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Abstract. This paper presents a framework for the abstract interpretation of pro-
cesses that pass values. We define a process description language that is parameter-
ized with respect to the set of values that processes may exchange and show that
an abstraction over values induces an abstract semantics for processes. Our main
results state that if the abstract value interpretation safely/optimally approximates
the ground interpretation, then the resulting abstracted processes safely/optimally
approximate those derived from the ground semantics (in a precisely defined sense).
As the processes derived from an abstract semantics in general have far fewer states
than those derived from a concrete semantics, our technique enables the automatic
analysis of systems that lie beyond the scope of existing techniques.

1 Introduction

Research over the past decade points to the practical viability of automatically verifying
concurrent finite-state systems. Algorithms have been proposed for determining whether
such systems enjoy properties specified by formulas in various temporal logics [4, 5, 8,
25, 27, 28] and for computing whether or not two systems exhibit the same (or related)
observable behavior [2, 6, 18, 21]. Tools built around implementations of these algorithms
have been applied to the analysis of a variety of different kinds of systems [7, 11, 12, 22, 23,
24]. When communicating processes are capable of exchanging values taken from an infinite
set, however, the resulting system is usually not finite-state, and the automatic analysis
routines mentioned above, which rely to some extent on an enumeration of system states,
are not directly applicable. Even when the set of values is finite (as is the case, for example,
in communication protocols, where packets typically have a fixed width) automatic analysis
rapidly becomes impractical as the size of the value set increases. On the other hand, many
system properties are largely insensitive to the specific values that systems pass. Some,
such as deadlock-freedom and fairness constraints, do not refer to specific values at all,
while others are only sensitive to certain aspects of data. These observations suggest that
it may be possible to reduce the analysis of value-passing systems to simpler systems that
exchange more abstract values.

In this paper, we present a framework for generating abstractions of communicating
systems based on abstractions of the values exchanged by processes. Such abstracted sys-
tems in general have many fewer states than the systems from which they are constructed
while retaining some measure of information about the behavior of the original system.
This last fact permits the analysis of a smaller, abstracted system in lieu of the original
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one, with results obtained from the former also guaranteed to be applicable to the latter.
Our work is inspired by that done in the abstract interpretation of sequential programming
languages [9], which has led to the development of techniques that permit certain proper-
ties of sequential programs to be deduced automatically at compile-time. In particular, our
approach is similar to work on factored semantics described in [17], although our setting is
operational rather than denotational. More specifically, we give a semantics for a language
similar to CSP [16] in which the core semantics is explicitly parameterized with respect
to a value interpretation that defines the meaning of data. We also define the conditions
under which an abstract value interpretation is safe relative to the original interpretation
and under which a safe abstraction is said to be optimal. We then prove the main results
of this paper: safe (optimal) abstract value interpretations yield safe (optimal) abstract
process interpretations using our parameterized semantics.

The remainder of the paper is organized as follows. The next section formally intro-
duces value interpretations. Section 3 then gives the syntax and semantics of processes and
defines a preorder on processes, indicating when one process approximates another. The
semantic relation is a variant of the testing/failures preorders [13], which we also argue
preserves both liveness and safety properties of processes. In Section 4 we extend the ab-
straction functions defined in Section 2 to process terms (syntax) and labeled transition
systems (semantics) so that the main results may be formally stated. The section following
presents these results, while Section 6 contains a simple example illustrating how they may
be applied to the analysis of concurrent systems. Section 7 contains our conclusions and
directions for future work.

2 Values and value abstractions

In the next section we give the syntax and semantics of VPLI—Value-Passing Language
with value interpretation I. VPLI is a simple variant of the language defined by Hennessy
and Ingólfsdóttir in [14]; the difference lies in the fact that V PLI is explicitly parameterized
with respect to an interpretation I of values. In this section we introduce value interpre-
tations and show how traditional notions from abstract interpretation may be adapted to
our setting.

2.1 Value interpretations

In order to define the syntax of VPLI , we first fix a syntax for constructing boolean and
value expressions that is parameterized with respect to the values that may appear in these
expressions. That is, the syntax of the expression language contains “holes” to be filled
by members of the value set; changing the value set then simply changes the choices for
filling the holes. In this setting, a value interpretation for a set of values should allow us
to “evaluate” expressions.

To formalize these notions, let (x, y ∈) Var be a countable set of variable symbols (we
write “(x, y ∈) Var” to indicate that the symbols x and y will range over the set Var), and
let let ΣExpr and ΣBExpr be fixed signatures containing no 0-ary function symbols (con-
stants). The idea is that ΣExpr and ΣBExpr contain constructors for building expressions
and boolean expressions, respectively. Also let Val be a nonempty set of values that is
disjoint from Var. Then (e∈)ExprVal contains the elements of the term algebra built from
ΣExpr ∪ Val ∪ Var, with the arity of elements in Val and Var taken to be 0, and (be ∈)
BExprVal represents the set of elements of the term algebra ΣBExpr ∪ Val ∪ Var. ExprVal

and BExprVal comprise the set of value and boolean expressions, respectively, that may be
built from variables and elements of Val using the constructors in ΣExpr and ΣBExpr.
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We use e1[e2/x] to represent the expression obtained by simultaneously replacing all
(free) occurrences of x in e1 by e2 in the usual sense, and CExprVal (resp. CBExprVal) to
denote the subset of ExprVal (BExprVal) closed with respect to Var. Also let ℘(S) denote
the power set of set S. We may now define value interpretations as follows.

Definition 1. A value interpretation is a triple I = 〈ValI , IBI [[·]], IEI [[·]]〉 where (v ∈)ValI
is a countable set of values, IBI [[·]] : CBExprValI 7→ (℘(Bool)− {∅}), and

IEI [[·]] : CExprValI 7→ (℘(ValI)− {∅}).

