Composing Security Policies with Polymer

Lujo Bauer
Carnegie Mellon University

Ibauer@ece.cmu.edu

ABSTRACT

We introduce a language and system that supports definition
and composition of complex run-time security policies for
Java applications. Our policies are comprised of two sorts of
methods. The first is a query method that is called whenever
an untrusted application tries to execute a security-sensitive
action. The query method returns a suggestion indicating
how the security-sensitive action should be handled. Other
methods in a policy perform state updates as the policy’s
suggestions are followed.

The structure of our policies facilitates composition, as
policies can query other policies for suggestions. In order to
give programmers control over policy composition, we have
designed the system so that policies, suggestions, and ap-
plication events are all first-class objects that a higher-order
policy may manipulate. We show how to use these program-
ming features by developing a library of policy combinators.

Our system is fully implemented, and we have defined
a formal semantics for an idealized subset of the language
containing all of the key features. We demonstrate the effec-
tiveness of our system by implementing a large-scale security
policy for an email client.

1. INTRODUCTION

Security architects for large software systems face an enor-
mous challenge: the larger and more complex their system,
the more difficult it is to ensure that it obeys some secu-
rity policy. Like any large software problem, the security
problem can only be dealt with by breaking it down into
smaller and more manageable pieces. These smaller-sized
problems are easier to understand and reason about, and
their solutions are simpler to implement and verify.

When decomposing the security problem into parts, it is
tempting to scatter access-control checks, resource-monitor-
ing code, and other mechanisms across the many modules
that implement these components. This is especially true
when the enforcement of some property involves several low-
level components drawn from otherwise logically different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PLDI 2005

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Jay Ligatti
Princeton University

jligatti@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

parts of the system. For instance, in order to implement a
policy concerning data privacy, it may be necessary to con-
sider the operation of a wide variety of system components
including the file system and the network, as well as printers
and other forms of I/O. Unfortunately, a scattered imple-
mentation of a policy is much more difficult to understand
and verify than a centralized implementation—even finding
all the pieces of a distributed policy can be problematic.
Moreover, the distribution of the security policy and mech-
anism through a large body of code can make it more diffi-
cult to update a policy in response to security breaches and
vulnerabilities. In the current security climate, where new
viruses can spread across the Internet in minutes, speedy
reaction to vulnerabilities is critical.

This paper describes Polymer, a new language and system
that helps engineers enforce centralized security policies on
untrusted Java applicatons by monitoring and modifying the
applications’ behavior at run time. Programmers implement
security policies by extending Polymer’s Policy class, which
is given a special interpretation by the underlying run-time
system. Intuitively, each Policy object contains three main
elements: (1) an effect-free decision procedure that deter-
mines how to react to security-sensitive application actions
(i.e., method calls), (2) security state, which can be used
to keep track of the application’s activity during execution,
and (3) methods to update the policy’s security state.

We call the decision procedure mentioned above a query
method. This method returns one of six suggestions indi-
cating that: the action is irrelevant to the policy; the action
is OK; the action should be reconsidered after some other
code is inserted; the return value of the action should be re-
placed by a precomputed value; a security ezception should
be thrown instead of executing the action; or, the appli-
cation should be halted. These objects are referred to as
suggestions because there is no guarantee that the policy’s
desired reaction will occur when it is composed with other
policies. Also for this reason, the query method should not
have effects. State updates occur in other policy methods,
which are invoked only when a policy’s suggestion is fol-
lowed.

In order to further support flexible but modular security
policy programming, we treat all policies, suggestions, and
application actions as first-class objects. Consequently, it is
possible to define higher-order security policies that query
one or more subordinate policies for their suggestions and
then combine these suggestions in a semantically meaning-
ful way, returning the overall result to the system, or other
policies higher in the hierarchy. We facilitate programming



with suggestions and application events by introducing pat-
tern matching facilities and mechanisms that allow program-
mers to summarize a collection of application events as an
abstract action.

We have demonstrated the effectiveness of our design by
developing a library of the most useful combinators, includ-
ing a “conjunctive” policy that returns the most restrictive
suggestion made by any subpolicy and a “dominates” pol-
icy that tries one policy first and if it considers the appli-
cation action irrelevant, then passes the application event
on to the next policy. One of the major challenges here
is developing a strategy that makes combining policies in
the presence of effects semantically reasonable. In addition
to our general-purpose policy combinators, we have devel-
oped a collection of application-specific policy combinators
and policy modifiers, including a higher-order policy that
dynamically checks for policy updates to load into the vir-
tual machine and an audit policy that logs all actions of an
untrusted application and all suggestions made by another
policy acting on that application.

To test our language in a realistic setting, we have written
a large-scale security policy, composed of smaller modular
policies, for email clients that use the JavaMail interfaces.
We have extensively tested this policy with the Pooka email
client [16] and found that we can use Polymer to correctly
enforce sophisticated security constraints.

1.1 Redated Work

Safe language platforms, such as the Java Virtual Machine
(JVM) [14] and Common Language Runtime (CLR) [15],
use stack inspection as the basis of their security monitor-
ing systems. Unfortunately, while stack inspection can be
effective in many situations, it has some serious drawbacks
as well. First, stack inspection is just one algorithm for
implementing access control, and, as explained by several
researchers [9, 18] this algorithm is inherently partial. More
recent systems make decisions based on the entire history
of a computation and all the code that has had an impact
on the current system state, not just the current control
stack [1, 6, 7, 8, 9, 11, 12]. A second important flaw in the
stack inspection model is that operations to enable privileges
and perform access-control checks are scattered throughout
the system libraries. Consequently, in order to understand
the policy that is being enforced, one must read through
arbitrary amounts of library code.

