
A Typed Language for Distributed Mobile Processes
(Extended abstract)

James Riely and Matthew Hennessy∗

Abstract

We describe a foundational language for specifying dynam-
ically evolving networks of distributed processes, Dπ. The
language is a distributed extension of theπ-calculus which
incorporates the notions of remote execution, migration, and
site failure. Novel features of Dπ include

1. Communication channels areexplicitly located: the
use of a channel requires knowledge of both the chan-
nel and its location.

2. Names are endowed withpermissions: the holder of a
name may only use that name in the manner allowed
by these permissions.

A type system is proposed in which the types control the al-
location of permissions; in well-typed processes all names
are used in accordance with the permissions allowed by the
types. We prove Subject Reduction and Type Safety The-
orems for the type system. In the final section we define a
semantic theory based onbarbed bisimulationsand discuss
its characterization in terms of a bisimulation relation over a
relativized labelled transition system.

1 Introduction

Due to the rapid advances in networking technology there
has been a recent proliferation of commercial programming
languages for distributed processes, such as TeleScript, Java
and ActiveX. This has been accompanied by the develop-
ment of prototype languages — such as Obliq [9], Pict [17],
Oz [23], Facile [13] and the join calculus (DJoin) [11, 12]
— within the programming language research community,
and the development of more abstract calculi, such as the
π-calculus [15] and its variations [2, 3, 18, 20, 21, 22], that
directly address semantic and verification issues. This work
should be considered a contribution to this last research ef-
fort.
∗Research funded by HCM EXPRESS and EPSRC project

GR/K60701. Authors’ address: School of Cognitive and Comput-
ing Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH, UK,
{jamesri,matthewh}@cogs.susx.ac.uk

To appear inConference Record of the ACM Symposium
on Principles of Programming Languages, San Diego,
January 1998. ACM Press.

Our goal has been to develop a robust and useful seman-
tic theory for a process language in which computation is
distributed over differentlocations, in which processes may
migratefrom one site to another, and in which sites mayfail.
We present a foundational language, called Dπ, for describ-
ing distributed systems. The starting point is theπ-calculus,
a language in which processes are described in terms of
their ability to send and receive values along communica-
tion channels. Although the values allowed in theπ-calculus
are very simple — only names may be communicated — the
calculus is still very powerful, due to the ability to generate
newnames which can be communicated and shared privately
between processes.

As in [2, 12] we use a subset of names to representlo-
cations, or sites, which can also be freshly generated and
exchanged between processes. Distribution is achieved by
requiring that eachbasicprocess (orthread) belocated. The
threadP running at sitè is denoted̀ [P]; collections of such
terms are calledlocated processes (or simplyprocesses).
Thus, in the process

(ν̀ a)
(
`[P] |k[Q]

)
| `[R]

location` is running threadsP andR, whereask is running
threadQ; in addition, P and Q share a private channela,
located at̀ . Newly created locations are also located and
therefore the collection of extant locations forms atreebased
on asublocationrelation. As in TeleScript, communication
is purely local; in order to send a value on a channela a
thread must first move to the location at whicha is declared.
Thus the communication construct of DJoin is here syntacti-
cally split in two, with the syntax more closely matching the
reduction semantics. In addition certain forms of site failure
can be modeled using a “halt” primitive. The syntax of Dπ
and its reduction semantics are given inSection2.

In Section3, we introduce a type system for Dπ which
allows a programmer to control thecapabilities, or permis-
sions, associated with each instance of a channel or location.
For example, one may wish to export the capability to com-
municate with a particular location without also exporting
the capability to halt all processes running at that location
(i.e. to “kill” the location). Channels are constrained by the
values which they may transmit and both locations and chan-
nels are constrained by the followingpermissions, which re-
strict their use:

snd to senddata along a channel,
rcv to receivedata along a channel,

1

run to run a thread at a location,
newc to createnew channelsat a location,
subl to placesublocationsat a location,
mig to movea location (with its threads and subloca-

tions), and
halt to kill a location, stopping it from running any

threads.