We usually write ExprI , CExprI , BExprI and CBExprI in lieu of ExprValI , et cetera; we
also do not distinguish between values and their syntactic representation.

One noteworthy aspect of this definition is that the “valuation” functions IEI [[·]] and
IBI [[·]] may be nondeterministic; that is, may return a set of possible values. The utility of
this will be made apparent in Section 2.3.

The remainder of this section is devoted to a discussion of abstractions over value inter-
pretations. In particular, we show how traditional concepts from abstract interpretation—
abstraction, concretization, safety and optimality—may be adapted to our setting. We
consider each of these in turn.

2.2 Abstraction and concretization

Abstract interpretation may be seen as the generalized theory of static analysis of pro-
grams. The motivation for its study arises from practical considerations in the design of
compilers. One would like compilers to generate code that is as efficient and free of run-
time errors as possible; however, many of the analyses required are undecidable in general.
Abstract interpretation provides a basis for analyzing abstracted versions of programs in
order to provide partial information about their behavior.

The formal foundations of abstract interpretation lie in the definition of abstraction
and concretization functions between “concrete” and “abstract” domains. Intuitively, the
concrete domain contains the meanings of “real” programs, while the abstract domain
includes the meanings of programs obtained by abstracting away some of the detail from
concrete programs. Formally, let 〈C,vC〉 and 〈A,vA〉 be preorders.3 C may be thought
of as representing the possible concrete meanings a program might have, with c1 vC c2
holding if c1 contains “less information” than c2, while A represents the corresponding set
of abstract meanings. Then an abstract interpretation of C in A may be given as a pair of
functions, α and γ, that constitute a Galois insertion.

Definition 2. Given preorders 〈C,vC〉 and 〈A,vA〉, we say that α and γ form a Galois
insertion, written 〈C,vC〉

α
−→←−
γ
〈A,vA〉, when:

• α : C 7→ A and γ : C 7→ A are monotonic,
• ∀c ∈ C : γ ◦ α(c) vC c, and
• ∀a ∈ A : α ◦ γ(a) =A a, where a =A a

′ iff a vA a′ & a′ vA a.

Function α is usually called the abstraction function, while γ is called the concretization
function. The Galois insertion requirements may be seen as an assertion that α and γ are
compatible. In particular, the second condition indicates that α does not “add informa-
tion” to its argument, while the third indicates that γ “preserves the information” of its
argument. It should be noted that our use of the symbol v is contrary to tradition in ab-
stract interpretation; thus, the second condition would usually be written as γ ◦α(c) wC c.

3 Traditionally, these are taken to be lattices, but we require this slightly weaker formulation in
Section 4.
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Our notation is chosen to be consistent with traditional information-theoretic orderings on
processes.

In the setting of value interpretations there is no a priori notion of ordering on values;
however, we can still define abstraction functions as follows. Given two sets of values,
ValC (for concrete) and ValA (for abstract), we call a total surjection α : ValC 7→ ValA an
abstraction function. As an example, let ValC be the set of natural numbers and ValA be
the set {neg, 0, pos}. Then we may define the usual abstraction α : ValC 7→ ValA by taking
α(c) = neg if c < 0, α(0) = 0, and α(c) = pos if c > 0.

An abstraction function naturally generalizes to expressions: in α(e) each occurrence of
a value c in e is replaced by α(c). When no confusion can arise, we abuse notation slightly
by using α to refer any such “lifted” instance of α.

Definition 3. The following functions are defined by induction on the structure of their
domains: α : ExprC 7→ ExprA, α : CExprC 7→ CExprA, α : BExprC 7→ BExprA, and
α : CBExprC 7→ CBExprA.

We write α : C 7→ A refer to the entire family of functions induced by α : ValC 7→ ValA
between value interpretations C and A.

In order to apply traditional abstract interpretation techniques to value interpretations,
we also need a concretization function for each abstraction α. Values are unordered, how-
ever, and the inverse of α, a natural choice for γ, is not in general a function. The powerset
of values, on the other hand, does have a natural information-theoretic ordering. Suppose
VC ⊆ ValC ; then VC represents the potential results of evaluating an expression in the
concrete interpretation C, and likewise for ValA. The smaller the set, the more the infor-
mation available about the actual value returned: indeed, usually we expect that IEC [[·]] is
deterministic and total and thus maps each expression to a singleton set. So we take as
our preorder 〈℘(ValC)−{∅},⊇〉, where VC ⊇ V ′C means that VC contains less information
than V ′C as it contains more elements. We may now define abstraction and concretization
functions on these domains as follows.

Definition 4. For α : ValC 7→ ValA, VC ⊆ ValC and VA ⊆ ValA, define the lifted ab-
straction and concretization functions as: α(VC) = {a | ∃c ∈ VC : α(c) = a}, and
γ(VA) = {c | ∃a ∈ VA : α(c) = a}.

These functions turn out to form a Galois insertion.

Lemma 5. 〈℘(ValC),⊇〉
α
−→←−
γ
〈℘(ValA),⊇〉.

In a similar way we can define lifted abstractions and concretizations on all of the syntactic
categories of VPLI . In each case, the result is a Galois insertion on the preorder over sets
induced by the superset relation. For example, we have that:

〈℘(CExprC),⊇〉
α
−→←−
γ
〈℘(CExprA),⊇〉.

2.3 Safety

In traditional abstract interpretation, after giving a Galois insertion 〈SC ,vC〉
α
−→←−
γ
〈SA,vA〉

one then gives abstract versions fA : SA 7→ SA for each operation fC : SC 7→ SC used in
defining the semantics of a language. Of course, one would wish that an abstraction fA
of fC be compatible with fC , in some sense. This notion is made precise by defining fA
to be a safe approximation of fC if for all c ∈ SC , (fA ◦ α)(c) v (α ◦ fC)(c). Intuitively,
fA is safe if it can never “add information” to the results produced by fC ; that is, α ◦ fC
produces the most precise abstract information for any value c ∈ SC .
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In our setting, there are no specific operators with respect to which safety can be
defined, since the exact syntax of expressions is not specified. Instead, our definition of
safety uses the evaluation functions of the interpretation.