Our current language and system is directly inspired by
earlier theoretical research on automata-theoretic character-
izations of security policies. Schneider [18] developed the
notion of security automata, which are a form of Biichi au-
tomata that can recognize safety properties. We generalized
this idea by defining edit automata [13], which are formal
machines that transform a sequence of program actions via
the operations of sequence truncation, insertion of new ac-
tions, or suppression of actions. The current research may
be viewed as an implementation of edit automata with a
practical set of “editing” capabilities and support for com-
position of automata.

The design and implementation of Polymer is most closely
related to Evans and Twyman’s Naccio [8] and to Erlingsson
and Schneider’s PoET /Pslang [7]. One of the most crucial
observations they make is that the entire security policy, in-
cluding the set of security-relevant program points, should
be defined separately from the main application. This archi-

tecture makes it is easier to understand, verify, and modify
the security policy. The new contributions of our work in-
clude the following.

1. We have designed a new programming methodology
that permits policies to be composed in meaningful
and productive ways. A key innovation is the separa-
tion of a policy into an effectless method that generates
suggestions (OK, halt, raise exception, etc.) and is safe
to execute at any time, and effectful methods that up-
date security state only under certain conditions.

2. We have written a library of first-class, higher-order
policies and used them to build a large-scale, practi-
cal security policy that enforces a sophisticated set of
constraints on untrusted email clients.

3. We have developed a formal semantics for an ideal-
ized version of our language that includes all of the
key features of our implementation including first-class
policies, suggestions, and application events. A formal
semantics helps nail down corner cases and provides
an unambiguous specification of how security policies
execute—a crucial feature of any security mechanism,
but particularly important as our security policies have
imperative effects. We prove our language is type safe,
a necessary property for protecting the program mon-
itor from untrusted applications.

There are a number of smaller contributions as well. For
instance, unlike Naccio and PoET/Pslang, we allow a mon-
itor to replace an entire invocation of a security-relevant
action with a provided return value via a replace sugges-
tion. Some policies, such as the IncomingMail policy in
Section 3.2, require this capability. In addition, we faith-
fully implement the principle of complete mediation [17]. In
other words, once a policy is put in place, every security-
sensitive method is monitored by the policy every time it is
executed, even if the method is called from another policy
component. This has a performance cost, but it guaran-
tees that every policy sees all method calls that are relevant
to its decision. The details of our language, including its
pattern-matching facilities and our complementary notion
of an abstract program action, which allows grouping of re-
lated security functions, also differ from what appears in
previous work.

Our monitor language can also be viewed as an aspect-
oriented programming language (AOPL) in the style of As-
pectJ [10]. The main high-level difference between our work
and previous AOPLs is that our “aspects” (the program
monitors) are first-class values and that we provide mecha-
nisms to allow programmers to explicitly control the com-
position of aspects. Several researchers [19, 20] describe
functional, as opposed to object-oriented, AOPLs with first-
class aspect-oriented advice. However, they do not support
aspect combinators like the ones we have developed here. In
general, composing aspects is a known problem for AOPLs,
and we hope the ideas presented here will suggest a new
design strategy for general-purpose AOPLs.

2. POLYMER SYSTEM OVERVIEW

Similar to the designs of Naccio and PoET/Pslang, the
Polymer system is composed of two main tools. The first is
a policy compiler that compiles program monitors defined



Java core classes

OO
O..00

QO @)

Interpreter of highest-level
policy's suggestions

[
O

f X Policy
O O

Target application |
[

O O |
O O :

|

Figure 1: A secure Polymer application

in Polymer the language into plain Java and then into Java
bytecode. The second tool is a bytecode rewriter that pro-
cesses ordinary Java bytecode, inserting calls to the monitor
in all the necessary places. In order to construct a secure
executable using these tools, programmers must perform the
following series of steps.

1. Write the action declaration file, which lists all pro-
gram methods that might have an impact on system
security.

2. Instrument the system libraries specified in the action
declaration file. This step may be performed indepen-
dently of the specification of the security policy. The
libraries must be instrumented before the Java Vir-
tual Machine (JVM) starts up since the default JVM
security constraints prevent many libraries from being
modified or reloaded once the JVM is running.

3. Write and compile the security policy. The policy com-
piler translates the Polymer policy into ordinary Java
and then invokes a Java compiler to translate it to
bytecode.

4. Start the JVM with the modified libraries.

5. Load the target application. During this loading, our
specialized class loader rewrites the target code in the
same way we rewrote the library code in step 2.

6. Execute the secured application.

Figure 1 shows the end result of the process. The in-
strumented target and library code run inside the JVM.
Whenever this code is about to invoke a security-sensitive
method, control is redirected through a generic policy man-
ager, which queries the current policy. The current policy
will return a suggestion that is interpreted by the policy
manager.

3. POLYMER LANGUAGE

In this section, we describe the core features of the Poly-
mer language. We begin with the basic concepts and show
how to program simple policies. Then, we demonstrate how
to create more complete policies by composing simpler ones.

3.1 CoreConcepts

Polymer is based on three central abstractions: actions,
suggestions, and policies. Policies analyze actions and con-
vey their decisions by means of suggestions.

Actions. Monitors intercept and reason about how to re-
act to security-sensitive method invocations. Action objects
contain all of the information relevant to such invocations:
static information such as the method signature, and dy-
namic information like the calling object and the method’s
parameters.

For convenient manipulation of actions, Polymer allows
them to be matched against action patterns. An Action ob-
ject matches an action pattern when the action’s signature
matches the one specified in the pattern. Patterns can use
wildcards: * matches any one constraint (e.g., any return
type or any single parameter type), and .. matches zero or
more parameter types. For example, the pattern

<public void java.io.*.<init>(int, ..)>

matches all public constructors in all classes in the java.io
package whose first parameter is an int. In place of <init>,
which refers to a constructor, we could have used an identi-
fier that refers to a particular method.