We prove a Type Safety Theorem using a tagged version
of the language, where each occurrence of a name is explic-
itly tagged with a set of permissions indicating the manner
in which that instance of the name may be used. When a
name is communicated, certain permissions are communi-
cated with it, as negotiated at the time of communication.
Well-typed terms are guaranteed to use received names only
as allowed by the received permissions.

The typing system is based on that of Pierce and San-
giorgi [16]; however, the related theorems and proof tech-
niques — in particular our formulation of the tagged lan-
guage — appear to be novel.

In Section4 we outline a semantic theory for Dπ. We
define a variation onbarbed congruence[20] relativized to a
typing constraint on the environment. Suppose thatP andQ
are processes and∆ is a type environment intended to con-
strain the activity of processes interacting withP andQ. We
then say, roughly, thatP andQ arebarbed congruent at∆
if for every well-typed contextC which satisfies the con-
straint∆, C[P] andC[Q] arebarbed bisimilar[20]. We dis-
cuss an alternative characterization of this congruence as a
labelledbisimulation relation over a labelled transition sys-
tem for well-typed processes, relativized to constraints. The
labels in the transition system identify the actions of input
and output, failure and migration.

We discuss related work in the conclusion.
Due to space limitations, proofs are presented in out-

line form and the details of the labelled bisimulation relation
(Section4) have been omitted entirely.

2 Language

2.1 Syntax

The language we define, Dπ, may be seen as a distributed
version of core Pict, [17], with facilities for local syn-
chronous communication, code movement, and failure.

The syntax is defined using a setLocof locationsor sites,
k-m, a setChanof channelsor ports, a-c and a setVar of
variables, x-z. We let r ands range over the set ofnames,
Name= Loc∪Chan. The setId of identifiers, u-w, includes
names and variables, as described inSection1. For the mo-
ment we will ignore types,ζ, and tags,γ, in our description
of the language.

The syntax ofbasic processesor threads, given in
Section1, looks very much like that of theπ-calculus, with
some extensions. Input and output operations are placed
at channels using the prefixu?F or u!C, where u is an

Pred: ϕ,ψ :: = ↑u �u �u u = v

BProc: P-R :: = nil P|Q (νa:κ)P (νm:λ)P ∗P
∑i ui?(Xi :ζi)Pi u! 〈V〉P
u:: P migu.P halt

if ϕ then P else Q

LProc: P-R :: = nil P|Q (ν̀ a:κ)P (νδ
` m:λ)P

{P,Q∈ LProc}
`γ[P] {P∈ BProc}

Type: κ :: = chanγζ γ⊂ {snd,rcv}
λ :: = locγ γ⊆ {run,halt,mig,newc,subl}

ζ,ξ :: = κ λ λ::κ̃ ζ̃

Id: u-w :: = x aγ `γ

Val: U-V :: = u u::V (V1...Vn), n≥ 0

Pat: X-Z :: = x x::X (X1...Xn), n≥ 0

Table 1: Syntax

identifier,F is anabstraction(X:ζ)P, andC is aconcretion
〈V〉Q. More generally we allow finite choice of input guards
∑ui?(Xi :ζi)Pi , wherei ranges over an implicit finite index
setI .

In addition to communication, termination (nil), parallel
composition (P|Q), iteration (∗P), and restriction ((νr)P) —
all of which appear in some form in theπ-calculus — the
thread language includes the constructs:

• u::P, pronounced “go tou”, which moves the threadP
to locationu,
• migu.P, pronounced “migrate tou”, which moves the

current locationof the thread to be a sublocation of
locationu,
• halt, which halts the current location, and
• if ϕ then P else Q, which allows the thread to test the

positionof the current location (relative to the sublo-
cation relation), to test the running/haltedstatusof any
location and to compare names (cf. (mis)matching in
theπ-calculus).