Definition 6. A value abstraction α : C 7→ A is safe iff for all e ∈ CExprC and be ∈
CBExprC ,

IBA[[α(be)]] ⊇ IBC [[be]] and IEA[[α(e)]] ⊇ α(IEC [[e]]).

In other words, one interpretation is safe relative to another if for all terms, the former
yields no more precise a result than the former. Returning to our example, let e = (1 +
(−2)). The most precise abstract information about e would be α(IEC [[e]]) = {neg}, whereas
IEA[[α(e)]] = {neg, 0, pos}. In this case, the abstract semantics can yield no more precise
an answer; if it did, it would get at least some answer “wrong”, since α(1 + (−2)) =
α(2 + (−1)) = α(1 + (−1)) = pos + neg.

2.4 Optimality

While safety is a necessary condition for an abstraction of an operator to be useful, it is not
sufficient. For example, one can give an abstract operator that is trivially safe: just map
each abstract value to a least value in the abstract domain. While safe, this operator does
not convey useful information about the concrete operation it is supposed to approximate.
In our previous example, the semantic function that maps all expressions to {neg, 0, pos}
would be an example of such a trivial, yet safe, semantics.

At the opposite extreme from the trivial semantics is the optimal (or induced) semantics.
In the traditional setting, fA is said to be optimal for fC if fA is the most precise safe
approximation of fC . Formally [17], we may say that fA is optimal if fA(a) =A α◦fC ◦γ(a),
where =A is the equivalence induced by vA.

In order to formalize this notion in our setting, we first must extend our semantic
functions to operate over sets of terms.

Definition 7. For BS ⊆ CBExprI and ES ⊆ CExprI define:

IBI [[BS]] = {v | ∃be ∈ BS : v ∈ IBI [[be]]}, and
IEI [[ES]] = {v | ∃e ∈ ES : v ∈ IEI [[e]]}.

Given α : C 7→ A, we say that A is optimal for C iff for all e ∈ CExprC and be ∈ CBExprC :

IBA[[be]] = α(IBC [[γ(be)]]) and IEA[[e]] = α(IEC [[γ(e)]] ).

2.5 Preview

This section has introduced value interpretations and described the conditions under which
an abstract value interpretation is considered safe and optimal. In the next section we
present a process description language defined parametrically with respect to value in-
terpretations. The semantics of the language is given as a mapping from process terms to
labeled transition systems, and a preorder is defined on these semantic objects. In Section 4
we construct a Galois insertion between concrete and abstract labeled transition systems.
Finally, in Section 5, we extend the definitions of safety and optimality to the process
description language and prove the main results: if an abstract value interpretation is safe
(optimal), then the process interpretation constructed using the abstract semantics will be
safe (optimal).
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3 Processes

This section introduces the syntax and semantics of VPLI and defines a semantic preorder
relating processes given in the language.

3.1 Syntax

In addition to the sets of value- and boolean-expression constructors mentioned in the
previous section, the definition of process terms is parameterized with respect to countable
sets (P,Q ∈) PN of process names and (c ∈) Chan of channel names. We use L to range
over finite subsets of Chan. Given a value interpretation I, we define the set of possible
communications as (a, b ∈)CommI = {c?v, c!v | c ∈ Comm & v ∈ ValI}. The set of actions,
(λ ∈)ActI = CommI ∪ {τ}, includes also the hidden action τ . Intuitively, c?v represents
the act of receiving value v on channel c, while c!v corresponds to the output of v on c.
The action τ represents an internal computation step. Finally, if (f ∈)Chan 7→ Chan then
f̂ ∈ ActI 7→ ActI is defined by f̂(τ) = τ, f̂(c!v) = f(c)!v, and f̂(c?v) = f(c)?v. That is, f̂
relabels the channel components of actions.

The syntax of (t ∈)VPLI may now be given by the following grammar:

t ::= nil c?x.t c!e.t be . t1 � t2 t1bet2 t1 ⊕ t2
t1|t2 t\L t[f ] P (e) (rec P (x).t) (e)

The notation x indicates a vector of variables, likewise e a vector of expressions. For term
(rec P (x).t) (e) to be well formed we require that x and e have the same number of elements
and that each occurrence of P in t be applied to this same number of arguments. The term
c?x.t binds x in t, while the term (rec P (x).t) (e) binds P and x in t. We assume the
usual definitions of substitution (for process names and for variables) and closed terms; we
denote the set of closed terms of VPLI as (p, q ∈)ProcI and call such terms processes.

3.2 Semantics

Before presenting the formal semantics of processes, we first give some intuition as to
their behavior. Term nil represents the terminated process. The process c?x.t is capable
of receiving a value on channel c and subsequently behaves as t with the received value
substituted for x. If the expression e is a constant (that is, e ∈ ValI), then process c!e.p
will output e on channel c; otherwise, c!e.p may spontaneously evolve to c!v.p for any v in
IEI [[e]]. We write the conditional as be . p � q; this process may have one or two possible
internal moves, depending on the valuation of be. We use the symbol be to denote external
choice and ⊕ to denote internal choice. p|q denotes the parallel composition of p and q. The
process p\L behaves as p with the exception that communication along channels in L is
forbidden, and p[f ] behaves as p with the channels relabeling by f . Finally, (rec P (x).p) (e)
may spontaneously unfold, substituting e for x.