Action patterns appear in two places. First, the action
declaration file is a set of action patterns. During the in-
strumentation process, every action that matches an action
pattern in the action declaration file is instrumented. Sec-
ond, policies use action patterns in aswitch statements to
determine which security-sensitive action they are dealing
with. aswitch statements are similar to Java’s switch state-
ments, as the following example shows.

aswitch(a) {
case <void System.exit(int status)>: E;

If Action a represents an invocation of System.exit, this
statement evaluates expression E with the variable status
bound to the the value of the method’s single parameter.

Suggeﬂi ONS. Whenever the untrusted application attempts
to execute a security-relevant action, the monitor suggests
a way to handle this action (which we often call a trigger
action because it triggers the monitor into making such a
suggestion).

The monitor’s decision about a particular trigger action
is conveyed using a Sug object. Polymer supplies a subclass
of Sug for each type of suggestion mentioned in Section 1:

e An IrrSug suggests that the trigger action execute un-
conditionally because the policy does not reason about
it.

e An 0KSug suggests that the trigger action execute even
though the action is of interest to the policy.

e An InsSug suggests that making a final decision about
the target action be deferred until after some auxiliary
code is executed and its effects are evaluated.

e A ReplSug suggests replacing the trigger action, which
computes some return value, with a return value sup-
plied by the policy. The policy may use InsSugs to
compute the suggested return value.



public abstract class Policy {
public abstract Sug query(Action a);
public void accept(Sug s) { };
public void result(Sug s, Object result,
boolean wasExnThn) { };

Figure 2: The parent class of all policies

e An ExnSug suggests that the trigger action not be al-
lowed to execute, but also that the target be allowed
to continue running. Whenever following an ExnSug,
Polymer notifies the target that its attempt at invok-
ing the trigger action has been denied by throwing a
SecurityException that the target can catch before
continuing execution.

e A HaltSug suggests that the trigger action not be al-
lowed to execute and that the target be halted.

Breaking down the possible interventions of monitors into
these categories provides great flexibility. In addition, this
breakdown, which was refined by experience with writing
security policies in Polymer, simplifies our job tremendously
when it comes to controlling monitor effects and building
combinators that compose monitors in sensible ways (see
Section 3.3).

Policies. Programmers encode a run-time monitor in Poly-
mer by extending the base Policy class (Figure 2). A new
policy must provide an implementation of the query method
and may optionally override the accept and result meth-
ods.

e query analyzes a trigger action and returns a sugges-
tion indicating how to deal with it.

e accept is called to indicate to a policy that its sugges-
tion is about to be followed. This gives the policy a
chance to perform any bookkeeping needed before the
the suggestion is carried out.

e result gives the policy access to the return value pro-
duced by following its InsSug or OKSug. The three
arguments to result are the original suggestion the
policy returned, the return value of the trigger action
or inserted action (null if the return type was void
and an Exception value if the action completed ab-
normally), and a flag indicating whether the action
completed abnormally.

The accept method is called before following any sugges-
tion except an IrrSug; the result method is only called
after following an OKSug or InsSug. After result is called
with the result of an InsSug, the policy is queried again with
the original trigger action (in response to which the policy
just suggested an InsSug). Thus, InsSugs allow a policy to
delay making a decision about a trigger action until after
executing another action.

A policy interface consisting of query, accept, and result
methods is fundamental to the design of Polymer. We can
compose policies by writing policy combinators that query
other policies and combine their suggestions. In combin-
ing suggestions, a combinator may choose not to follow the
suggestions of some of the queried policies. Thus, query

public class Trivial extends Policy {
public Sug query(Action a)
{ return new IrrSug(this); }

Figure 3: Policy that allows all actions

public class DisSysCalls extends Policy {
public Sug query(Action a) {
aswitch(a) {
case <* java.lang.Runtime.exec(..)>:
return new HaltSug(this, a);
}

return new IrrSug(this);

}

public void accept(Sug s) {
System.out.println("Illegal method called: " +
s.getTrigger());

}
}

Figure 4: Policy that disallows Runtime.exec meth-
ods

methods must not assume that their suggestions will be fol-
lowed and should be free of effects such as state updates and
I/O operations.

3.2 SimplePolicies

To give a feel for how to write Polymer policies, we de-
fine several simple examples in this section; in Sections 3.3
and 4.2 we will build more powerful policies by composing
the basic policies presented here using a collection of policy
combinators.

We begin by considering the most permissive policy pos-
sible: one that allows everything. The Polymer code for
this policy is given in Figure 3. Because the query method
of Trivial always returns an IrrSug, it allows all trigger
actions to execute unconditionally. To enable convenient
processing of suggestions, every Sug constructor has at least
one argument, the Policy making the Sug.

For our second example, we consider a more useful policy
that disallows executing external code, such as OS system
calls, via java.lang.Runtime.exec(..) methods. This pol-
icy, shown in Figure 4, simply halts the target when it calls
java.lang.Runtime.exec. The accept method notifies the
user of the security violation. Notice that this notification
does not appear in the query method because it is an ef-
fectful computation; the notification should not occur if the
policy’s suggestion is not followed.

In practice, there can be many methods that correspond
to a single action that a policy considers security relevant.
For example, a policy that logs incoming email may need
to observe all actions that can open a message. It can be
cumbersome and redundant to have to enumerate all these
methods in a policy, so Polymer makes it possible to group
them into abstract actions.