The threadP running at sitè is denoted̀ [P]; collec-
tions of such terms are calledlocatedprocesses (or simply
processes). Thus, as explained in the Introduction, in the
process

(ν̀ a)
(
`[P] |k[Q]

)
| `[R]

location` is running threadsP andR, whereask is running
threadQ; in addition, P and Q share a private channela,
located at̀ . We say that̀ is thecurrent locationof P and
Q andk is the current location ofQ. (It is worth noting that

2

while we distinguish basic and located processes, we use the
metavariablesP-R for both; the intended meaning should be
clear from context.)

Restriction. For located processes, there are two forms of
restriction, for channels and locations, respectively. When a
thread running at̀ creates a new namer, the namer is con-
sidered to be located at`. At the level of located processes,
we note this by writing(ν̀ r), indicating that` is the par-
ent of r. The parent location of a channel is static, whereas
the parent of a location may change as a result of a migra-
tion. In addition, a location, once created, may have one of
two states: running (↑) and halted (↓). Within a thread this
information need not be recorded as we assume that every
location is live when it is first created. Within a process,
however, the state of a location may change as a result of a
halt operation and therefore we additionally record the state
of a bound location. Thus(ν↑`m:ζ)P indicates that the located
processP has a private locationm which is alive child of `,
while (ν↓`m:ζ)P indicates thatm is a privatedeadchild of `.
Admittedly the latter is of little use but since locations can
be killed, and their status tested, this information must be
retained for the operational semantics. The general form of
restriction for locations is(νδ

` m:ζ) whereδ ∈ {↑,↓}.

Names, variables and values. In theπ-calculus the only
valuesthat can be transmitted between processes are names.
Here we allow a more general set of values, and therefore in
the input constructa?(X:ζ)P, X is a patternagainst which
the more general values may be matched. The allowed class
of values, and associated patterns, are defined inSection1.
(For (X:ζ)P to be well formed, the patternX must belinear,
i.e. each variable may appear at most once, and the structure
of X must match the structure ofζ.) Note that the set of
values includes the set of patterns. We say that a value is
closedif it contains no variables.

Closed values of channel type have the forma, whereas
those of location type may have the form̀or the form`::ã.
Intuitively, when a location is communicated, a process may
also communicate a subset of the channels defined at that
location. For example, a process that receives the value
`::(a,b) is granted knowledge of the location` and the chan-
nelsa andb located at̀ .

We assume the standard notion offreeandboundoccur-
rences of variables and names. Variables are bound by the
input construct, whereas names are bound by restriction. A
term with no free variables isclosed. Except where noted,
we assume all terms are closed. We also assume the standard
notions ofalpha-conversionandsubstitution, whereP{|u/x|}
denotes the capture-avoiding substitution ofu for x in P.
The notation,P{|U/X|} generalizes this in an obvious way; for
{|U/X|} to be well-defined, it must be that the structure of the
U exactly matches the structure ofX.

Types. Our main interest in introducing types is to con-
trol thecapabilities, orpermissions, associated with each in-
stance of a name. For example when exporting a new loca-

tion name it is natural to wish to limit the use of that location
by the recipient. We use the set of permissions given in the
Introduction. These are indicative examples chosen from a
large range of possibilities. One can easily think of other
capabilities that would be interesting to control, such as the
ability to test for equality between names, tocommunicate
them, or even to communicate them with restricted permis-
sions.

The syntax for types,ζ, is built up using sets of the ca-
pabilities,γ, as given inSection1. Channels and locations
are of typesκ andλ respectively, whereas tuples of values
have typẽζ. The channel types generalize those of Pierce
and Sangiorgi [16] and location types are an extension of the
same approach to locations. Note that in the channel type,
chanγζ, γ dictates the use of the channel (send, receive, nei-
ther or both) while the typeζ constrains values that can be
communicatedon the channel. The meaning of the typeλ::κ̃
is less obvious. Values of this type are used to communi-
cate channels at fresh locations. For example, the process
`[a! 〈k::b〉] may send the valuek::b along channela. This
value informs the receiver (who must also be located at`) of
locationk and of the channelb located atk. In order to useb
in any way (e.g. to distinguish it from other names atk), the
receiver must receive therun capability onk.