This intuition is formalized in the transition relation (−→I) ⊆ (ProcI ×ActI ×ProcI),
where p λ−→I q holds if p is capable of executing action λ and evolving to q. To define this
transition relation we first need some auxiliary notation. We use the overbar to indicate
complementary communications; thus c?v = c!v and c!v = c?v. Let the function name :
(Act 7→ Chan ∪ {τ}) map communications to the channels on which they occur and τ
to itself; for example, name(c?v) = c and name(τ) = τ . The formal definition of −→I is
given in Table 1. We write p λ−→I to abbreviate (∃q : p λ−→I q) and p 6λ−→ to abbreviate
¬(p λ−→I). If p 6τ−→ we say that p is stable.

Using this operational semantics, we may now defined a mapping from process terms
to labeled transition systems as follows.
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In) c?x.t
c?v−→I t[v/x] , for all v ∈ ValI

Out) c!e.p
τ−→I c!v.p , if e 6∈ ValI ∧ v ∈ IEI [[e]] c!v.p

c!v−→I p

Rec) (rec P (x).t) (e)
τ−→I (t[rec P (x).t/P ])[e/x]

Int) p⊕ q τ−→I p p⊕ q τ−→I q

Cond) be . p � q τ−→I p , if tt ∈ IBI [[be]] be . p � q τ−→I q , if ff ∈ IBI [[be]]

Ext)
p

τ−→I p
′

pbeq τ−→I p
′beq

q
τ−→I q

′

pbeq τ−→I pbeq′
p

a−→I p
′

pbeq a−→I p
′

q
a−→I q

′

pbeq a−→I q
′

Par)
p

λ−→I p
′

p|q λ−→I p
′|q

q
λ−→I q

′

p|q λ−→I p|q′
p

a−→I p
′ q

a−→I q
′

p|q τ−→I p
′|q′

Res)
p

λ−→I p
′

p\L λ−→I p
′\L

name(λ) 6∈ L

Ren)
p

λ−→I p
′

p[f ]
f̂(λ)−→I p

′[f ]

Table 1. Transition Rules for VPLI , where I = 〈ValI , IBI [[·]], IEI [[·]]〉

Definition 8. A (rooted) labeled transition system over value interpretation I is a triple
〈Σ, σ0, �−→〉, where Σ is a set of states, σ0 ∈ Σ is an initial state, and (�−→) ⊆ (Σ ×
ActI×Σ) is a transition relation. Let (M,N ∈)LTSI be the set of all such labeled transition
systems.

We can now define the meaning of a process by mapping it to an element of LTSI . Let
p ∈ ProcI ; then IPI [[p]] = 〈ProcI , p,−→I〉. We sometimes refer to IPI [[p]] as the model of p.

As a matter of practical concern, we note that unreachable states and the edges connecting
them may safely be eliminated IPI [[p]].

3.3 Semantic ordering

In order to reason about the relative expressiveness of abstract process semantics, we
need a preorder on transition systems that reflects the notion of approximation: if M is
smaller than N in the preorder, then the behavior of M should approximate that of N .
For this purpose we use a variant of the must preorder of [14]. In addition to having a
pleasing operational justification based on process testing, this preorder may be seen to
relate processes on the basis of the safety and liveness properties that they enjoy. In order
to define this relation, we first introduce the following definitions, which borrow heavily
from [6, 13].
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Definition 9. Let I be an interpretation, letM = 〈ΣM, σ0
M, �−→M〉 be a transition system

in LTSI , let σ, % ∈ ΣM, and let s ∈ Comm∗I .

• The trace relation, (=⇒M) ⊆ (ΣM × Comm∗I × ΣM), is defined inductively on the
structure of Comm∗I as follows.
(a) ( ε=⇒M) = ( τ−→M)∗, where ( τ−→M)∗ is the transitive and reflexive closure of τ−→M.
(b) ( as=⇒M) = ( ε=⇒M) ◦ ( a−→M) ◦ ( s=⇒M), where ◦ denotes relational composition.

• The convergence relation, ↓M ⊆ (ΣM × Comm∗I), is defined inductively as follows.
(a) σ↓Mε iff there is no infinite sequence 〈σi〉i≥1 with σ τ−→M σ1 and σi

τ−→M σi+1.
(b) σ↓Mas iff σ↓Mε and (σ a=⇒M % implies %↓Ms).

• Let Event = {c?, c! | c ∈ Chan} be the set of events and σ ∈ ΣM. Then the set events
in which a process may initially engage is given by

initM(σ) = {c? | ∃v ∈ ValI : σ c?v−→M} ∪ {c! | ∃v ∈ ValI : σ c!v−→M}.

The acceptance set of σ after a trace s is defined as follows.

accM(σ, s) = {initM(%) | σ s=⇒M % & % 6τ−→M}

• Let AS,BS ⊆ ℘(Event); then AS ⊂⊂ BS iff ∀A ∈ AS : ∃B ∈ BS : B ⊆ A.

Thus σ s=⇒M % holds if σ can perform the actions listed in s with any number of intervening
τ actions and end up as %. We abbreviate (∃% : σ s=⇒M %) as σ s=⇒M. The predicate σ↓Ms
holds if σ is incapable of infinite internal computation at any point during its “executions”
of s. The set init(σ) is the set of initial events of σ; we emphasize that this set includes no
references to values. The acceptance set acc(σ, s) represents the set of “event capabilities”
of σ after s. Note that the set of events does not depend on the value interpretation. Each
set AS in acc(σ, s) corresponds to a state that σ may reach by executing s and contains the
set of next possible events in that state. The fact that acc(σ, s) may contain more than one
such set indicates that nondeterministic choices may occur during the execution of s; the
more sets acc(σ, s) contains, the more nondeterministic σ is in its execution of s. Finally,
the ordering ⊂⊂ relates acceptance sets on the basis of their relative nondeterminism;
intuitively, AS ⊂⊂ BS if AS represents a “less nondeterministic” set of processes.