Abstract actions allow a policy to reason about security-
relevant actions at a different level of granularity than is
offered by the Java core API. They permit policies to fo-
cus on regulating particular behaviors, say, opening email,
rather than forcing them to individually regulate each of
the actions that cause this behavior. This makes it easier to
write more concise, modular policies. Abstract actions also



public class GetMail extends AbsAction {
public boolean matches(Action a) {
aswitch(a) {
case <Message IMAPFolder.getMessage(int)>
case <void IMAPFolder.fetch(Message[], *)> :

return true;
return false;

public static Object convertResult(Action a,
Object res) {
aswitch(a) {
case <Message IMAPFolder.getMessage(int)>
return new Message[] {(Message)res};
case <void IMAPFolder.fetch(Message[] ma, *)> :
return ma;

default:
return res;

}
}

Figure 5: Abbreviated abstract action for receiving
email messages; signature is Message[] GetMail()

make it possible to write platform-independent policies. For
example, the set of actions that fetch email may not be the
same on every system, but as long as the implementation
of the abstract GetMail action is adjusted accordingly, the
same policy for regulating email access can be used every-
where.

Figure 5 shows an abstract action for fetching email mes-
sages. The matches method of an abstract action returns
true when a provided concrete action is one of the abstract
action’s constituents. The method has access to the concrete
action’s run-time parameters and can use this information
in making its decision. All constituent concrete actions may
not have the same parameter and return types, so one of the
abstract action’s tasks is to export a consistent interface to
policies. This is accomplished via convertParameter and
convertResult methods. The convertResult method in
Figure 5 allows the GetMail abstract action to export a re-
turn type of Message[], even though one of its constituents
has a void return type.

Naccio [8] contains alternative notions, called platform in-
terfaces, that support a similar sort of separation between
concrete and abstract actions. It appears that our design
is slightly more general, as our abstract actions allow pro-
grammers to define many-many relationships, rather than
many-one relationships, between concrete and abstract ac-
tions. In addition, our abstract actions are first-class objects
that may be passed to and from procedures, and we support
the convenience of general-purpose pattern matching.

The example policy in Figure 6 logs all incoming email and
prepends the string “SPAM:” to subject lines on messages
flagged by a spam filter. To log incoming mail, the policy
first tests whether the trigger action matches the GetMail
abstract action (from Figure 5) using the keyword abs in
an action pattern. Since query methods should not have
effects, the policy returns an 0KSug for each GetMail action;
the policy logs the fetched messages in the result method.
Polymer triggers a done action when the application termi-
nates; the policy takes advantage of this feature to insert an

public class IncomingMail extends Policy {

public Sug query(Action a) {
aswitch(a) {
case <abs * examples.mail.GetMail()>:
return new OKSug(this, a);
case <* MimeMessage.getSubject()>:
case <* IMAPMessage.getSubject()>:
String subj = spamifySubject(a.getCaller());
return new ReplSug(this, a, subj);
case <done>:
if(!isClosed(logFile))
return new InsSug(this, a, new Action(
logFile, "java.io.PrintStream.close()"));

}

return new IrrSug(this, a);

public void result(Sug sugg, Object res,
boolean wasExnThn) {
if('sugg.is0K() || wasExnThn) return;
log(GetMail.convertResult(sugg.getTrigger(), result));

}
}

Figure 6: Abbreviated policy that logs all incoming
email and prepends the string “SPAM:” to subject
lines on messages flagged by a spam filter

action that closes the message log. If the InsSug to close
the log is accepted, the policy will be queried again with a
done action after the inserted action has been executed. In
the second query, the log file will already be closed, so the
policy will return an IrrSug. The policy also intercepts calls
to getSubject in order to mark email as spam. Instead of
allowing the original call to execute, the policy fetches the
original subject, prepends “SPAM:” if necessary, and returns
the result via a ReplSug.

Sometimes, a policy requires notifying the target that
executing its trigger action would be a security violation.
When no suitable return value can indicate this condition
to the target, the policy may make an ExnSug rather than a
ReplSug. For example, an email Attachments policy that
prevents executable files from being created may, rather
than by halting the target outright, signal policy violations
by making ExnSugs. These will cause SecurityExceptions
to be raised, which can be caught by the application and
dealt with in an application-specific manner.

3.3 Policy Combinators

Polymer supports policy modularity and code reuse by
allowing policies to be combined with and modified by other
policies. In Polymer, a policy is a first-class Java object, so
it may serve as an argument to or result of other policies.
We call a policy parameterized by other policies a policy
combinator. When referring to a complex policy with many
policy parts, we call the policy parts subpolicies and the
complex policy a superpolicy. We have written a library
of common combinators; however, security policy architects
are always free to develop new combinators to suit their own
specific needs.

Conjunctive combinator. Tt is often useful to restrict an
application’s behavior by applying several policies at once
and enforcing the most restrictive one. For example, a policy
that disallows access to files can be used in combination with



a policy that disallows access to the network; the resulting
policy disallows access to both files and the network. In
the general case, the policies being conjoined may reason
about overlapping sets of actions. When this is the case, we
must consider what to do when the two subpolicies suggest
different courses of action. In addition, we must define the
order in which effectful computations are performed.

Our conjunctive combinator composes exactly two poli-
cies; we can generalize this to any number of subpolicies.
Our combinator operates as follows.

o If either subpolicy suggests insertions, so does the com-
binator, with any insertions by the left (first) conjunct
occurring prior to insertions by the right conjunct. Fol-
lowing the principle of complete mediation, the mon-
itor will recursively examine these inserted actions if
they are security-relevant.

o If neither subpolicy suggests insertions, the conjunc-
tive combinator takes the least upper bound of the
two suggestions as given by the following lattice, which
orders suggestions in terms of increasing semantic im-

pact.
Replace(vq)
4 Replace(v,) k
§ Replace(vs) 7

For instance, IrrSug has less impact than 0KSug since
an IrrSug indicates the current method is allowed but
irrelevant to the policy whereas OKSug says it is al-
lowed, but relevant and updates of security state may
be needed. ReplSugs have more impact than 0KSugs
since they change the semantics of the application.
ReplSugs containing different replacements are consid-
ered inequivalent; consequently, the “conjunction” of
two ReplSugs is considered to be an ExnSug.

