
25

C H A P T E R 3
Methods Common to All Objects

ALTHOUGH Object is a concrete class, it is designed primarily for extension. All
of its nonfinal methods (equals, hashCode, toString, clone, and finalize) have
explicit general contracts because they are designed to be overridden. It is the
responsibility of any class overriding these methods to obey their general con-
tracts; failure to do so will prevent other classes that depend on these contracts
from functioning properly in conjunction with the class.

This chapter tells you when and how to override the nonfinal Object methods.
The finalize method is omitted from this chapter because it was discussed in
Item 6. While not an Object method, Comparable.compareTo is discussed in this
chapter because it has a similar character.

Item 7: Obey the general contract when overriding equals

Overriding the equals method seems simple, but there are many ways to get it
wrong, and the consequences can be dire. The easiest way to avoid problems is not
to override the equals method, in which case each instance is equal only to itself.
This is the right thing to do if any of the following conditions apply:

• Each instance of the class is inherently unique. This is true for classes that
represent active entities rather than values, such as Thread. The equals imple-
mentation provided by Object has exactly the right behavior for these classes.

• You don’t care whether the class provides a “logical equality” test. For
example, java.util.Random could have overridden equals to check whether
two Random instances would produce the same sequence of random numbers
going forward, but the designers didn’t think that clients would need or want
this functionality. Under these circumstances, the equals implementation
inherited from Object is adequate.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS26

• A superclass has already overridden equals, and the behavior inherited
from the superclass is appropriate for this class. For example, most Set
implementations inherit their equals implementation from AbstractSet,
List implementations from AbstractList, and Map implementations from
AbstractMap.

• The class is private or package-private, and you are certain that its equals
method will never be invoked. Arguably, the equals method should be over-
ridden under these circumstances, in case it is accidentally invoked someday:

public boolean equals(Object o) {
throw new UnsupportedOperationException();

}

So when is it appropriate to override Object.equals? When a class has a
notion of logical equality that differs from mere object identity, and a superclass
has not already overridden equals to implement the desired behavior. This is gen-
erally the case for value classes, such as Integer or Date. A programmer who
compares references to value objects using the equals method expects to find out
whether they are logically equivalent, not whether they refer to the same object.
Not only is overriding the equals method necessary to satisfy programmer expec-
tations, it enables instances of the class to serve as map keys or set elements with
predictable, desirable behavior.

One kind of value class that does not require the equals method to be overrid-
den is the typesafe enum (Item 21). Because typesafe enum classes guarantee that
at most one object exists with each value, Object’s equals method is equivalent
to a logical equals method for such classes.

When you override the equals method, you must adhere to its general con-
tract. Here is the contract, copied from the specification for java.lang.Object:

The equals method implements an equivalence relation:
n It is reflexive: For any reference value x, x.equals(x) must return true.

n It is symmetric: For any reference values x and y, x.equals(y) must return
true if and only if y.equals(x) returns true.

n It is transitive: For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) must return true.

n It is consistent: For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided
no information used in equals comparisons on the object is modified.

n For any non-null reference value x, x.equals(null) must return false.

ITEM 7: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 27

Unless you are mathematically inclined, this might look a bit scary, but do not
ignore it! If you violate it, you may well find that your program behaves errati-
cally or crashes, and it can be very difficult to pin down the source of the failure.
To paraphrase John Donne, no class is an island. Instances of one class are fre-
quently passed to another. Many classes, including all collections classes, depend
on the objects passed to them obeying the equals contract.

Now that you are aware of the evils of violating the equals contract, let’s go
over the contract in detail. The good news is that, appearances notwithstanding,
the contract really isn’t very complicated. Once you understand it, it’s not hard to
adhere to it. Let’s examine the five requirements in turn:

Reflexivity—The first requirement says merely that an object must be equal
to itself. It is hard to imagine violating this requirement unintentionally. If you
were to violate it and then add an instance of your class to a collection, the collec-
tion’s contains method would almost certainly say that the collection did not
contain the instance that you just added.

Symmetry—The second requirement says that any two objects must agree on
whether they are equal. Unlike the first requirement, it’s not hard to imagine vio-
lating this one unintentionally. For example, consider the following class:

/**
* Case-insensitive string. Case of the original string is
* preserved by toString, but ignored in comparisons.
*/

public final class CaseInsensitiveString {
private String s;

public CaseInsensitiveString(String s) {
if (s == null)

throw new NullPointerException();
this.s = s;

}

// Broken - violates symmetry!
public boolean equals(Object o) {

if (o instanceof CaseInsensitiveString)
return s.equalsIgnoreCase(

((CaseInsensitiveString)o).s);
if (o instanceof String) // One-way interoperability!

return s.equalsIgnoreCase((String)o);
return false;

}
... // Remainder omitted

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS28

The well-intentioned equals method in this class naively attempts to interop-
erate with ordinary strings. Let’s suppose that we have one case-sensitive string
and one ordinary one:

CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";

As expected, cis.equals(s) returns true. The problem is that while the
equals method in CaseInsensitiveString knows about ordinary strings, the
equals method in String is oblivious to case-insensitive strings. Therefore
s.equals(cis) returns false, a clear violation of symmetry. Suppose you put a
case-insensitive string into a collection:

List list = new ArrayList();
list.add(cis);

What does list.contains(s) return at this point? Who knows? In Sun’s cur-
rent implementation, it happens to return false, but that’s just an implementation
artifact. In another implementation, it could just as easily return true or throw a
run-time exception. Once you’ve violated the equals contract, you simply don’t
know how other objects will behave when confronted with your object.

To eliminate the problem, merely remove the ill-conceived attempt to interop-
erate with String from the equals method. Once you do this, you can refactor the
method to give it a single return:

public boolean equals(Object o) {
return o instanceof CaseInsensitiveString &&

((CaseInsensitiveString)o).s.equalsIgnoreCase(s);
}

Transitivity—The third requirement of the equals contract says that if one
object is equal to a second and the second object is equal to a third, then the first
object must be equal to the third. Again, it’s not hard to imagine violating this
requirement unintentionally. Consider the case of a programmer who creates a
subclass that adds a new aspect to its superclass. In other words, the subclass adds

ITEM 7: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 29

a piece of information that affects equals comparisons. Let’s start with a simple
immutable two-dimensional point class:

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}

public boolean equals(Object o) {
if (!(o instanceof Point))

return false;
Point p = (Point)o;
return p.x == x && p.y == y;

}

... // Remainder omitted
}

Suppose you want to extend this class, adding the notion of color to a point:

public class ColorPoint extends Point {
private Color color;

public ColorPoint(int x, int y, Color color) {
super(x, y);
this.color = color;

