. Lee. Trust management and proof-carrying code in se-
cure mobile-code applications (A position paper). Submitted to the DARPA
Workshop on Foundations for Secure Mobile Code, Monterey, California,
March, 1997.

[2] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, vol. 40, no. 1, Jan-
uary, 1993, 143-184.



[3] R. Wahbe and S. Lucco and T. E. Anderson and S. L. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the 14th ACM Symposium
on Operating Systems Principles, December, 1993, 203-216.

[4] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In
Proceedings of the 2nd Symposium on Operating System Design and Imple-
mentation (OSDI’96), Seattle, October, 1996, 229-243.

[5] G. Necula and P. Lee. Proof-Carrying Code. Technical Report CMU-CS-96-
165, School of Computer Science, Carnegie Mellon University, September,
1996.

[6] G. Necula. Proof-carrying code. In Proceedings of the 24th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’97), Paris, January, 1997.

[7] D. Tennenhouse and D. Wetherall. Towards an active network architecture.
Computer Communication Review, vol. 26, no. 2, April, 1996.