Note that, as in [16] in the syntax for processes all bound
occurrences of identifiers must have associated with them
an explicit type. Thus in the threada?(X:ζ)P, the typeζ
indicates the type of value which can be received, whereas
in the process(ν̀ r:ξ)P the typeξ determines the capabilities
of the newly created namer; here we callζ a reception type
andξ anallocation type.

As stated above we are mainly interested in the type sys-
tem as a way of controlling permissions, and thus we have
not endowed it with features such as recursive types, poly-
morphism, linearity, etc., many of which are entirely sepa-
rate concerns; for example, the generalization to recursive
types is straightforward [16, 24].

In Section3 we introduce a type system for Dπ and prove
that well-typed programs are free of runtime type errors; to
prove that the type system is safe, we also give a definition
of runtime error in Section3. The definition formalizes the
intuition that an error occurs when there is an arity mismatch
in a communication (as in the polymorphicπ-calculus), or,
for example, when a process attempts to use a name without
obeying the proper restrictions on its permissions. Consider
a processP which sends a fresh locatioǹto Q, explicitly
denying thehalt capability; if Q subsequently attempts to
kill ` then a runtime error occurs. Note that different in-
stances of a name may have different permissions:P may
have thehalt capability on`, even though it does not com-
municate this capability toQ.

Tags. In order to define runtime errors, all instances of
names in Dπ aretaggedwith a capability set (excluding the
restriction operators, whose meaning is independent of tags).
The namer tagged with capabilitiesγ is writtenrγ. However

3

the type system, inSection3, does not refer to these tags, and
after proving the Type Safety and Subject Reduction Theo-
rem these tags can be ignored so long as one considers only
well-typed processes. For this reason in most of the informal
examples discussed in the paper tags will not be used.

Notation. We end this introduction to the syntax with a de-
scription of some convenient notation.

• We write fn(P) for the function which returns the set
of free names occurring inP. Similarly, locs(P) re-
turns the set of free locations occurring inP, and n(P)
returns the set ofall names occurring inP. These func-
tions are also defined, in the obvious way, for other
syntactic categories.
• We routinely drop annotations from terms when they

are uninteresting or clear from context; thus we may
write (νδ

` m:ζ) as(νδ
` m), (ν̀ m), (νm:ζ) or simply(νm).

• We often denote groups of similar things using a tilde;
e.g. we write (νr̃)P instead of(νr1)...(νrn)P and ã in-
stead of(a1...an). We also adopt other standard abbre-
viations from theπ-calculus.
• We use underscores (e.g. r and r) to indicate that a

name is tagged, and define the projection functions
“name” and “perm” in the obvious way. We adopt the
meta-syntactic convention that name(r) = name(r) =
r, although perm(r) and perm(r) may differ. We also
use the function “perm” on simple types: for example,
perm(chanγκ) = γ. �

2.2 Reduction semantics

We give the operational semantics to Dπ in terms of a reduc-
tion relation betweenprocess configurations. The judgments
are of the form

L.P−→ L′ .P′

whereP andP′ are (closed) located processes, andL and
L′ are runtime environments for the system, recording the
position and status of each location. We sometimes refer to
L′ .P′ as thecontinuationor theresidualof L.P.

To see that the position and status of locations must be
recorded dynamically, observe that the position may change
due tomigration and the status may change due to a halt.
Note that even without the conditional construct, the position
and status of a locationdo affect the meaning of processes.
For example, the term̀[P] is unable to reduce if̀ or any of
its ancestors is halted. In addition to direct execution of the
halt operation, a location will halt if it migrates to a parent
location that is halted.