Irrelevant oK Exception Halt

Note that a sequence of insertions made by one conjunct
may affect the second conjunct. In fact, this is quite likely if
the second conjunct considers the inserted actions security-
relevant. In this case, the second conjunct may make a dif-
ferent suggestion regarding how to handle an action before
the insertions than it does after. For example, in the initial
state the action might have been OK, but after the inter-
vening insertions the second conjunct might suggest that the
application be halted.

An abbreviated version of the conjunctive combinator is
shown in Figure 7. The calls to SugUtils.getNewSug in
the query method simply create new suggestions with the
same type as the first parameter in these calls. Notice that
the suggestion returned by the combinator includes the sug-
gestions on which the combinator based its decision. This
design makes it possible for the combinator’s accept and
result methods to notify the appropriate subpolicies that
their suggestions have been accepted and followed.

Precedence combinators. We have found the conjunctive
policy to be the most common combinator. However, it is
useful on occasion to have a combinator that gives prece-
dence to one subpolicy over another. One example is the
TryWith combinator, which queries its first subpolicy, and
if that subpolicy returns an IrrSug, 0KSug, or InsSug, it

public class Conjunction extends Policy {
private Policy pl, p2;
public Conjunction(Policy pl, Policy p2) {
this.pl = pl; this.p2 = p2;

public Sug query(Action a) {
Sug sil=pl.query(a), s2=p2.query(a);
if(s1l.isInsertion()) return SugUtils.getNewSug(
sl, this, a, new Sugl[l{si});
if(s2.isInsertion()) return SugUtils.getNewSug(
s2, this, a, new Sug[]{s2});
if(s1.isHalt() && s2.isHalt())
return SugUtils.getNewSug(sl, this, a,
new Sugl[]{s1,s2});
if(s1.isHalt()) return SugUtils.getNewSug(
s1, this, a, new Sug[]{s1});

}
public void accept(Sug sug) {
//notify subpolicies whose suggestions were accepted
Sug[] sa = sug.getSuggestions();
for(int i = 0; i < sa.length; i++) {
sa[i] .getSuggestingPolicy() .accept(sal[il);

Figure 7: Conjunctive policy combinator

makes the same suggestion. Otherwise, the combinator de-
fers judgment to the second subpolicy. A similar sort of
combinator is the Dominates combinator, which always fol-
lows the suggestion of the first conjunct if that conjunct
considers the trigger action security-relevant; otherwise, it
follows the suggestion of the second conjunct. Note that
if two subpolicies never consider the same action security-
relevant, composing them with a Dominates combinator is
equivalent to composing them with a Conjunction combi-
nator, except the Dominates combinator is in general more
efficient because it need not always query both subpolicies.

Sdectors. Selectors are combinators that choose to enforce
exactly one of their subpolicies. A selector can be used, for
example, to enforce a weaker policy on the target applica-
tion if the target is cryptographically signed; otherwise, the
selector enforces a stronger policy. We show a use of such a
selector in Section 4.2.

Policy modifiers. Policy modifiers are higher-order policies
that enforce a single policy while also performing some other
actions. Suppose, for example, that we want to log the ac-
tions of a target application and the suggestions made by a
policy acting on that target. Rather than modifying the ex-
isting policy, we can accomplish this by wrapping the policy
in an Audit unary superpolicy. When queried, Audit blindly
suggests whatever the original policy’s query method sug-
gests. Audit’s accept and result methods perform logging
operations before invoking the accept and result methods
of the original policy.

Another example of a policy modifier is our AutoUpdate
superpolicy. This policy checks a remote site once per day
to determine if a new policy patch is available. If so, it
makes a secure connection to the remote site, downloads
the updated policy, and dynamically loads the policy into
the JVM as its new subpolicy. Policies of this sort, which de-



termine how to update other policies at run time, are useful
because they allow new security constraints to be placed on
target applications dynamically, as vulnerabilities are dis-
covered. Note however that because library classes (such as
java.lang.0Object) cannot in general be reloaded while the
JVM is running, policies loaded dynamically should consider
security-relevant only actions appearing in the static action
declaration file. For this reason, we encourage security pro-
grammers to be reasonably conservative when writing action
declaration files for dynamically updateable policies.

A third useful sort of policy modifier is a Filter that
blocks a policy from seeing certain actions. In some circum-
stances, self-monitoring policies can cause loops that will
prevent the target program from continuing (for example,
a policy might react to an action by inserting that same
action, which the policy will then see and react to in the
same way again). It is easy to write a Filter to prevent
such loops. More generally, Filters allow the superpolicy
to determine whether an action is relevant to the subpolicy.

4. EMPIRICAL EVALUATION

Experience implementing and using Polymer has been in-
strumental in confirming and refining our design.

4.1 Implementation

The principal requirement for enforcing the run-time poli-
cies we are interested in is that the flow of control of a run-
ning program passes to a monitor immediately before and
after executing a security-relevant method. The kind of pre-
and post-invocation control-flow modifications to bytecode
that we use to implement Polymer can be done by tools like
Aspect] [10]. Accordingly, we considered using AspectJ to
insert into bytecode hooks that would trigger our monitor
as needed. However, we wanted to retain precise control
over how and where rewriting occurs to be able to make
decisions in the best interests of security, which is not the
primary focus of aspect-oriented languages like AspectJ. In-
stead, we used the Apache BCEL API [3] to develop our
own bytecode rewriting tool.

Custom class loaders have often been used to modify byte-
code before executing it [2, 4]; we use this technique also.
Since libraries used internally by the JVM cannot be rewrit-
ten by a custom class loader, we rewrite those libraries before
starting the JVM and the target application.

Further discussion of the implementation, including de-
sign decisions and performance, can be found in a prior
technical report [5].