}

... // Remainder omitted
}

How should the equals method look? If you leave it out entirely, the imple-
mentation is inherited from Point, and color information is ignored in equals
comparisons. While this does not violate the equals contract, it is clearly unac-
ceptable. Suppose you write an equals method that returns true only if its argu-
ment is another color point with the same position and color:

// Broken - violates symmetry!
public boolean equals(Object o) {

if (!(o instanceof ColorPoint))
return false;

ColorPoint cp = (ColorPoint)o;
return super.equals(o) && cp.color == color;

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS30

The problem with this method is that you might get different results when
comparing a point to a color point and vice versa. The former comparison ignores
color, while the latter comparison always returns false because the type of the
argument is incorrect. To make this concrete, let’s create one point and one color
point:

Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2, Color.RED);

Then p.equals(cp) returns true, while cp.equals(p) returns false. You
might try to fix the problem by having ColorPoint.equals ignore color when
doing “mixed comparisons”:

// Broken - violates transitivity.
public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equals(this);

// o is a ColorPoint; do a full comparison
ColorPoint cp = (ColorPoint)o;
return super.equals(o) && cp.color == color;

}

This approach does provide symmetry, but at the expense of transitivity:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

At this point, p1.equals(p2) and p2.equals(p3) return true, while
p1.equals(p3) returns false, a clear violation of transitivity. The first two com-
parisons are “color-blind,” while the third takes color into account.

So what’s the solution? It turns out that this is a fundamental problem of
equivalence relations in object-oriented languages. There is simply no way to
extend an instantiable class and add an aspect while preserving the equals
contract. There is, however, a fine workaround. Follow the advice of Item 14,
“Favor composition over inheritance.” Instead of having ColorPoint extend

ITEM 7: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 31

Point, give ColorPoint a private Point field and a public view method (Item 4)
that returns the point at the same position as this color point:

// Adds an aspect without violating the equals contract
public class ColorPoint {

private Point point;
private Color color;

public ColorPoint(int x, int y, Color color) {
point = new Point(x, y);
this.color = color;

}

/**
* Returns the point-view of this color point.
*/
public Point asPoint() {

return point;
}

public boolean equals(Object o) {
if (!(o instanceof ColorPoint))

return false;
ColorPoint cp = (ColorPoint)o;
return cp.point.equals(point) && cp.color.equals(color);

}

... // Remainder omitted
}

There are some classes in the Java platform libraries that subclass an instantia-
ble class and add an aspect. For example, java.sql.Timestamp subclasses
java.util.Date adding a nanoseconds field. The equals implementation for
Timestamp does violate symmetry and can cause erratic behavior if Timestamp
and Date objects are used in the same collection or are otherwise intermixed. The
Timestamp class has a disclaimer cautioning the programmer against mixing dates
and timestamps. While you won’t get into trouble as long as you don’t mix them,
there’s nothing preventing you from doing so, and the resulting errors could be
hard to debug. The TimeStamp class is an anomaly and should not be emulated.

Note that you can add an aspect to a subclass of an abstract class without vio-
lating the equals contract. This is important for the sort of class hierarchies that
you get by following the advice in Item 20, “Replace unions with class hierar-
chies.” For example, you could have an abstract Shape class with no aspects, a
Circle subclass that adds a radius field, and a Rectangle subclass that adds

CHAPTER 3 METHODS COMMON TO ALL OBJECTS32

length and width fields. Problems of the sort just shown will not occur as long as
it is impossible to create an instance of the superclass.

Consistency—The fourth requirement of the equals contract says that if two
objects are equal, they must remain equal for all time, unless one (or both) of them
is modified. This isn’t so much a true requirement as a reminder that mutable
objects can be equal to different objects at different times while immutable objects
can’t. When you write a class, think hard about whether it should be immutable
(Item 13). If you conclude that it should, make sure that your equals method
enforces the restriction that equal objects remain equal and unequal objects
remain unequal for all time.

“Non-nullity”—The final requirement, which in the absence of a name I have
taken the liberty of calling “non-nullity,” says that all objects must be unequal to
null. While it is hard to imagine accidentally returning true in response to the
invocation o.equals(null), it isn’t hard to imagine accidentally throwing a
NullPointerException. The general contract does not allow this. Many classes
have equals methods that guard against it with an explicit test for null:

public boolean equals(Object o) {
if (o == null)

return false;
...

}

This test is not necessary. To test its argument for equality, the equals method
must first cast the argument to an appropriate type so its accessors may be invoked
or its fields accessed. Before doing the cast, the method must use the instanceof
operator to check that its argument is of the correct type:

public boolean equals(Object o) {
if (!(o instanceof MyType))

return false;
...

}

If this type check were missing and the equals method were passed an argument of
the wrong type, the equals method would throw a ClassCastException, which
violates the equals contract. But the instanceof operator is specified to return
false if its first operand is null, regardless of what type appears in the second
operand [JLS, 15.19.2]. Therefore the type check will return false if null is passed
in, so you don’t need a separate null check. Putting it all together, here’s a recipe
for a high-quality equals method:

ITEM 7: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 33

1. Use the == operator to check if the argument is a reference to this object.
If so, return true. This is just a performance optimization, but one that is worth
doing if the comparison is potentially expensive.

2. Use the instanceof operator to check if the argument is of the correct
type. If not, return false. Typically, the correct type is the class in which the
method occurs. Occasionally, it is some interface implemented by this class.
Use an interface if the class implements an interface that refines the equals
contract to permit comparisons across classes that implement the interface. The
collection interfaces Set, List, Map, and Map.Entry have this property.

3. Cast the argument to the correct type. Because this cast was preceded by an
instanceof test, it is guaranteed to succeed.

4. For each “significant” field in the class, check to see if that field of the ar-
gument matches the corresponding field of this object. If all these tests suc-
ceed, return true; otherwise, return false. If the type in Step 2 is an interface,
you must access the argument’s significant fields via interface methods; if the
type is a class, you may be able to access the fields directly, depending on their
accessibility. For primitive fields whose type is not float or double, use the
== operator for comparisons; for object reference fields, invoke the equals
method recursively; for float fields, translate to int values using
Float.floatToIntBits and compare the int values using the == operator;
for double fields, translate to long values using Double.doubleToLongBits
and compare the long values using the == operator. (The special treatment of
float and double fields is made necessary by the existence of Float.NaN,
-0.0f, and the analogous double constants; see the Float.equals documen-
tation for details.) For array fields, apply these guidelines to each element.
Some object reference fields may legitimately contain null. To avoid the pos-
sibility of a NullPointerException, use the following idiom to compare such
fields:

(field == null ? o.field == null : field.equals(o.field))

This alternative may be faster if field and o.field are often identical object
references:

(field == o.field || (field != null && field.equals(o.field)))

For some classes, like CaseInsensitiveString shown earlier, the field com-
parisons are more complex than simple equality tests. It should be apparent
from the specification for a class if this is the case. If so, you may want to store

CHAPTER 3 METHODS COMMON TO ALL OBJECTS34

a canonical form in each object, so that the equals method can do cheap exact
comparisons on these canonical forms rather than more costly inexact compar-
isons. This technique is most appropriate for immutable classes (Item 13), as
the canonical form would have to be kept up to date if the object could change.