Location trees. To represent the runtime environment we
takeL to be alocation tree, i.e. a tree with nodes drawn
from Loc (each location name may appear at most once). In
addition to the position of locations in the tree,L records
also the statusδ of each nodè ∈ locs(L), where as before

δ ∈ {↑,↓}. We suppose that the root node of the tree is al-
ways live, as otherwise reduction is impossible. Below the
root, the “top-level” locations are meant, intuitively, to cor-
respond to physical machines or network addresses, while
subsequent descendants might correspond to “processes” or
“subprocesses”.

We do not give an implementation of location trees, but
rather describe them abstractly. Location trees support the
following predicates:

• L `̀ ↑k if k and all of its ancestors are alive;
• L `̀�k if k is the parent of̀ ; and
• L `̀�k if k is an ancestor of̀ (other than its parent).

These predicates, together with the (mis)matching construct
u = v, make up the formulaeϕ of Section1. We writeL ` ϕ
if the location` is unimportant for establishing the property
ϕ; note that this is the case for the matching predicate. In the
semantics we also use conjunction and negation, with the
obvious meanings.

Location trees also support the following functions,
which we write postfix:

• L, δ
k` adds locatioǹ as a childk with statusδ. To be

defined,k must appear inL and` must not; therefore
in L, δ

k` the nodè is a leaf.
• L{|`�k|} changes the tree ordering so thatk is the par-

ent of`. To be defined the operation must preserve the
tree structure.
• L{|↓`|} marks` as dead.

The definition of the judgmentsL.P−→L′ .P′ is given
in Section2 where it is assumed that all the process configu-
rations arewell formed, i.e. all of the free locations inP are
found inL (i.e. locs(P)⊆ locs(L)).

Structural equivalence. Following [5, 14], we define re-
duction using an auxiliary structural equivalence, which we
now explain. The structural equivalence≡ includes many
standard rules and axioms. As usual, we presuppose that
≡ is, in fact, an equivalence (reflexive, symmetric and tran-
sitive) and that it relates all terms that differ only in the
names of bound identifiers. Also as usual, we suppose that
≡ is preserved by composition and restriction (i.e. P≡
Q implies P |R≡ Q |R and (νr)P≡ (νr)Q), and obeys the
monoid axioms for composition:P≡ P | nil, P |Q≡ Q |P
andP| (Q|R)≡ (P|Q) |R.

The axioms specific to Dπ are given below:

(s-rep) `[∗P] ≡ `[P] | `[∗P]
(s-nil) `[nil] ≡ nil

(s-split) `[P|Q] ≡ `[P] | `[Q]
(s-chan) `[(νa)P] ≡ (ν̀ a)`[P] if newc ∈ perm(`)

(s-loc) `[(νm)P] ≡ (ν↑`m)`[P] if subl ∈ perm(`)
andm 6= `

(s-extr) Q | (ν̀ s)P ≡ (ν̀ s)(Q |P) if s /∈ fn(Q)
(s-swap) (νkr)(ν̀ s)P ≡ (ν̀ s)(νkr)P if s /∈ {k, r}

andr /∈ {`,s}

4

(r-comm) L. `
[
∑i ai?(Xi :ζi)Pi

]
| `
[
b! 〈V〉Q

]
−→ L.`

[
Pi{|V

′
/Xi |}
]
| `
[
Q
]

if L ` ↑` andai = b and refine(V, ζi) = V ′

(r-cond1) L. `
[
if ϕ then P else Q

]
−→ L.`

[
P
]

if L `̀ ↑`∧ϕ
(r-cond2) L. `

[
if ϕ then P else Q

]
−→ L.`

[
Q
]

if L `̀ ↑`∧¬ϕ
(r-goto) L. `

[
k :: P

]
−→ L.k

[
P
]

if L ` ↑`∧↑k
(r-mig) L. `

[
migk.P

]
−→ L{|`�k|} . `

[
P
]

