BINARY SEARCH TREES

» BSTs
» ordered operations
» deletion

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2012 - February 29,2012 4:50:38 AM

Binary search trees

Definition. A BST is a binary ftree in symmetric order.

A binary tree is either:
* Empty.

* Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,

and every node’s key is:

* Larger than all keys in its left subtree.
* Smaller than all keys in its right subtree.

root
a left link /
\

a subtree

N

% right child
\t/ of root

null links

Anatomy of a binary tree

parent of A and R

key
left link
OfE \
Q @ 9 S~ value
@ m associated
with R
/ X

keys smaller than € keys larger than E

Anatomy of a binary search tree

BST representation in Java
Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
* A Key and a value.
* A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{

private Key key; aoT

private Value val;

private Node left, right; Node———| key | val

public Node (Key key, Value val)

{ M /
this.key = key; left right
this.val = val;

} BST with smaller keys BST with larger keys

} Binary search tree

Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>

{

private Node root; <«——+— root of BST

private class Node
{ /* see previous slide */ }

public void put (Key key, Value val)
{ /* see next slides */ }

public Value get (Key key)
{ /* see next slides */ }

public void delete (Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

BST search and insert demo

BST search: Java implementation

Get. Return value corresponding to given key, or nu11 if no such key.

public Value get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

inserting L
Search for key, then two cases:
e Key in tfree = reset value.
4 search for L ends 7
 Key not in tree = add new hode. at this null link
create new node —» @

/

\
/
N

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,
recursive code;

public void put(Key key, Value val) read carefully!

{ root = put(root, key, val); } r

private Node put (Node x, Key key, Value val)
{
if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;
if (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0)
x.right = put(x.right, key, wval);
else
x.val = val;

return x;

Cost. Number of compares is equal to 1 + depth of node.

Tree shape

e Many BSTs correspond to same set of keys.
* Number of compares for search/insert is equal to 1 + depth of node.

worst case

best case m typical case

(Q (S)
() (B R (X)

Remark. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

max = 16
avg = 9.1
opt=7.0

fo = —
p—

Correspondence between BSTs and quicksort partitioning

QI(U|I|CIK|S|O|R|T|EX(IA[MP|LE

E[R[A[T[E[s[L][P[u[I][M[Q[C[X[O]K
E/c/laA[I[E®L[P U[T/MQ[R[X|0[S

Alc(®1I[E
2(©
®
E(D)
®
LPORMQEXUT
L POoMQR

L(Mo P
©
®
©

®
[@ulx
®
©

ACEE|I|KILIMOIPIQIR|IS|IT|U|X

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If Ndistinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is ~2 In N.
Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order,
expected height of tree is ~4.311 InN.

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT

Let H, be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107...
and 8 = 1.95... such that E(H,) = alogn — floglogn +
0O(1), We also show that Var(H,) = O(1).

But.. Worst-case height is M.

(exponentially small chance when keys are inserted in random order)

ST implementations: summary

guarantee average case

implementation

sequential search

(unordered list) N N N/2 N

binary search

(ordered array) g N Ig N N/2
85T N N 1.391gN 1.391g N

no

yes

operations

on keys

equals ()

compareTo ()

compareTo ()

» ordered operations

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key < to a given key.
Ceiling. Smallest key = to a given key.

floor(G)

ceiling(Q)

floor(D)

Q. How to find the floor /ceiling?

Computing the floor

Case 1. [k equals the key at root]
The floor of kis k.

Case 2. [k is less than the key at root]
The floor of kis in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree

(if there is any key < k in right subtree);
otherwise it is the key in the root.

finding f1oor (G)

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (G)in left
subtree is nul1

®

result

G is less than S so

m floor (G) must be

on the left

Computing the floor

public Key floor (Key key)

{
Node x = floor (root, key);
if (x == null) return null;
return x.key;

}
private Node floor (Node x, Key key)

{
if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left, key);

Node t = floor(x.right, key);
if (t '= null) return t;
else return x;

finding f1oor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e

floor (G)in left
subtree is nul1

®

result

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

node count N

Remark. This facilitates efficient implementation of rank () and select().

20

BST implementation: subtree counts

private class Node public int size()
{ { return size(root); }

private Key key;

private Value val; private int
private Node left; {

private Node right; if (x ==
private int N; return x.N;

} ’\ }

size (Node x)

null) return O;

\
number of nodes

in subtree

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = put(x.left,

else if (cmp > 0) x.right = put(x.right, key, val);

else x.val = val;
x.N =1 + size(x.left) + size(x.right);

return x;

key, wval);

A\

ok to call when x is null

21

Rank

Rank. How many keys < & ?

node count N

Easy recursive algorithm (4 cases!)

public int rank (Key key)
{ return rank(key, root); }

private int rank (Key key, Node x)
{
if (x == null) return O;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

22

Selection

Select. Key of given rank.

public Key select(int k)

{

if (k < 0) return null;

if (k >= size()) return null;
Node x = select(root, k);
return x.key;

private Node select (Node x, int k)