Notation. We write M s=⇒ for σ0
M

s=⇒M and lang(M) for {s | M s=⇒}, the language of
M. We also write M↓s for σ0

M ↓Ms, and acc(M, s) for accM(σ0
M, s).

The specification preorder relates transition systems on the basis of their nondetermin-
ism. Formally, it is defined as follows.

Definition 10. Let M,N ∈ LTSI .

• M wmayI N iff lang(N ) ⊆ lang(M).
• M vmustI N iff for all s M↓s implies (N ↓s and acc(N , s) ⊂⊂ acc(M, s)).
• M <∼I N iff MwmayI N and MvmustI N .
• M −∼I N iff M <∼I N and N <∼I M.

It is traditional to abbreviate IPI [[p]] <∼I IPI [[q]], as p <∼I q.
We now compare our semantics with the one given in [14]. There, value interpretations

are assumed to be deterministic. Table 2 gives their formulation of the semantics. This
definition of ↪→ may be substituted into our definitions for IPI [[·]] to generate new transition
systems for processes and hence a new preorder on processes that we denote <<I . If the
valuation functions are deterministic, then the preorders relate exactly the same terms.

8



All rules but (Out) and (Cond) from Table 1 with ↪→ replacing −→I

Out′) c!e.p
c!v
↪→ p if IEI [[e]] = {v}

Cond′)
p

λ
↪→ p′

be . p � q
λ
↪→ p′

IBI [[be]] = {tt}
q

λ
↪→ q′

be . p � q
λ
↪→ q′

IBI [[be]] = {ff }

Table 2. Traditional semantics of value passing

Theorem 11. Let I be such that the range of IEI [[·]] is {{v} | v ∈ ValI} and the range of
IBI [[·]] is {{tt}, {ff }}. Then p <∼I q iff p <<I q

We close this section by remarking on connections between <∼I and safety and liveness
properties. Olderog and Hoare [20] present a framework for the consideration of safety and
liveness in the context of labeled transition systems; they define a preorder that is similar
to the specification preorder and show that if one transition system is less than another,
then the higher one enjoys all the safety and liveness properties satisfied by the lower one,
where safety and liveness properties are expressed in terms of traces, acceptance sets, et
cetera. It can be shown that very similar results hold for <∼I . For example, one may define
a safety property S as any prefix-closed subset of Comm∗I (that is, the set of traces where
the “bad thing” has not happened) and stipulate that a transition system M satisfies S
iff lang(M) ⊆ S. Then it follows that if M<∼IN and M satisfies S, then N must satisfy
S also.

In a similar vein, Olderog and Hoare characterize liveness properties as sets of transition
systems.4 Then M satisfies liveness property L iff for all deterministic behaviors D of M,
there exists a transition system Li ∈ L such that Li vmust D. Here a deterministic behavior
is a restriction of a transition system such that the acceptance set after each trace contains
a single set of events. IfM <∼ N then one may show that the set of deterministic behaviors
of M is also “less than” the deterministic behaviors of N ; this, along with the fact that
the specification preorder is finer than the must preorder, allows us to conclude that ifM
satisfies a liveness property L, then so does N .

4 Abstractions of transition systems

In this section we show that, given a Galois insertion on sets of values, we may construct
a Galois insertion on transition systems ordered by the specification preorder. As a con-
sequence of this, we have (Corollary 16) that reasoning conducted on abstract transition
systems carries over to their concretized counterparts. Corollary 17 then shows that ab-
stractions may be composed, a result of practical importance in that it licenses the use of
intermediate abstractions in reasoning about more abstract properties of systems.

Note first that Definitions 3 and 4 can be extended to define abstraction and concretiza-
tion functions on all the sets of syntactic objects of VPLI . Thus we have, for example:

α : Comm∗C 7→ Comm∗A, α : ActC 7→ ActA, and α : ProcC 7→ ProcA.

4 It is worth noting that deadlock-freedom is expressed as a liveness property in this framework,
which is also powerful enough to express concepts such as eventuality and boundedness.
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Likewise we can extend Lemma 5 to cover process terms, so that

〈℘(ProcC),⊇〉
α
−→←−
γ
〈℘(ProcA),⊇〉.

The definition of appropriate “liftings” of α and γ to transition systems, however, is less
immediate. We first define abstraction. Since states in arbitrary transition systems have
no structure, the labels on transitions are the only natural candidates for abstraction.

Definition 12. Let N = 〈ΣN , σ0
N , �−→N 〉 be a transition system in LTSC . The abstraction

of N to LTSA is the transition system α(N ) = 〈ΣN , σ0
N , �−→M〉, where

σ
α(λ)
�−→M % iff σ

λ
�−→N %.

Clearly this abstraction preserves as much of the original meaning of the process as possible;
in fact, these abstractions will be used as the standard by which to judge the abstract
semantics of processes presented in the next section.

The definition of concretization for transition systems is more difficult. We want to
define γ so that 〈LTSC ,<∼C〉

α
−→←−
γ
〈LTSA,<∼A〉. Our solution is to introduce new states

into the concretization of a transition system. Each edge σ λ
�−→ % of the original system

is replaced by two sets of edges: the first is a set of τ edges from σ to one of the new
states; the second is a set of edges with labels from γ(λ) that map back to %. To ensure
that the specification preorder is preserved, however, some care must be taken with the
definitions. Throughout the remainder of this section, let M = 〈ΣM, σ0

M, �−→M〉 be a
transition system over value interpretation A, and let σ, % ∈ ΣM. We first introduce the
concept of an image product.

Definition 13. For each state σ, define the set of concretized consequents, con(σ) to be

con(σ) = {{〈σ, λ, %〉: λ′ ∈ γ(λ̂)}: 〈σ, λ̂, %〉 ∈ (�−→M)},

and let X = {χ1, χ2, . . .} = con(σ). The image product of σ is then defined:

ip(σ) = {S: S ⊆ (∪X) and S ∩ χk = 1}.