The performance of the equals method may be affected by the order in which
fields are compared. For best performance, you should first compare fields that
are more likely to differ, less expensive to compare, or, ideally, both. You must
not compare fields that are not part of an object’s logical state, such as Object
fields used to synchronize operations. You need not compare redundant fields,
which can be calculated from “significant fields,” but doing so may improve
the performance of the equals method. If a redundant field amounts to a sum-
mary description of the entire object, comparing this field will save you the ex-
pense of comparing the actual data if the comparison fails.

5. When you are finished writing your equals method, ask yourself three
questions: Is it symmetric, is it transitive, and is it consistent? (The other
two properties generally take care of themselves.) If not, figure out why these
properties fail to hold, and modify the method accordingly.

For a concrete example of an equals method constructed according to the
above recipe, see PhoneNumber.equals in Item 8. Here are a few final caveats:

• Always override hashCode when you override equals (Item 8).

• Don’t try to be too clever. If you simply test fields for equality, it’s not hard
to adhere to the equals contract. If you are overly aggressive in searching for
equivalence, it’s easy to get into trouble. It is generally a bad idea to take any
form of aliasing into account. For example, the File class shouldn’t attempt to
equate symbolic links referring to the same file. Thankfully, it doesn’t.

• Don’t write an equals method that relies on unreliable resources. It’s ex-
tremely difficult to satisfy the consistency requirement if you do this. For ex-
ample, java.net.URL’s equals method relies on the IP addresses of the hosts
in URLs being compared. Translating a host name to an IP address can require
network access, and it isn’t guaranteed to yield the same results over time. This
can cause the URL equals method to violate the equals contract, and it has
caused problems in practice. (Unfortunately, this behavior cannot be changed
due to compatibility requirements.) With few exceptions, equals methods
should perform deterministic computations on memory-resident objects.

ITEM 7: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 35

• Don’t substitute another type for Object in the equals declaration. It is not
uncommon for a programmer to write an equals method that looks like the fol-
lowing, and then spend hours puzzling over why it doesn’t work properly:

public boolean equals(MyClass o) {
...

}

The problem is that this method does not override Object.equals, whose ar-
gument is of type Object, but overloads it instead (Item 26). It is acceptable to
provide such a “strongly typed” equals method in addition to the normal one
as long as the two methods return the same result but there is no compelling
reason to do so. It may provide minor performance gains under certain circum-
stances, but it isn’t worth the added complexity (Item 37).

CHAPTER 3 METHODS COMMON TO ALL OBJECTS36

Item 8: Always override hashCode when you override equals

A common source of bugs is the failure to override the hashCode method. You must
override hashCode in every class that overrides equals. Failure to do so will
result in a violation of the general contract for Object.hashCode, which will pre-
vent your class from functioning properly in conjunction with all hash-based collec-
tions, including HashMap, HashSet, and Hashtable.

Here is the contract, copied from the java.lang.Object specification:

n Whenever it is invoked on the same object more than once during an execu-
tion of an application, the hashCode method must consistently return the
same integer, provided no information used in equals comparisons on the
object is modified. This integer need not remain consistent from one execu-
tion of an application to another execution of the same application.

n If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the same
integer result.

n It is not required that if two objects are unequal according to the equals(Ob-
ject) method, then calling the hashCode method on each of the two objects
must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve
the performance of hash tables.

The key provision that is violated when you fail to override hashCode is
the second one: Equal objects must have equal hash codes. Two distinct
instances may be logically equal according to the class’s equals method, but to
the Object class’s hashCode method, they’re just two objects with nothing much
in common. Therefore object’s hashCode method returns two seemingly random
numbers instead of two equal numbers as required by the contract.

For example, consider the following simplistic PhoneNumber class, whose
equals method is constructed according to the recipe in Item 7:

public final class PhoneNumber {
private final short areaCode;
private final short exchange;
private final short extension;

public PhoneNumber(int areaCode, int exchange,
int extension) {

rangeCheck(areaCode, 999, "area code");
rangeCheck(exchange, 999, "exchange");
rangeCheck(extension, 9999, "extension");

ITEM 8: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 37

this.areaCode = (short) areaCode;
this.exchange = (short) exchange;
this.extension = (short) extension;

}

private static void rangeCheck(int arg, int max,
String name) {

if (arg < 0 || arg > max)
throw new IllegalArgumentException(name +": " + arg);

}

public boolean equals(Object o) {
if (o == this)

return true;
if (!(o instanceof PhoneNumber))

return false;
PhoneNumber pn = (PhoneNumber)o;
return pn.extension == extension &&

pn.exchange == exchange &&
pn.areaCode == areaCode;

}

// No hashCode method!

... // Remainder omitted
}

Suppose you attempt to use this class with a HashMap:

Map m = new HashMap();
m.put(new PhoneNumber(408, 867, 5309), "Jenny");

At this point, you might expect m.get(new PhoneNumber(408, 867, 5309)) to
return "Jenny", but it returns null. Notice that two PhoneNumber instances are
involved: One is used for insertion into the HashMap, and a second, equal, instance
is used for (attempted) retrieval. The PhoneNumber class’s failure to override
hashCode causes the two equal instances to have unequal hash codes, in violation
of the hashCode contract. Therefore the get method looks for the phone number
in a different hash bucket from the one in which it was stored by the put method.
Fixing this problem is as simple as providing a proper hashCode method for the
PhoneNumber class.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS38

So what should a hashCode method look like? It’s trivial to write one that is
legal but not good. This one, for example, is always legal, but it should never be
used:

// The worst possible legal hash function - never use!
public int hashCode() { return 42; }

It’s legal because it ensures that equal objects have the same hash code. It’s
atrocious because it ensures that every object has the same hash code. Therefore
every object hashes to the same bucket, and hash tables degenerate to linked lists.
Programs that should run in linear time run instead in quadratic time. For large
hash tables, this is the difference between working and not working.