Performance. It is instructive to examine the performance
costs of enforcing policies using Polymer. We did not con-
centrate on making our implementation as efficient as possi-
ble, so there is much room for improvement here. However,
the performance of our implementation does shed some light
on the costs of run-time policy enforcement.

Our system impacts target applications in two phases:
before and during loading, when the application and the
class libraries are instrumented by the bytecode rewriter;
and during execution. The total time to instrument every
method in all of the standard Java library packages (i.e., the
28742 methods in the 3948 classes in the java and javax
packages of Sun’s Java API v.1.4.0) was 107 s, or 3.7 ms

per instrumented method.! This cost is reasonable because
library instrumentation only needs to be performed once
(rather than every time a target application is executed).
The average time to load non-library classes into the JVM
with our specialized class loader, but without instrumenting
any methods, was 12 ms, twice as long as the VM’s de-
fault class loader required. The cost of transferring control
to and from a Polymer policy while executing a target is
very low (approximately 0.62 ms); the run-time overhead is
dominated by the computations actually performed by the
policy. Hence the cost of monitoring a program with Poly-
mer is almost entirely dependent on the complexity of the
security policy.

4.2 Case Study: Securing Email Clients

To test the usefulness of Polymer in practice, we have
written a large-scale policy to secure untrusted email clients
that use the JavaMail API. The entire policy, presented in
Figure 8, is approximately 1800 lines of Polymer code. We
have extensively tested the protections enforced by the pol-
icy on an email client called Pooka [16], without having to
inspect or modify any of the approximately 50K lines of
Pooka source code. The run-time cost of enforcing the com-
plex constraints specified by our policy is difficult to measure
because the performance of the email client depends largely
on interactions with the user; however, our experience indi-
cates that the overhead is rarely noticeable.

The component policies in Figure 8 each enforce a modu-
lar set of constraints. The Trivial and Attachments policies
were described in Section 3.2; the Conjunction, TryWith,
Dominates, Audit, and AutoUpdate superpolicies were de-
scribed in Section 3.3. The left branch of the policy hierar-
chy (shaded in Figure 8) contains a generic policy that we
include in all of our high-level Polymer policies. This branch
of policies ensures that a target cannot use class loading,
reflection, or system calls maliciously and alerts the user
when the memory available to the virtual machine is nearly
exhausted. The nonshaded branch of the policy hierarchy
contains policies specifically designed for securing an email
client and enforces constraints as follows.

e IsClientSigned tests whether the email client is cryp-
tographically signed. If it is, we run Trivial but
continue to log security-relevant actions and allow dy-
namic policy updates. If the client is not signed, we
run a more restrictive policy.

e ConfirmAndAllowOnlyHTTP pops up a window seeking
confirmation before allowing HTTP connections, and
disallows all other types of network connections.

e AllowOnlyMIME allows only standard email socket con-
nections (POP and IMAP).

e QueryCalls allows effectless security-sensitive actions
invoked in the query method of its subpolicy to exe-
cute unconditionally. The implementation of this pol-
icy modifier inspects the dynamic call stack to deter-

!The tests were performed on a Dell PowerEdge 2650 with
dual Intel Xeon 2.2 GHz CPUs and 1 GB of RAM, running
RedHat Linux 9.0. The times represent real time at low
average load. We performed each test multiple times in sets
of 100. The results shown are the average for the set with
the lowest average, after removing outliers.



AutoUpdate

Dominates

ConfirmAndAllowOnlyHTTP AllowOnlyMIME

w IntToCheckMem

IsClientSigned

Cm > oo ]

OutgoingMail QueryCalls
IncomingMail

Figure 8: Emalil policy hierarchy

mine whether a trigger action was invoked in the sub-
policy’s query method.

e OutgoingMail logs all mail being sent, pops up a win-
dow confirming the recipients of messages (to prevent a
malicious client from quietly sending mail on the user’s
behalf), backs up every outgoing message by sending
a BCC to polydemo@cs.princeton.edu, and automati-
cally appends contact information to textual messages.

e IncomingMail was shown in an abbreviated form in
Figure 6. In addition to logging incoming mail and
prepending “SPAM:” to the subject lines of email that
fails a spam filter, this policy truncates long subject
lines and displays a warning when a message contain-
ing an attachment is opened.

5. FORMAL SEMANTICS

In this section, we give a semantics to the core features
of our language. The main purpose of the semantics is to
communicate the central workings of our language in a pre-
cise and unambiguous manner. We have chosen to give
the semantics in the context of a lambda calculus because
lambda calculi are inherently simpler to specify than class-
based languages such as Java.” More importantly, the cen-
tral elements of our policy language do not depend upon
Java-specific features such as classes, methods and inheri-
tance. We could just as easily have implemented policies for
a functional language such as ML or a type-safe imperative
language. Type safety protects the program monitor’s state
and code from the untrusted application.

Figure 9 describes the main syntactic elements of the cal-
culus. The language is simply-typed with types for booleans,
n-ary tuples, references, and functions. Our additions in-
clude simple base types for policies (Poly), suggestions (Sug),
actions (Act), which are suspended function applications,
and results of those suspended function applications (Res).

Programs as a whole are 4-tuples consisting of a collec-
tion of functions that may be monitored, a memory that

’Even the lightest-weight specification of Java such as
Featherweight Java is substantially more complex than the
simply-typed lambda calculus.

maps memory locations to values, and two expressions. The
first expression represents the security policy; the second
expression represents the untrusted application. Execution
of a program begins by reducing the policy expression to
a policy value. It continues by executing the application
expression in the presence of the policy.