{

if (x == null) return null;
int t = size(x.left);
if (t > k)

return select(x.left, k);
else if (t < k)

return select(x.right, k-t-1);
else if (t == k)

return x;

finding select(3)
the key of rank 3

count N ~ 6/0

8 keys in left subtree
so search for key of
rank 3 on the left

2

/

2 keys in left subtree so
search for key of rank
3-2-1 = 0 on the right

2
el
2 keys in left subtree

so search for key of
rank 0 on the left

e

0 keys in left subtree
and searching for
key of rank O
so return H

23

Inorder traversal

e Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

public Iterable<Key> keys ()

{
Queue<Key> g = new Queue<Key>() ;
inorder (root, q);
return q;

private void inorder (Node x, Queue<Key> q)
{

if (x == null) return;

inorder (x.left, q);

q.enqueue (x.key) ;

inorder (x.right, q);

BST

key | val

/

Teft right

BST with smaller keys BST with larger keys

smaller keys, in order key larger keys, in order

™~

all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

24

Inorder traversal

e Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

inorder (S) S
inorder (E) S E
inorder (A) S EA
enqueue A A :
inorder (C) SEAC I I I
enqueue C C | : | : :
enqueue E E | | | | |
inorder (R) S ER I I I I I I I
inorder (H) SERH : : : : " : : :
enqueue H H I I I I I I I I
inorder (M) SERHM A CEHMRSX
enqueue M M
enqueue R R
enqueue S S
inorder (X) S X
enqueue X X

recursive calls queue function call stack

BST: ordered symbol table operations summary

sequential binary

floor / ceiling

ordered iteration

order of growth of running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

26

27

ST implementations: summary

guarantee average case

ordered operations

implementation _ _
: _ : iteration? on keys
search | insert delete | search hit insert delete

sequential search
N N N N/2 N N/2 1
(linked list) / / no equals ()
binary search Yo \ \ o N . N2 g o)
comparelo
(ordered array) g 9 Y P

BST N N N 1.39IgN 1.391IgN yes compareTo ()

Next. Deletion in BSTs.

28

BST deletion: lazy approach

To remove a node with a given key:
 Set its value o nuil.

* Leave key in tree to guide searches (but don't consider it equal to search key).

delete |

A
»

Cost. ~21In N' per insert, search, and delete (if keys in random order),

where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

29

Deleting the minimum

To delete the minimum key:

* Go left until finding a node with a null left link.
* Replace that node by its right link.
e Update subtree counts.

public void deleteMin ()
{ root = deleteMin(root); }

private Node deleteMin (Node x)

{
if (x.left == null) return x.right;
X.left = deleteMin(x.left);
x.N =1 + size(x.left) + size(x.right);
return x;

go left until
reaching null

left link

\

return that
node’s right link

N
|

available for
garbage collection

update links and node counts
after recursive calls

P

30

Hibbard deletion

To delete a node with key k: search for node ¢ containing key #.

Case 0. [0 children] Delete ¢ by setting parent link to null.

deleting C update counts after

recursive calls 7

®
T

replace with

null link

node to delete
available for

garbage
/ collection

Hibbard deletion

To delete a node with key k: search for node ¢ containing key #.

Case 1. [1 child] Delete ¢ by replacing parent link.

deleting R

(S
SN

node to delete

G

update counts after

recursiv%» 7
o

I ith
reglgizel;:lk available for

/ garbage

collection

32

Hibbard deletion

To delete a node with key k: search for node ¢ containing key #.

Case 2. [2 children]

 Find successor x of +. <—— xhas no left child
 Delete the minimum in ¢'s right subtree. <—— but don't garbage collect x
e Put xint's spot. «—— stillaBST
node to delete
N
"X
search for key E t.1§ft /O%}Min(t. right)
t
h 7
X 5
N
< successor
min(t.right)
go right, then / update links and
go left until node counts after
reaching null recursive calls
left link

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key);, }

private Node delete (Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo (x.key) ;

key) ;
key) ;

if (cmp < 0) x.left = delete(x.left,
else if (cmp > 0) x.right = delete(x.right,
else {
if (x.right == null) return x.left; <
Node t = x;

x = min(t.right);

A

x.right = deleteMin(t.right);
x.left = t.left;

}
x.N = size(x.left) + size(x.right) + 1;

A

return x;

search for key

no right child

replace with
successor

update subtree
counts

34

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =150

max = 16
avg = 9.3
opt =6.4

Surprising consequence. Trees not random () = sqrt (V) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

35

ST implementations: summary

guarantee average case :
ordered operations

implementation : :
: _ : iteration? on keys
search | insert delete | search hit insert delete

sequential search
(linked list)

N N N N/2 N N/2 no equals ()

binary search
(ordered array)

BST N N N 1.391gN 1.391g N @ yes compareTo()
X
other operations also become +/N
if deletions allowed

lg N N N lg N N/2 N/2 yes compareTo ()

Red-black BST. Guarantee logarithmic performance for all operations.

36