A good hash function tends to produce unequal hash codes for unequal
objects. This is exactly what is meant by the third provision of the hashCode con-
tract. Ideally, a hash function should distribute any reasonable collection of
unequal instances uniformly across all possible hash values. Achieving this ideal
can be extremely difficult. Luckily it is not too difficult to achieve a fair approxi-
mation. Here is a simple recipe:

1. Store some constant nonzero value, say 17, in an int variable called result.

2. For each significant field f in your object (each field taken into account by the
equals method, that is), do the following:

a. Compute an int hash code c for the field:

i. If the field is a boolean, compute (f ? 0 : 1).

ii. If the field is a byte, char, short, or int, compute (int)f.

iii. If the field is a long, compute (int)(f ^ (f >>> 32)).

iv. If the field is a float compute Float.floatToIntBits(f).

v. If the field is a double, compute Double.doubleToLongBits(f), and
then hash the resulting long as in step 2.a.iii.

vi. If the field is an object reference and this class’s equals method
compares the field by recursively invoking equals, recursively
invoke hashCode on the field. If a more complex comparison is
required, compute a “canonical representation” for this field and
invoke hashCode on the canonical representation. If the value of the
field is null, return 0 (or some other constant, but 0 is traditional).

ITEM 8: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 39

vii. If the field is an array, treat it as if each element were a separate field.
That is, compute a hash code for each significant element by applying
these rules recursively, and combine these values as described in
step 2.b.

b. Combine the hash code c computed in step a into result as follows:

 result = 37*result + c;

3. Return result.

4. When you are done writing the hashCode method, ask yourself whether equal
instances have equal hash codes. If not, figure out why and fix the problem.

It is acceptable to exclude redundant fields from the hash code computation.
In other words, it is acceptable to exclude any field whose value can be computed
from fields that are included in the computation. It is required that you exclude
any fields that are not used in equality comparisons. Failure to exclude these fields
may result in a violation of the second provision of the hashCode contract.

A nonzero initial value is used in step 1, so the hash value will be affected by
initial fields whose hash value, as computed in step 2.a, is zero. If zero was used as
the initial value in step 1, the overall hash value would be unaffected by any such
initial fields, which could increase collisions. The value 17 is arbitrary.

The multiplication in step 2.b makes the hash value depend on the order of the
fields, which results in a much better hash function if the class contains multiple
similar fields. For example, if the multiplication were omitted from a String hash
function built according to this recipe, all anagrams would have identical hash
codes. The multiplier 37 was chosen because it is an odd prime. If it was even and
the multiplication overflowed, information would be lost because multiplication
by two is equivalent to shifting. The advantages of using a prime number are less
clear, but it is traditional to use primes for this purpose.

Let’s apply this recipe to the PhoneNumber class. There are three significant
fields, all of type short. A straightforward application of the recipe yields this
hash function:

public int hashCode() {
int result = 17;
result = 37*result + areaCode;
result = 37*result + exchange;
result = 37*result + extension;
return result;

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS40

Because this method returns the result of a simple deterministic computation
whose only inputs are the three significant fields in a PhoneNumber instance, it
should be clear that equal PhoneNumber instances have equal hash codes. This
method is, in fact, a perfectly reasonable hashCode implementation for Phone-
Number, on a par with those in the Java platform libraries as of release 1.4. It is
simple, is reasonably fast, and does a reasonable job of dispersing unequal phone
numbers into different hash buckets.

If a class is immutable and the cost of computing the hash code is significant,
you might consider caching the hash code in the object rather than recalculating it
each time it is requested. If you believe that most objects of this type will be used
as hash keys, then you should calculate the hash code when the instance is created.
Otherwise, you might choose to lazily initialize it the first time hashCode is
invoked (Item 48). It is not clear that our PhoneNumber class merits this treatment,
but just to show you how it’s done:

// Lazily initialized, cached hashCode
private volatile int hashCode = 0; // (See Item 48)

public int hashCode() {
if (hashCode == 0) {

int result = 17;
result = 37*result + areaCode;
result = 37*result + exchange;
result = 37*result + extension;
hashCode = result;

}
return hashCode;

}

While the recipe in this item yields reasonably good hash functions, it does
not yield state-of-the-art hash functions, nor do the Java platform libraries provide
such hash functions as of release 1.4. Writing such hash functions is a topic of
active research and an activity best left to mathematicians and theoretical com-
puter scientists. Perhaps a later release of the Java platform will provide state-of-
the-art hash functions for its classes and utility methods to allow average program-
mers to construct such hash functions. In the meantime, the techniques described
in this item should be adequate for most applications.

Do not be tempted to exclude significant parts of an object from the hash
code computation to improve performance. While the resulting hash function
may run faster, its quality may degrade to the point where hash tables become
unusably slow. In particular, the hash function may, in practice, be confronted

ITEM 8: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 41

with a large collection of instances that differ largely in the regions that you’ve
chosen to ignore. If this happens, the hash function will map all of the instances to
a very few hash codes, and hash-based collections will display quadratic perfor-
mance. This is not just a theoretical problem. The String hash function imple-
mented in all Java platform releases prior to release 1.2 examined at most sixteen
characters, evenly spaced throughout the string, starting with the first character.
For large collections of hierarchical names such as URLs, this hash function dis-
played exactly the pathological behavior noted here.

Many classes in the Java platform libraries, such as String, Integer, and
Date, specify the exact value returned by their hashCode method as a function of
the instance value. This is generally not a good idea, as it severely limits your abil-
ity to improve the hash function in future releases. If you leave the details of a
hash function unspecified and a flaw is found in it, you can fix the hash function in
the next release without fear of breaking compatibility with clients who depend on
the exact values returned by the hash function.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS42

Item 9: Always override toString

While java.lang.Object provides an implementation of the toString method,
the string that it returns is generally not what the user of your class wants to see. It
consists of the class name followed by an “at” sign (@) and the unsigned hexadeci-
mal representation of the hash code, for example, “PhoneNumber@163b91.” The
general contract for toString says that the returned string should be “a concise but
informative representation that is easy for a person to read.” While it could be
argued that “PhoneNumber@163b91” is concise and easy to read, it isn’t very infor-
mative when compared to “(408) 867-5309”. The toString contract goes on to
say, “It is recommended that all subclasses override this method.” Good advice,
indeed.