Monitored functions (funf(z:m1):72{e}) are syntactically
separated from ordinary functions (Az:7.e).> Moreover, we
treat monitored function names f as a syntactically sepa-
rate class of variables from ordinary variables . Monitored
function names may only appear wrapped up as actions as
in act(f, e). These actions are suspended computations that
must be explicitly invoked with the command invk e. Invok-
ing an action causes the function in question to be executed
and its result wrapped in a result constructor result(e:7).
The elimination forms for results and most other objects
discussed above is handled through a generic case expres-
sion and pattern matching facility. The class of patterns p
includes variable patterns x as well as patterns for matching
constructors. Ordinary, unmonitored functions are executed
via the usual function application command (e; e2).

To create a policy, one applies the policy constructor pol
to a query function (equery), which produces suggestions,
and security state update functions that execute before (€acc)
and after (eres) the monitored method. Each suggestion
(irrs, oks, inss, repls, exns, and halts) also has its own con-
structor. For instance, the repls constructor takes a result
object as an argument and the inss suggestion takes an ac-
tion to execute as an argument. Each suggestion will be
given a unique interpretation in the operational semantics.

Satic Semantics. Figure 10 presents selected rules from
the static semantics for the language. The main judgment,
which types expressions, has the form S;C F e : 7 where S
maps reference locations to their types and C' maps variables
to types. Whenever we add a new binding z:7 to the context,
we implicitly alpha-vary x to ensure it does not clash with
other variables in the context. A secondary judgment C' +
p: (1;C") is used to check that a pattern p will match objects

3 As usual, we treat expressions that differ only in the names
of their bound variables as identical. We often write let z =
e1 in ez for (Az:T.e2)er.



types : N
7 u=DBool | () | 7 Ref | 1 = 72 | Poly | Sug | Act | Res

programs :
P = (F, ]\4'7 €pol, eapp)
monitored functions :

F = funf(z:m):m{e}

memories :
M:a=-|Ml:v
values :

v = true | false | (U

) | 1| Ax:7.e | pol(vquery, Vace, Ures) |

irrs | oks | inss(v) | repls(v) | exns | halts | act(f,v) |
result(v:T)

expressions : _,

e s=v|x]|(e)|e;ea|refe]|le|ei:=es|erer|
Pol(equery, €ace, €xes) | inss(e) | repls(e) | act(f,e) |
invk e | result(e:7) | case e; of (p = e2 | = e3) |
try e1 with e | raise exn | abort

patterns : N

p u=ua | true | false | (P) | pol(z1, 2, x3) | irrs | oks |
inss(p) | repls(p) | exns | halts | act(f,p) | result(p:7)

Figure 9: Formal syntax

with type 7 and binds variables with types given by C".

We have worked hard to make the static semantics a sim-
ple but faithful model of the implementation. In particular,
notice that all actions share the same type (Act) regardless
of the type of object they return when invoked. Dynami-
cally, the result of invoking an action is a value wrapped up
as a result with type Res. Case analysis is used to safely
extract the proper value. This choice allows policy objects
to process and react to arbitrary actions. To determine the
precise nature of any action and give it a more refined type,
the policy will use pattern matching. We have a similar
design for action results and replacement values.

The judgement for overall program states has the form
F (F, M, epol, eapp) : T where 7 is the type of the application
code eapp. This judgment relies on two additional judg-
ments (definitions not shown) which give types to a library
of monitored functions F' and types to locations in memory
M.

Dynamic Semantics. To explain execution of monitored
programs, we use a context-based semantics. The first step
is to define a set of evaluation contexts E, which mark where
a beta-reduction can occur. Our contexts specify a left-to-
right, call-by-value evaluation order. (We omit the definition
to conserve space.)

We specify execution through a pair of judgments, one for
top-level evaluation and one for basic reductions as shown
in Figure 11. The top-level judgment reveals that the pol-
icy expression is first reduced to a value, and then execu-
tion of the untrusted application code begins. Execution of
many of the constructs is relatively straightforward. One
exception is execution of function application. For ordinary
functions, we use the usual capture-avoiding substitution.
Monitored functions, on the other hand, may only be exe-
cuted if they are wrapped up as actions and then invoked
using the invk command. The invk command applies the
query method to discover the suggestion the current policy
makes and then interprets the suggestion. Notice, for in-

S; C'F equery : Act — Sug

S; C F eace : (Act, Sug) — () S;C F eres : Res — ()
S; C + pol(equery, €acc, €res) : Poly

S;C +irrs : Sug S;C I~ oks : Sug

S;CFe:Act
S;C | inss(e) : Sug

S;CFe:Res
S; C F repls(e) : Sug

S; C I exns : Sug S; C' | halts : Sug

Clfly=m1—7m S;Crke:m
S;C - act(f,e) : Act

S;CFe:Act
S;C Finvk e : Res

S;Ckle:T
S; C F result(e:7) : Res

S;Ctep:1 Ckp:(r;C"
S;C,C'Fex: T S;Cles:T
S;Clcaseejof (p=ex|_=e3):T

= (ﬁ; M, epolaeapp) ' T

FF:C CHM:S
S; C | epor : Poly S;CFeapp : T

F (ﬁ7 M7 eDOI)EaPP) - T

Figure 10: Static semantics (selected rules)

stance, that to respond to the irrelevant suggestion (irrs),
the application simply proceeds to execute the body of the
security-relevant action. To respond to the OK suggestion
(oks), the application first calls the policy’s accept method,
then executes the security-relevant action before calling the
policy’s result method, and finally returns the result of ex-
ecuting the security-relevant action.

Language Properties. To check that our language is well-
defined, we have proven a standard type-safety result in
terms of Preservation and Progress lemmas. Due to space
considerations, we have omitted the proofs.

Theorem 1

—

Iﬂ_ (ﬁ; M; epolae'dpp) ¢ T and (ﬁ7 M: epolae'dpp) = (F7 M,ae;)olye;,pp)

then + (F, M’ er o1 €app) : T-

Theorem 2 .