if L ` ↑`
(r-halt) L. `

[
halt

]
−→ L{|↓`|} . nil if L ` ↑`

(r-rstr)
L, δ

`m . P−→ L, δ′
`′m . P′

L. (νδ
` m)P−→ L. (νδ′

`′ m)P′

L.P−→ L′ .P′

L. (ν̀ a)P−→ L′ . (ν̀ a)P′

(r-str)
L.P−→ L′ .P′

L.R|P−→ L′ .R|P′
P≡Q L.Q−→ L′ .Q′ Q′ ≡ P′

L.P−→ L′ .P′

Table 2: Reduction relation

Of these, s-rep, s-extr and s-swap are standard axioms,
merely adapted to our syntax. The rules-nil allows for the
garbage collection of threads, whereass-split allows the
threadP |Q to split into two independent threadsP andQ.
The rules-split provides a clear contrast between the treat-
ment of locations in Dπ and the treatment ofambientsin the
ambient calculus [8]; in the ambient calculus,s-split does
not hold. The rules-chan states that̀[(νa)P] is equivalent to
(ν̀ a)`[P] as long as̀ contains the permission to create new
channels. Note that when a channel declaration is “pulled
out” of a thread its location is recorded. Rules-loc states
that the same is true for location declarations, although here
we also record the fact that the new location is presumed to
be alive (at least until a reduction occurs).

Reduction. We now briefly describe some of the rules in
the reduction semantics. The goto rule

L.`[k :: P]−→ L.k[P] if L ` ↑`

states that the threadk ::P, running at the live locatioǹ, can
move the threadP to locationk. In contrast, the migration
rule

L.`[migk.P]−→ L{|`�k|} . `[P] if L ` ↑`

does not change the location ofP, but rather theparent loca-
tion of the current location,̀. In this reduction,̀ is moved
to become a child ofk (assuming that̀ is alive), and subse-
quently the threadP andany other threads running at̀are
executed under the new set of ancestors. Note that, unlike
goto, the effect of a migration isnon-local. The same is true
of halt. It is for this reason that the effect of these operators
is recorded in the runtime environmentL, rather than in the
local process term.

In Cardelli and Gordon’s terminology [8], migration is
subjective— a local thread initiates̀’s move to the new
parent location — whereas goto isobjective— a foreign
thread “invades” locationk. In addition, migration moves

refine(aγ, chanγ ′ζ) = aγ ′ if γ⊇ γ ′
refine(kγ, locγ) = kγ ′ if γ⊇ γ ′
refine(u::U, λ::κ̃) = v::V if refine(u, λ) = v

and refine(U, κ̃) = V
refine(Ũ , ζ̃) = Ṽ if ∀i : refine(U i , ζi) = V i

Table 3: The partial function “refine”

running code, whereas goto moves inactive code; and mi-
gration maintains location boundaries, whereas goto does
not — when using goto, the exported thread merges into
the threads of the new location. Movement operators which
combine these attributes in other ways are also possible;
some of these are discussed in [8].

The ruler-comm is the most complicated of the rules in
Section2. Here, an abstraction(X:ζ)Q and a concretion
〈V〉P are ready to synchronize at channelb of location `.
The permissions required by the abstraction are advertised
by the reception typeζ, whereas the permissions offered by
the concretion are manifest in the tagged valueV. Obviously
for a communication to occur, the arities ofV andζ must
match, as in the polyadicπ-calculus. In addition, the permis-
sions offered byV must satisfy the requirements ofζ. For
example, if the abstraction expects to receive a location with
only thehalt permission, but the concretion offers a value
without this permission, then communication cannot occur
(in fact there is a runtime error, as discussed inSection3).
Further, we wish to guarantee that the tagged valueV ′ made
available to the body of the abstraction includes only those
permissions requested byζ and does not include any extra
permissions that happen to be available inV but aren’t sub-
ject to negotiation. Continuing the above example, even if
the concretion offers a instance of locationmwhich happens
to have themig permission in addition tohalt, the abstrac-
tion should only be able to exploit thehalt permission, since
no mention is made ofmig in ζ.