While it isn’t as important as obeying the equals and hashCode contracts
(Item 7, Item 8), providing a good toString implementation makes your class
much more pleasant to use. The toString method is automatically invoked
when your object is passed to println, the string concatenation operator (+), or,
as of release 1.4, assert. If you’ve provided a good toString method, generating
a useful diagnostic message is as easy as:

System.out.println("Failed to connect: " + phoneNumber);

 Programmers will generate diagnostic messages in this fashion whether or
not you override toString, but the messages won’t be intelligible unless you do.
The benefits of providing a good toString method extend beyond instances of
the class to objects containing references to these instances, especially collections.
Which would you rather see when printing a map, “{Jenny=PhoneNum-
ber@163b91}” or “{Jenny=(408) 867-5309}”?

When practical, the toString method should return all of the interesting
information contained in the object, as in the phone number example just
shown. It is impractical if the object is large or if it contains state that is not condu-
cive to string representation. Under these circumstances, toString should return a
summary such as “Manhattan white pages (1487536 listings)” or
“Thread[main, 5,main]”. Ideally, the string should be self-explanatory. (The
Thread example flunks this test.)

One important decision you’ll have to make when implementing a toString
method is whether to specify the format of the return value in the documentation.
It is recommended that you do this for value classes, such as phone numbers or
matrices. The advantage of specifying the format is that it serves as a standard,

ITEM 9: ALWAYS OVERRIDE TOSTRING 43

unambiguous, human-readable representation of the object. This representation
can be used for input and output and in persistent human-readable data objects
such as XML documents. If you specify the format, it’s usually a good idea to pro-
vide a matching String constructor (or static factory, see Item 1), so programmers
can easily translate back and forth between the object and its string representation.
This approach is taken by many value classes in the Java platform libraries,
including BigInteger, BigDecimal, and most of the primitive wrapper classes.

The disadvantage of specifying the format of the toString return value is that
once you’ve specified it, you’re stuck with it for life, assuming your class is
widely used. Programmers will write code to parse the representation, to generate
it, and to embed it into persistent data. If you change the representation in a future
release, you’ll break their code and data, and they will yowl. By failing to specify
a format, you preserve the flexibility to add information or improve the format in a
subsequent release.

Whether or not you decide to specify the format, you should clearly docu-
ment your intentions. If you specify the format, you should do so precisely. For
example, here’s a toString method to go with the PhoneNumber class in Item 8:

/**
 * Returns the string representation of this phone number.
 * The string consists of fourteen characters whose format
 * is "(XXX) YYY-ZZZZ", where XXX is the area code, YYY is
 * the extension, and ZZZZ is the exchange. (Each of the
 * capital letters represents a single decimal digit.)
 *
 * If any of the three parts of this phone number is too small
 * to fill up its field, the field is padded with leading zeros.
 * For example, if the value of the exchange is 123, the last
 * four characters of the string representation will be "0123".
 *
 * Note that there is a single space separating the closing
 * parenthesis after the area code from the first digit of the
 * exchange.
 */
public String toString() {

return "(" + toPaddedString(areaCode, 3) + ") " +
toPaddedString(exchange, 3) + "-" +
toPaddedString(extension, 4);

}

private static String[] ZEROS =
{"", "0", "00", "000", "0000", "00000",
"000000", "0000000", "00000000", "000000000"};

CHAPTER 3 METHODS COMMON TO ALL OBJECTS44

/**
 * Translates an int to a string of the specified length,
 * padded with leading zeros. Assumes i >= 0,
 * 1 <= length <= 10, and Integer.toString(i) <= length.
 */
private static String toPaddedString(int i, int length) {

String s = Integer.toString(i);
return ZEROS[length - s.length()] + s;

}

If you decide not to specify a format, the documentation comment should read
something like this:

/**
* Returns a brief description of this potion. The exact details
* of the representation are unspecified and subject to change,
* but the following may be regarded as typical:
*
* "[Potion #9: type=love, smell=turpentine, look=india ink]"
*/
public String toString() { ... }

After reading this comment, programmers who produce code or persistent
data that depend on the details of the format will have no one but themselves to
blame when the format is changed.

Whether or not you specify the format, it is always a good idea to provide
programmatic access to all of the information contained in the value returned
by toString. For example, the PhoneNumber class should contain accessors for
the area code, exchange, and extension. If you fail to do this, you force program-
mers who need this information to parse the string. Besides reducing performance
and making unnecessary work for programmers, this process is error prone and
results in fragile systems that break if you change the format. By failing to provide
accessors, you turn the string format into a de facto API, even if you’ve specified
that it’s subject to change.

ITEM 10: OVERRIDE CLONE JUDICIOUSLY 45

Item 10: Override clone judiciously

The Cloneable interface was intended as a mixin interface (Item 16) for objects to
advertise that they permit cloning. Unfortunately, it fails to serve this purpose. Its
primary flaw is that it lacks a clone method, and Object’s clone method is pro-
tected. You cannot, without resorting to reflection (Item 35), invoke the clone
method on an object merely because it implements Cloneable. Even a reflective
invocation may fail, as there is no guarantee that the object has an accessible clone
method. Despite this flaw and others, the facility is in sufficiently wide use that it
pays to understand it. This item tells you how to implement a well-behaved clone
method, discusses when it is appropriate to do so, and briefly discusses alternatives.

So what does Cloneable do, given that it contains no methods? It determines
the behavior of Object’s protected clone implementation: If a class implements
Cloneable, Object’s clone method returns a field-by-field copy of the object;
otherwise it throws CloneNotSupportedException. This is a highly atypical use
of interfaces and not one to be emulated. Normally, implementing an interface
says something about what a class can do for its clients. In the case of Cloneable,
however, it modifies the behavior of a protected method on a superclass.

In order for implementing the Cloneable interface to have any effect on a
class, it and all of its superclasses must obey a fairly complex, unenforceable, and
largely undocumented protocol. The resulting mechanism is extralinguistic: It cre-
ates an object without calling a constructor.

The general contract for the clone method is weak. Here it is, copied from the
specification for java.lang.Object:

Creates and returns a copy of this object. The precise meaning of “copy” may
depend on the class of the object. The general intent is that, for any object x,
the expression

x.clone() != x

will be true, and the expression

x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the
case that

x.clone().equals(x)

will be true, this is not an absolute requirement. Copying an object will typi-
cally entail creating a new instance of its class, but it may require copying of
internal data structures as well. No constructors are called.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS46

There are a number of problems with this contract. The provision that “no
constructors are called” is too strong. A well-behaved clone method can call con-
structors to create objects internal to the clone under construction. If the class is
final, clone can even return an object created by a constructor.