The image product of a state is the set of all possible combinations of concretized edges
leaving the state. As an example of an image product, consider a state σ with two edges,

(σ
a!>
�−→M %1) and (σ

b!>
�−→M %2). If γ(>) = {0, 1}, then the image product of σ is the set

{ {〈σ, a!1, %1〉, 〈σ, b!0, %2〉}, {〈σ, a!1, %1〉, 〈σ, b!1, %2〉},
{〈σ, a!0, %1〉, 〈σ, b!0, %2〉}, {〈σ, a!0, %1〉, 〈σ, b!1, %2〉} }.

We can now formally define the concretization of a transition system as a bipartite
graph. One set of states, including the root, is taken directly from the original system,
while the other set of states is constructed using the image product.

Definition 14. Let M = 〈ΣM, σ0
M, �−→M〉 be a transition system in LTSA. The con-

cretization of M to LTSC is the transition system γ(M) = 〈ΣN , σ0
M, �−→N 〉, where ΣN

and �−→N are defined as follows.

ΣN = ΣM ∪
(⋃

σ∈ΣM ip(σ)
)

σ
τ

�−→N π iff π ∈ ip(σ)

π
λ

�−→N % iff (∃σ : 〈σ, λ, %〉 ∈ π)

10



From the definitions, we can derive the following.

∀s ∈ Comm∗C ,N ∈ LTSC : s ∈ lang(N ) implies α(s) ∈ lang(α(N ))
∀ŝ ∈ Comm∗A,M∈ LTSA: ŝ ∈ lang(M) iff ∃s ∈ γ(ŝ) : s ∈ lang(γ(M))

Similar results hold also for convergence and for acceptance sets, allowing us to conclude
that α and γ do indeed form a Galois insertion over transition systems.

Theorem 15. 〈LTSC ,<∼C〉
α
−→←−
γ
〈LTSA,<∼A〉.

The following corollary implies in essence that if an “abstract” property holds of an
abstracted system then the corresponding “concretized” property holds for the original
system. Corollary 17 then shows how abstractions may be composed.

Corollary 16. M <∼A α(IPC [[p]]) iff γ(M) <∼C IPC [[p]].

Corollary 17. Let α = δ ◦ β, where α : ValC 7→ ValA, β : ValC 7→ ValI , and δ : ValI 7→
ValA. Then for C ∈ LTSC , I ∈ LTSI and A ∈ LTSA, we have I<∼Iβ(C) iff δ(I)<∼Aα(C).

Moreover, if there exists γ : A 7→ I such that 〈℘(ValI),⊇〉
δ
−→←−
γ

then 〈℘(ValA),⊇〉,

A<∼Aα(C) iff γ(A)<∼Iβ(C).

The significance of Corollary 17 is twofold. First, it states that intermediate abstractions
can be used to prove more abstract properties. Second, it states that properties that hold
for the most abstract model also hold for models at intermediate levels of abstraction. This
suggests, for example, that an interpretation that distinguishes some values may be used
to prove properties that ignore values altogether. Thus, in order to prove properties of a
concrete system, users of our framework may employ many abstraction functions, starting
with the most abstract; if the desired then can be proven at the most abstract level, then
the task is done, otherwise more and more concrete models may be used.

5 Abstract semantics

In the previous section we showed how to abstract the model of a process in such a way
that properties of the abstract model hold also for the original. This technique, however,
requires that the concrete model be constructed, an impossibility in the case that the
concrete model is infinite state. In this section we advocate an alternative method: rather
than abstracting the concrete model, one simply constructs a model using the abstract
semantics of Table 1. We show that if the value abstraction is safe, then properties of
the resulting abstract model will also hold for the concrete model. The advantage of this
approach is clear: the concrete model need never be constructed.

5.1 Safety

Theorem 18. If α is a safe value abstraction from C to A (Definition 6), then for all
p ∈ ProcC :

IPA[[α(p)]] <∼A α(IPC [[p]]).

Proof. By the definition of <∼ it suffices to show that IPA[[α(p)]] is may-greater and must-
less than α(IPC [[p]]). Let N = α(IPC [[p]]) with transition relation �−→N ; by Definition 8,
the transition relation of IPA[[α(p)]] is −→A.

The may-inclusion requirement is satisfied iff p
s=⇒C implies α(p)

α(s)
=⇒A. We establish

this implication in Theorem 21 below.

11



Regarding the must-inclusion requirement, we have the following proof obligation.

α(p)↓Aα(s) implies p↓Cs & accC(p, s) ⊂⊂ accA(α(p), α(s))

Theorems 22 and 23, below, establish that this obligation is indeed met. 2

In the rest of this subsection we sketch the proofs of Theorems 21-23. To begin with we
must establish a relationship between the transition relations −→C and −→A. Lemma 19
states that every edge in −→C is matched by an edge in −→A. Lemma 20 shows that if p
is a stable process under −→C , then α(p) can reach (via −→A) some stable state whose
initial event capabilities are a subset of those available to p.

Lemma 19. ∀p, q, λ: p
λ−→C q implies α(p)

α(λ)−→A α(q).

Lemma 20. ∀p : p 6τ−→C implies (∃p̂ : α(p) ε=⇒A p̂ 6τ−→A and initA(p̂) ⊆ initC(p)).

Lemma 19 is proved by induction over the structure of process terms. The proof makes
use of the safety of α and requires that substitution be well behaved with respect to abstrac-
tion. The proof of Lemma 20 also proceeds by structural induction and uses Lemma 19.

Theorem 21 establishes that every trace of p is matched by a trace of α(p). Note that
the converse does not hold in general since the abstraction of the conditional may introduce
new traces into the language of α(p). The proof is by induction on the length of the trace
s; both the basis and induction steps follow immediately from Lemma 19.

Theorem 21. ∀p, q, s: p
s=⇒C q implies α(p)

α(s)
=⇒A α(q).