If b (F,M,epol,€app) : T then either (F', M, epol,€app) IS
finished (i.e., eapp iS @ value, or epo1 OF eapp is E[abort], or
€pol OT €app Iis E[raise exn] where E # E'[try E" with e]),
or there exists a configuration (F, M’ e}, o1, €app) Such that
(F7 M: €pol, 631)1)) — (F7 MI: 6;)017 e{app)'

Observations. The semantics gives insight into some of the
subtler elements of our implementation, which are important
both to system users and to us as implementers.



(F7 M: 6P017€app) — (F7 Mlaeg)olae;.pp)

(F, M, Triv,e) =5 (M',€)
(F, M, Ele], eapp) — (F, M, Ele'], eapp)
where Triv = pol(Az:Act.irrs, Az:(Act, Sug).(), Az:Res.())

(ﬁv M7 UDOI)E) _)B (Mlve’)
(ﬁa Ma UpohE[e]) = (ﬁ7 MI)UDOhE[e,])

(F7 M: Up017eapp) _>5 (Mlae’app)

(F", M, vpol, (Az:T.€)v) =5 (M, e[v/z])

F; € .ﬁ F; = fllnf(l‘:Tl):TQ{e}
(ﬁv M: Upolaind aCt(fa U)) —B (M7 Wra'p(vpola F: U))

where Wrap (pOl(Uquery, Vacc) Ures)y funf(x:Tl):TQ{E}, U) =
let s = Uquery(aCt(f7 U)) in

case s of
irrs = let £ = v in result(e:72)
| oks = vace(act(f,v), s);

let z = v in let r = result(e:72) in vres 75 T
| repls(r) = vacc(act(f,v),s); r
| exns = vacc(act(f,v), s); raise exn
|inss(a) = vacc(act(f,v),s); vres(invk a); invk act(f,v)
| - = abort

Figure 11: Dynamic semantics (selected rules)

For example, one might want to consider what happens
if a program monitor raises but does not catch an excep-
tion (such as a null pointer exception). Tracing through the
operational semantics, one can see that the exception will
percolate from the monitor into the application itself. If this
behavior is undesired, a security programmer can create a
top-level superpolicy that catches all exceptions raised by
the other policies and deals with them as the programmer
sees fit.

As another example, analysis of the operational semantics
shows a corner case in which we are unable to fully obey
the principle of complete mediation. During the first stage
of execution, while the policy itself is evaluated, monitored
functions are only protected by a trivial policy that accepts
all actions because the actual policy we want to enforce is
the one being initialized. Policy writers need to be aware
of this unavoidable behavior in order to implement policies
correctly.

6. SUMMARY

We have developed a programming methodology for writ-
ing general-purpose security policies. The design is radically
different from existing policy-specification languages in its
division of policies into effectless methods that make sugges-
tions regarding how to handle trigger actions and effectful
methods that are called when the policy’s suggestions are
followed. This design allows general security policies to be
composed in meaningful and productive ways. We have im-

plemented our design and shown a sound formal semantics
for it. Finally, we demonstrated the practicality of the lan-
guage by building a sophisticated security policy for email
clients from simple, modular, and reuseable policies.

7[1} ﬁ%ﬁ%aﬁ%%u§net. Access control based on

execution history. In 10th Annual Network and Distributed
System Security Symposium, 2003.

[2] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type
parameterization to the Java language. In Object Oriented
Programing: Systems, Languages, and Applications
(OOPSLA), Oct. 1997.

[3] Apache Software Foundation. Byte Code Engineering
Library, 2003. http://jakarta.apache.org/bcel/.

[4] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for
secure modular programming in Java. Software—Practice
and Ezperience, 33(5):461-480, 2003.

[5] L. Bauer, J. Ligatti, and D. Walker. A language and system
for composing security policies. Technical Report
TR-699-04, Princeton University, Jan. 2004.

[6] T. Colcombet and P. Fradet. Enforcing trace properties by
program transformation. In Twenty-Seventh ACM
Symposium on Principles of Programming Languages,
pages 54-66, Boston, Jan. 2000. ACM Press.

[7] U. Erlingsson and F. B. Schneider. IRM enforcement of
Java stack inspection. In IEEE Symposium on Security and
Privacy, Oakland, CA, May 2000.

[8] D. Evans and A. Twyman. Flexible policy-directed code
safety. In IEEE Security and Privacy, Oakland, CA, May
1999.

[9] C. Fournet and A. Gordon. Stack inspection: Theory and
variants. In Twenty-Ninth ACM Symposium on Principles
of Programming Languages, Jan. 2002.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In European
Conference on Object-oriented Programming.
Springer-Verlag, 2001.

[11] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan,

I. Lee, and O. Sokolsky. Formally specified monitoring of
temporal properties. In Furopean Conference on Real-time
Systems, York, UK, June 1999.

[12] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Run-time assurance based on formal
specifications. In International Conference on Parallel and
Distributed Processing Techniques and Applications, Las
Vegas, NV, June 1999.

[13] J. Ligatti, L. Bauer, and D. Walker. Edit automata:
Enforcement mechanisms for run-time security policies.
International Journal of Information Security, 2004.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 2nd edition, 1999.

[15] E. Meijer and J. Gough. A technical overview of the
Common Language Infrastructure. http:
//research.microsoft.com/~emeijer/Papers/CLR.pdf.

[16] A. Petersen. Pooka: A Java email client, 2003.
http://www.suberic.net/pooka/.

[17] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In IEEE 63, 9, pages
1278-1308, Sept. 1975.

(18] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and Systems Security,
3(1):30-50, Feb. 2000.

[19] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice
in higher-order languages. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, pages 158-167, 2003.

[20] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ACM International Conference on Functional
Programming, Uppsala, Sweden, Aug. 2003.