The provision that x.clone().getClass() should generally be identical to
x.getClass(), however, is too weak. In practice, programmers assume that if
they extend a class and invoke super.clone from the subclass, the returned object
will be an instance of the subclass. The only way a superclass can provide this
functionality is to return an object obtained by calling super.clone. If a clone
method returns an object created by a constructor, it will have the wrong class.
Therefore, if you override the clone method in a nonfinal class, you should
return an object obtained by invoking super.clone. If all of a class’s super-
classes obey this rule, then invoking super.clone will eventually invoke Object's
clone method, creating an instance of the right class. This mechanism is vaguely
similar to automatic constructor chaining, except that it isn’t enforced.

The Cloneable interface does not, as of Release 1.3, spell out the responsibil-
ities that a class takes on when it implements this interface. The specification says
nothing beyond the manner in which implementing the interface affects the behav-
ior of Object’s clone implementation. In practice, a class that implements
Cloneable is expected to provide a properly functioning public clone
method. It is not, in general, possible to do so unless all of the class’s superclasses
provide a well-behaved clone implementation, whether public or protected.

Suppose you want to implement Cloneable in a class whose superclasses pro-
vide well-behaved clone methods. The object you get from super.clone() may
or may not be close to what you’ll eventually return, depending on the nature of
the class. This object will be, from the standpoint of each superclass, a fully func-
tional clone of the original object The fields declared in your class (if any) will
have values identical to those of the object being cloned. If every field contains a
primitive value or a reference to an immutable object, the returned object may be
exactly what you need, in which case no further processing is necessary. This is
the case, for example, for the PhoneNumber class in Item 8. In this case, all you
need do is provide public access to Object’s protected clone method:

public Object clone() {
try {

return super.clone();
} catch(CloneNotSupportedException e) {

throw new Error("Assertion failure"); // Can’t happen
}

}

ITEM 10: OVERRIDE CLONE JUDICIOUSLY 47

If, however, your object contains fields that refer to mutable objects, using this
clone implementation can be disastrous. For example, consider the Stack class in
Item 5:

public class Stack {
private Object[] elements;
private int size = 0;

public Stack(int initialCapacity) {
this.elements = new Object[initialCapacity];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

// Ensure space for at least one more element.
private void ensureCapacity() {

if (elements.length == size) {
Object oldElements[] = elements;
elements = new Object[2 * elements.length + 1];
System.arraycopy(oldElements, 0, elements, 0, size);

}
}

}

Suppose you want to make this class cloneable. If its clone method merely
returns super.clone(), the resulting Stack instance will have the correct value in
its size field, but its elements field will refer to the same array as the original
Stack instance. Modifying the original will destroy the invariants in the clone and
vice versa. You will quickly find that your program produces nonsensical results
or throws ArrayIndexOutOfBoundsException.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS48

This situation could never occur as a result of calling the sole constructor in
the Stack class. In effect, the clone method functions as another constructor;
you must ensure that it does no harm to the original object and that it prop-
erly establishes invariants on the clone. In order for the clone method on Stack
to work properly, it must copy the internals of the stack. The easiest way to do this
is by calling clone recursively on the elements array:

public Object clone() throws CloneNotSupportedException {
Stack result = (Stack) super.clone();
result.elements = (Object[]) elements.clone();
return result;

}

Note that this solution would not work if the buckets field were final because
the clone method would be prohibited from assigning a new value to the field.
This is a fundamental problem: the clone architecture is incompatible with
normal use of final fields referring to mutable objects, except in cases where
the mutable objects may be safely shared between an object and its clone. In order
to make a class cloneable, it may be necessary to remove final modifiers from
some fields.

It is not always sufficient to call clone recursively. For example, suppose you
are writing a clone method for a hash table whose internals consist of an array of
buckets, each of which references the first entry in a linked list of key-value pairs
or is null if the bucket is empty. For performance, the class implements its own
lightweight singly linked list instead of using java.util.LinkedList internally:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

private static class Entry {
Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {
this.key = key;
this.value = value;
this.next = next;

}
}

... // Remainder omitted
}

ITEM 10: OVERRIDE CLONE JUDICIOUSLY 49

Suppose you merely clone the bucket array recursively, as we did for Stack:

// Broken - results in shared internal state!
public Object clone() throws CloneNotSupportedException {

HashTable result = (HashTable) super.clone();
result.buckets = (Entry[]) buckets.clone();
return result;

}

Though the clone has its own bucket array, this array references the same
linked lists as the original, which can easily cause nondeterministic behavior in
both the clone and the original. To fix this problem, you’ll have to copy the linked
list that comprises each bucket individually. Here is one common approach:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

private static class Entry {
Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {
this.key = key;
this.value = value;
this.next = next;

}

// Recursively copy the linked list headed by this Entry
Entry deepCopy() {

return new Entry(key, value,
next == null ? null : next.deepCopy());

}
}

public Object clone() throws CloneNotSupportedException {
HashTable result = (HashTable) super.clone();
result.buckets = new Entry[buckets.length];
for (int i = 0; i < buckets.length; i++)

if (buckets[i] != null)
result.buckets[i] = (Entry)

buckets[i].deepCopy();

return result;
}

 ... // Remainder omitted
}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS50

The private class HashTable.Entry has been augmented to support a “deep
copy” method. The clone method on HashTable allocates a new buckets array of
the proper size and iterates over the original buckets array, deep-copying each
nonempty bucket. The deep-copy method on Entry invokes itself recursively to
copy the entire linked list headed by the entry. While this technique is cute and
works fine if the buckets aren’t too long, it is not a good way to clone a linked list
because it consumes one stack frame for each element in the list. If the list is long,
this could easily cause a stack overflow. To prevent this from happening, you can
replace the recursion in deepCopy with iteration:

// Iteratively copy the linked list headed by this Entry
Entry deepCopy() {
 Entry result = new Entry(key, value, next);

 for (Entry p = result; p.next != null; p = p.next)
 p.next = new Entry(p.next.key, p.next.value, p.next.next);

 return result;
}

A final approach to cloning complex objects is to call super.clone, set all of
the fields in the resulting object to their virgin state, and then call higher-level
methods to regenerate the state of the object. In the case of our Hashtable exam-
ple, the buckets field would be initialized to a new bucket array, and the
put(key, value) method (not shown) would be invoked for each key-value map-
ping in the hash table being cloned. This approach typically yields a simple, rea-
sonably elegant clone method that doesn’t run quite as fast as one that directly
manipulates the innards of the object and its clone.