Theorem 22 states that if the abstraction of a process converges on a trace then so
must the original process. Again the converse does not hold in general, as can be seen by
considering the process ((1 = 1) . nil � rec P.P ) under an abstraction that evaluates all
boolean expressions to {tt,ff }. Theorem 23 provides the final piece of the puzzle.

Theorem 22. ∀p, s: α(p)↓Aα(s) implies p↓Cs.

Theorem 23. ∀p, s: α(p)↓Aα(s) implies accC(p, s) ⊂⊂ accA(α(p), α(s)).

Assuming α(p)↓Aα(s), the proof obligation for Theorem 23 can be written as:

p
s=⇒C q 6τ−→C implies (∃q̂: α(p)

α(s)
=⇒A q̂ 6τ−→A & initA(q̂) ⊆ initA(q)).

The proof is again by induction on s. The basis case (s = ε) requires a further induction on
the length of the longest initial τ -sequence of p. That there can be no infinite τ sequence
is established by the premise and the fact that the model of a process is image finite (see
[14]).

5.2 Optimality

In order to prove optimality, we must first lift IPI [[·]] to sets of process terms. To this end
we introduce the following operator on transition systems.

Definition 24. Given a set of transition systems {M1,M2, . . .} where Mk = 〈Σk, σ0
k,

�−→k〉 ∈ LTSI , define the internal sum of the set to be:
⊕

kMk = 〈Σ, σ0, �−→〉, where
σ0 is a fresh state, Σ =

⋃
k{〈k, σ〉 | σ ∈ Σk} ∪ {σ0}, and �−→ is defined as follows.

σ0 τ
�−→ 〈k, σ〉 iff σ = σ0

k

〈k, σ〉 λ
�−→ 〈j, %〉 iff k = j & σ

λ
�−→k %

12



The internal sum of a set of processes is the greatest lower bound of these processes with
respect to the specification preorder. The meaning of a set of process terms can now be
defined, for PS ⊆ ProcI , as follows.

IPI [[PS]] = (
⊕

p∈PS IPI [[p]])

The following theorem establishes that, given an optimal abstract value interpretation,
IPA[[·]] is optimal for IPC [[p]]. It follows from Theorems 15 and 18.

Theorem 25. If α is an optimal value abstraction from C to A (Definition 7), then for
all p ∈ ProcA:

IPA[[p]] −∼A α(IPC [[γ(p)]]).

5.3 Exact analysis

Even if an abstract semantics is not optimal, there may still be processes for which the
abstract semantics is “exact”. To end the section, we give a sufficient condition for estab-
lishing that this is the case. The condition is a natural generalization of data-independence
as studied by Wolper [29]. We need the following definitions.

Definition 26. Let α : C 7→ A and f : ValC 7→ ValC . Then f respects α if for every v in
ValC , α(v) = α(f(v)). Extend f to process terms as for α in Definition 3. Then a process
p ∈ ProcC is α-independent if for all f respecting α, α(IPC [[p]]) −∼A α(IPC [[f(p)]]).

Intuitively, p is α-independent if its behavior modulo α is independent of specific values,
modulo α.

Theorem 27. If α : C 7→ A is safe and p ∈ ProcC is α-independent, then

IPA[[α(p)]] −∼A α(IPC [[p]]).

6 Example

In this section we give a small example illustrating the utility of our results. Consider the
following system consisting of a router and two processing units. The router waits for a
value, which is a natural number, to arrive on its in channel; it then routes the (halved)
value to the “left” processing unit if the original value is even and to the right otherwise.
(Thus the least significant bit of the value may be thought of as an “address”.) Assume
that the value interpretation C is the standard one for natural numbers. The V PL process
describing this system may be given as follows.

Router = in?(v).((v mod 2) = 0) . left!(v/2).Router � right!(v/2).Router

Unit0 = in?(v).out!(f(v)).Unit0

Unit1 = in?(v).out!(g(v)).Unit1

System = (Router | Unit0[left/in] | Unit1[right/in])\{left, right}

We would like to determine whether the above system is deadlock-free. Unfortunately,
its state space is infinite, and naive state-space enumeration techniques would not ter-
minate. The results in this paper suggest, however, that if we can come up with a safe
abstraction on values and establish that the resulting abstracted process is deadlock-free,
then so is the original system. That is, letting A be the abstract interpretation and α the
abstraction from C to A, it follows from the fact that IPA[[p]] <∼A α(IPC [[p]]) that IPC [[p]]
deadlocks if and only if α(IPC [[p]]) does.
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Consider the trivial abstract value space A in which all concrete values are collapsed
into a single abstract value 0, every expression evaluates to 0, and every boolean evaluates
to the set {ff, tt}. The abstraction function α that maps the concrete interpretation into
this interpretation is clearly safe. When we apply this abstraction to the above system, we
get a system that is semantically equivalent to the following.

RouterA = in?0.(left!0.Router⊕ right!0.Router)
UnitA = in?0.out!0.UnitA

SystemA = (Router | UnitA[left/in] | UnitA[right/in])\{left, right}

This system is finite-state, and using reachability analysis one may determine that it is
deadlock-free. Accordingly, it follows that the original system is also deadlock-free.

7 Discussion

In this paper we have shown how abstractions on values may be used to generate abstrac-
tions on processes that pass values. We defined the semantics of processes parametrically
with respect to a value interpretation and showed that safe value abstractions induce safe
abstract semantic functions and optimal value abstractions likewise induce optimal seman-
tic functions. We proved our results relative to the specification preorder which preserves
not only safety properties, but also liveness properties.