Like a constructor, a clone method should not invoke any nonfinal methods
on the clone under construction (Item 15). If clone invokes an overridden method,
this method will execute before the subclass in which it is defined has had a
chance to fix its state in the clone, quite possibly leading to corruption in the clone
and the original. Therefore the put(key, value) method discussed in the previ-
ous paragraph should be either final or private. (If it is private, it is presumably the
“helper method” for a nonfinal public method.)

Object’s clone method is declared to throw CloneNotSupportedException,
but overriding clone methods may omit this declaration. The clone methods of
final classes should omit the declaration because methods that don’t throw
checked exceptions are more pleasant to use than those that do (Item 41). If an
extendable class, especially one designed for inheritance (Item 15), overrides the

ITEM 10: OVERRIDE CLONE JUDICIOUSLY 51

clone method, the overriding clone method should include the declaration to
throw CloneNotSupportedException. Doing this allows subclasses to opt out of
clonability gracefully, by providing the following clone method:

// Clone method to guarantee that instances cannot be cloned
public final Object clone() throws CloneNotSupportedException {

throw new CloneNotSupportedException();
}

It is not essential that the foregoing advice be followed, as the clone method
of a subclass that doesn’t want to be cloned can always throw an unchecked
exception, such as UnsupportedOperationException, if the clone method it
overrides is not declared to throw CloneNotSupportedException. Common prac-
tice, however, dictates that CloneNotSupportedException is the correct excep-
tion to throw under these circumstances.

To recap, all classes that implement Cloneable should override clone with a
public method. This public method should first call super.clone and then fix any
fields that need fixing. Typically, this means copying any mutable objects that
comprise the internal “deep structure” of the object being cloned and replacing the
references to these objects with references to the copies. While these internal cop-
ies can generally be made by calling clone recursively, this is not always the best
approach. If the class contains only primitive fields or references to immutable
objects, then it is probably the case that no fields need to be fixed. There are
exceptions to this rule. For example, a field representing a serial number or other
unique ID or a field representing the object’s creation time will need to be fixed,
even if it is primitive or immutable.

Is all this complexity really necessary? Rarely. If you extend a class that
implements Cloneable, you have little choice but to implement a well-behaved
clone method. Otherwise, you are probably better off providing some
alternative means of object copying or simply not providing the capability.
For example, it doesn’t make much sense for immutable classes to support object
copying, because copies would be virtually indistinguishable from the original.

A fine approach to object copying is to provide a copy constructor. A copy
constructor is simply a constructor that takes a single argument whose type is the
class containing the constructor, for example,

public Yum(Yum yum);

A minor variant is to provide a static factory in place of a constructor:

public static Yum newInstance(Yum yum);

CHAPTER 3 METHODS COMMON TO ALL OBJECTS52

The copy constructor approach and its static factory variant have many
advantages over Cloneable/clone: They do not rely on a risk-prone
extralinguistic object creation mechanism; they do not demand unenforceable
adherence to ill-documented conventions; they do not conflict with the proper use
of final fields; they do not require the client to catch an unnecessary checked
exception; and they provide a statically typed object to the client. While it is
impossible to put a copy constructor or static factory in an interface, Cloneable
fails to function as an interface because it lacks a public clone method. Therefore
you aren’t giving up interface functionality by using a copy constructor instead of
a clone method.

Furthermore, a copy constructor (or static factory) can take an argument
whose type is an appropriate interface implemented by the class. For example, all
general-purpose collection implementations, by convention, provide a copy con-
structor whose argument is of type Collection or Map. Interface-based copy con-
structors allow the client to choose the implementation of the copy, rather than
forcing the client to accept the implementation of the original. For example, sup-
pose you have a LinkedList l, and you want to copy it as an ArrayList. The
clone method does not offer this functionality, but it’s easy with a copy construc-
tor: new ArrayList(l).

Given all of the problems associated with Cloneable, it is safe to say that
other interfaces should not extend it and that classes designed for inheritance
(Item 15) should not implement it. Because of its many shortcomings, some
expert programmers simply choose never to override the clone method and never
to invoke it except, perhaps, to copy arrays cheaply. Be aware that if you do not at
least provide a well-behaved protected clone method on a class designed for
inheritance, it will be impossible for subclasses to implement Cloneable.

ITEM 11: CONSIDER IMPLEMENTING COMPARABLE 53

Item 11: Consider implementing Comparable

Unlike the other methods discussed in this chapter, the compareTo method is not
declared in Object. Rather, it is the sole method in the java.lang.Comparable
interface. It is similar in character to Object’s equals method, except that it permits
order comparisons in addition to simple equality comparisons. By implementing
Comparable, a class indicates that its instances have a natural ordering. Sorting an
array of objects that implement Comparable is as simple as this:

Arrays.sort(a);

It is similarly easy to search, compute extreme values, and maintain automati-
cally sorted collections of Comparable objects. For example, the following pro-
gram, which relies on the fact that String implements Comparable, prints an
alphabetized list of its command-line arguments with duplicates eliminated:

public class WordList {
public static void main(String[] args) {

Set s = new TreeSet();
s.addAll(Arrays.asList(args));
System.out.println(s);

}
}

By implementing Comparable, you allow your class to interoperate with all of
the many generic algorithms and collection implementations that depend on this
interface. You gain a tremendous amount of power for a small amount of effort.
Virtually all of the value classes in the Java platform libraries implement Compa-
rable. If you are writing a value class with an obvious natural ordering, such as
alphabetical order, numerical order, or chronological order, you should strongly
consider implementing this interface. This item tells you how to go about it.

The general contract for the compareTo method is similar in character to that
of the equals method. Here it is, copied from the specification for Comparable:

Compares this object with the specified object for order. Returns a negative in-
teger, zero, or a positive integer as this object is less than, equal to, or greater
than the specified object. Throws ClassCastException if the specified ob-
ject’s type prevents it from being compared to this object.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS54

In the following description, the notation sgn(expression) designates the math-
ematical signum function, which is defined to return -1, 0, or 1, according to
whether the value of expression is negative, zero, or positive.

The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compare-
To(x)) for all x and y. (This implies that x.compareTo(y) must throw an ex-
ception if and only if y.compareTo(x) throws an exception.)

n The implementor must also ensure that the relation is transitive: (x.com-
pareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0.

n Finally, the implementor must ensure that x.compareTo(y) == 0 implies
that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

n It is strongly recommended, but not strictly required, that (x.compare-
To(y)==0) == (x.equals(y)). Generally speaking, any class that imple-
ments the Comparable interface and violates this condition should clearly
indicate this fact. The recommended language is “Note: This class has a nat-
ural ordering that is inconsistent with equals.”

Do not be put off by the mathematical nature of this contract. Like the equals
contract (Item 7), the compareTo contract isn’t as complicated as it looks. Within a
class, any reasonable ordering relation will satisfy the compareTo contract. Across
classes, compareTo, unlike equals, doesn’t have to work: It is permitted to throw
ClassCastException if the two object references being compared refer to objects
of different classes. Usually, that is exactly what compareTo should do under these
circumstances. While the contract does not preclude interclass comparisons, there
are, as of release 1.4, no classes in the Java platform libraries that support them.

Just as a class that violates the hashCode contract can break other classes that
depend on hashing, a class that violates the compareTo contract can break other
classes that depend on comparison. Classes that depend on comparison include
the sorted collections, TreeSet and TreeMap, and the utility classes Collections
and Arrays, which contain searching and sorting algorithms.

Let’s go over the provisions of the compareTo contract. The first provision
says that if you reverse the direction of a comparison between two object refer-
ences, the expected thing happens: If the first object is less than the second, then
the second must be greater than the first; if the first object is equal to the second,
then the second must be equal to the first; and if the first object is greater than the
second, then the second must be less than the first. The second provision says that
if one object is greater than a second and the second is greater than a third, then
the first must be greater than the third. The final provision says that all objects that
compare as equal must yield the same results when compared to any other object.

ITEM 11: CONSIDER IMPLEMENTING COMPARABLE 55

One consequence of these three provisions is that the equality test imposed by
a compareTo method must obey the same restrictions imposed by the equals con-
tract: reflexivity, symmetry, transitivity, and non-nullity. Therefore the same
caveat applies: There is simply no way to extend an instantiable class with a new
aspect while preserving the compareTo contract (Item 7). The same workaround
applies too. If you want to add a significant aspect to a class that implements Com-
parable, don’t extend it; write an unrelated class that contains a field of the first
class. Then provide a “view” method that returns this field. This frees you to
implement whatever compareTo method you like on the second class, while allow-
ing its client to view an instance of the second class as an instance of the first class
when needed.

The final paragraph of the compareTo contract, which is a strong suggestion
rather than a true provision, simply states that the equality test imposed by the
compareTo method should generally return the same results as the equals
method. If this provision is obeyed, the ordering imposed by the compareTo
method is said to be consistent with equals. If it’s violated, the ordering is said to
be inconsistent with equals. A class whose compareTo method imposes an order
that is inconsistent with equals will still work, but sorted collections containing
elements of the class may not obey the general contract of the appropriate collec-
tion interfaces (Collection, Set, or Map). This is because the general contracts
for these interfaces are defined in terms of the equals method, but sorted collec-
tions use the equality test imposed by compareTo in place of equals. It is not a
catastrophe if this happens, but it’s something to be aware of.

For example, consider the Float class, whose compareTo method is inconsis-
tent with equals. If you create a HashSet and add new Float(-0.0f) and new
Float(0.0f), the set will contain two elements because the two Float instances
added to the set are unequal when compared using the equals method. If, how-
ever, you perform the same procedure using a TreeSet instead of a HashSet, the
set will contain only one element because the two Float instances are equal when
compared using the compareTo method. (See the Float documentation for
details.)

Writing a compareTo method is similar to writing an equals method, but
there are a few key differences. You don’t need to type check the argument prior to
casting. If the argument is not of the appropriate type, the compareTo method
should throw a ClassCastException. If the argument is null, the compareTo
method should throw a NullPointerException. This is precisely the behavior
that you get if you just cast the argument to the correct type and then attempt to
access its members.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS56

The field comparisons themselves are order comparisons rather than equality
comparisons. Compare object reference fields by invoking the compareTo method
recursively. If a field does not implement Comparable or you need to use a
nonstandard ordering, you can use an explicit Comparator instead. Either write
your own or use a preexisting one as in this compareTo method for the
CaseInsensitiveString class in Item 7:

public int compareTo(Object o) {
CaseInsensitiveString cis = (CaseInsensitiveString)o;
return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);

}

Compare primitive fields using the relational operators < and >, and arrays by
applying these guidelines to each element. If a class has multiple significant fields,
the order in which you compare them is critical. You must start with the most
significant field and work your way down. If a comparison results in anything
other than zero (which represents equality), you’re done; just return the result. If
the most significant fields are equal, go on to compare the next-most-significant
fields, and so on. If all fields are equal, the objects are equal; return zero. The
technique is demonstrated by this compareTo method for the PhoneNumber class
in Item 8:

public int compareTo(Object o) {
PhoneNumber pn = (PhoneNumber)o;

// Compare area codes
if (areaCode < pn.areaCode)

return -1;
if (areaCode > pn.areaCode)

return 1;

// Area codes are equal, compare exchanges
if (exchange < pn.exchange)

return -1;
if (exchange > pn.exchange)

return 1;

// Area codes and exchanges are equal, compare extensions
if (extension < pn.extension)

return -1;
if (extension > pn.extension)

return 1;

return 0; // All fields are equal
}

ITEM 11: CONSIDER IMPLEMENTING COMPARABLE 57

While this method works fine, it can be improved. Recall that the contract for
compareTo does not specify the magnitude of the return value, only the sign. You
can take advantage of this to simplify the code and probably make it run a bit
faster:

public int compareTo(Object o) {
PhoneNumber pn = (PhoneNumber)o;

// Compare area codes
int areaCodeDiff = areaCode - pn.areaCode;
if (areaCodeDiff != 0)

return areaCodeDiff;

// Area codes are equal, compare exchanges
int exchangeDiff = exchange - pn.exchange;
if (exchangeDiff != 0)

return exchangeDiff;

// Area codes and exchanges are equal, compare extensions
return extension - pn.extension;

}

This trick works fine here but should be used with extreme caution. Don’t do
it unless you’re certain that the field in question cannot be negative or, more gen-
erally, that the difference between the lowest and highest possible field values is
less than or equal to INTEGER.MAX_VALUE (231-1). The reason this trick does not
work in general is that a signed 32-bit integer is not big enough to represent the
difference between two arbitrary signed 32-bit integers. If i is a large positive int
and j is a large negative int, (i-j) will overflow and return a negative value. The
resulting compareTo method will not work. It will return nonsensical results for
some arguments, and it will violate the first and second provisions of the comp-
areTo contract. This is not a purely theoretical problem; it has caused failures in
real systems. These failures can be difficult to debug, as the broken compareTo
method works properly for many input values.

	Methods Common to All Objects
	Item 7: Obey the general contract when overriding equals
	Item 8: Always override hashCode when you override equals
	Item 9: Always override toString
	Item 10: Override clone judiciously
	Item 11: Consider implementing Comparable