One may use our technique to simplify the task of reasoning about value-passing sys-
tems as follows. Given a system and a safety or liveness property, one may first attempt
to establish satisfaction using the most abstract value interpretation that is exact with re-
spect to the specification. If satisfaction can be shown, the task is finished; otherwise, one
can select a less abstract interpretation and repeat the analysis. The hope is that one finds
a value interpretation that is concrete enough to prove the property desired, yet abstract
enough so that satisfaction is (rapidly) computable. This process would be facilitated by an
environment providing a library of interpretations, along with tools capable of analyzing
processes to suggest which of the more concrete interpretations available should be chosen
in the event that verification fails, and we would like to pursue the development of such
an environment as future work.

It would also be interesting to characterize the properties preserved by the specifica-
tion preorder in terms of a temporal logic; one candidate would appear to be linear time
temporal logic without a next operator. We also would like to investigate the addition of
values with structure to our model. The extension to disjoint sums (for example, the set
of integers and characters) is straight-forward. More challenging are sets of values whose
elements are ordered, as are the denotations of functions in domain theory. A solution
here, however, would open up the possibility of treating higher-order value passing lan-
guages. To this end it would be useful to cast our results in terms of acceptance trees [14];
this rephrasing should not present difficulties. Finally, we intend to further explore the
connections between our approach and effect systems.

Related Work. Existing work on abstractions of concurrent systems has focused on the
development of abstraction techniques that preserve certain classes of formulas in various
temporal logics [1, 3, 10]. The frameworks of these papers differ in details, but each con-
siders how to generate, from an abstraction on values, abstractions on Kripke structures
that preserve various fragments of the temporal logic CTL∗. Their programming models
have focused on shared memory, whereas ours considers value-passing; in addition, their
semantics are based on the simulation preorder, which is incomparable to the preorder used
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here [26]. Consequently, the “properties” that are preserved would in general be different.
Characterizing these differences precisely remains a topic that needs to be addressed.

The goals of our work are also similar to those of Hennessy and Lin in their work on
symbolic bisimulations [15]. Central to their work is the notion of a symbolic transition
system, which is a transition system with sets of free variables as states and guarded
expressions as edges. Symbolic transition systems are often finite, but even trivial recursive
processes whose arguments vary from call to call may have infinite symbolic transition
systems, rendering their technique ineffective. For example (rec P (x).c!x.P (x+ 1)) (0) has
an infinite symbolic transition system; our method will produce a finite transition system
for this process, given a finite abstract value set.

Our work is also related to that done by Nielson and Nielson on effect systems for
CML [19]. An effect system is an extension of a conventional type system that describes
the side-effects (in our case, events) that a program may have. In the case that the prop-
erties of interest can be described using the trivial abstraction, our method reduces to
an effect system for process, in the spirit of the Nielsons’ work. Their language is much
more complex, supporting higher-order and structured values. However, our abstractions
preserve more of the behavior of the original process than do theirs; for example, their
abstractions reduce external to internal non-determinism.

As for more applied work, Yeh and Young [30] have used an approach that can be seen
as an instance of ours for verifying properties of Ada programs. Their success points to
the practical importance of our technique.
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14. M.C.B. Hennessy and A. Ingólfsdóttir. A theory of communicating processes with value-

passing. Information and Computation, 107:202–236, December 1993.
15. M.C.B. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92, Sussex Uni-

versity, 1992.
16. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.
17. N.D. Jones and F. Nielson. Abstract Interpretation: A Semantics-Based Tool for Program

Analysis. Handbook of Logic in Computer Science. Oxford, To appear.
18. P. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three problems

of equivalence. Information and Computation, 86(1):43–68, May 1990.
19. F. Nielson and H. Nielson. From CML to process algebras. In E. Best, editor, Proceedings

of CONCUR ’93, volume 715 of LNCS, pages 493–508, Hildesheim, Germany, August 1993.
Springer-Verlag.

20. E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating pro-
cesses. Acta Informatica, 23:9–66, 1986.

21. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal of Comput-
ing, 16(6):973–989, December 1987.

22. J. Parrow. Verifying a CSMA/CD-protocol with CCS. In Proceedings of the IFIP Symposium
on Protocol Specification, Testing and Verification, pages 373–387, Atlantic City, New Jersey,
June 1988. North-Holland.

23. J. Richier, C. Rodgriguez, J. Sifakis, and J. Voiron. Verification in XESAR of the sliding
window protocol. In Proceedings of the IFIP Symposium on Protocol Specification, Testing
and Verification, pages 235–250, Zurich, May 1987. North-Holland.

24. V. Roy and R. de Simone. Auto/Autograph. In Computer-Aided Verification ’90, pages 235–
250, Piscataway, New Jersey, July 1990. American Mathematical Society.

25. C. Stirling and D. Walker. Local model checking in the modal mu-calculus. In TAPSOFT ’89,
volume 352 of LNCS, pages 369–383, Barcelona, March 1989. Springer-Verlag.

26. R. van Glabbeek. The linear time–branching time spectrum. In Proceedings of CONCUR ’90,
volume 458 of LNCS, pages 278–297. Springer-Verlag, August 1990.

27. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proceedings of the Symposium on Logic in Computer Science, pages 332–344, Cambridge,
Massachusetts, June 1986. Computer Society Press.

28. G. Winskel. A note on model checking the modal ν-calculus. In Proceedings ICALP, volume
372 of LNCS, pages 761–772, Stresa, Italy, July 1989. Springer-Verlag.

29. P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In
Proceedings ACM POPL, pages 184–193, January 1986.

30. W.J. Yeh and M. Young. Compositional reachability analysis using process algebra. In
TAV ’91, pages 49–59. ACM SIGSOFT, ACM Press, October 1991.

16


	Introduction
	Values and value abstractions
	Value interpretations
	Abstraction and concretization
	Safety
	Optimality
	Preview

	Processes
	Syntax
	Semantics
	Semantic ordering

	Abstractions of transition systems
	Abstract semantics
	Safety
	Optimality
	Exact analysis

	Example
	Discussion