5

We formalize these activities — extended arity check-
ing and permission refinement — using the partial function
“refine”. If the permissions offered byV satisfy the require-
ments ofζ, then refine(V, ζ) will be defined. In addition, the
valueV ′ returned by refine(V, ζ) is refinedin the sense that
the permissions on the tags inV are reduced to match those
declared inζ. In r-comm it is the refined valueV ′ that is
substituted into the body of the abstraction. The definition
of “refine” is given inSection3. For example:

refine((k∅,m∅), loc∅) is undefined
refine(k{run}, loc{run,halt}) is undefined
refine(k{run,halt,mig}, loc{run,halt}) = k{run,halt}

Note that if refine(ζ, V) = V ′, thenV andV ′ are the same
when tags are ignored.

The use of tags and tag refinement is the major difference
between our reduction semantics and that of [16]. Here when
values are communicated the associated permissions are ex-
plicitly communicated as well, appropriately refined by the
type of the channel used for the communication, while in
[16] only the names but not the permissions are communi-
cated.

The rules for the other constructs of the language are
straightforward although it is worth noting how the rules for
restriction are used. For example, using the structural equiv-
alence and the migration rule,r-rstr can be used to derive:

L. (ν̀ m) m[(migk.nil) |Q]−→ L. (νkm) m[Q]

Here the private sublocationm of ` has been moved from̀
to k; one effect of this is to move the threadQ from ` to k as
well.

But for the use of “refine”, our reduction semantics takes
no account of the type of identifiers or the tags on names.
In fact, these rules allow reductions which should be forbid-
den by the explicit permissions on names. We address this
issue with a typing system and a notion of runtime error in
Section3.

This ends our description of the reduction semantics. We
should point out that, independently of the explicit use of lo-
cations, the presence of permissions in types makes the lan-
guage considerably more complicated than theπ-calculus.
Consider the process located atk

k[(ν`) (` :: (νa)(νb)P)]

which can reduce to:

(ν↑k`)(ν̀ a)(ν̀ b) `[P]

This process has a private location` with two private chan-
nelsa andb at`, with their capabilities specified by the allo-
cation typesζ`, ζa andζb respectively. As in theπ-calculus
the threadP may make these private resources known to
other threads via communication. Here, however,P need

not communicate all of̀’s resources at once. For example,
if P contains a component such as

k ::
(
u! 〈`::a〉w! 〈`::b〉nil

)
then the receptor on channelu will gain knowledge only of
a, whereas the receptor onw will gain knowledge only of
b. More importantly, the permissions received with these
names are determined by the channelsu andw, and in gen-
eral (in a well-typed system) the reception types will be more
restrictive than the allocation types. Thus as the system
evolves individual components will gain different views of
the capabilities associated with channels and locations.

2.3 Examples

We now present a series of examples based on a simple
read/write cell. The examples use recursive definitions of the
form A⇐= P, whereP is a basic process. It is well-known
that such recursive definitions can be implemented using the
replication operator∗P (see for example [14]). First consider
the following definition of a “cell”C(v).

C(v)⇐= p?(x)C(x) + g?(y::z)
(
C(v) |y:: z! 〈v〉nil

)
C(v) contains two channels:p for “putting” data into the
cell andg for “getting” data out. To read the value of the
cell, a user must send the name of a continuation channel on
g, along with the location of that channel. For example, a
“user” atk can be defined:

U1⇐= (νi) i?(y)U ′1(y) | ` ::g! 〈k::i〉nil

Then the system̀[C(v)] | k[U1] can reduce, via code move-
ment, to

`[C(v)] | `[g! 〈k::i〉nil] | k[i?(y)U ′1(y)]

then, via local communication at`, to

`[C(v)] | `[k :: i! 〈v〉nil] | k[i?(y)U ′1(y)]

then, via code movement to

`[C(v)] | k[i! 〈v〉nil] | k[i?(y)U ′1(y)]

and finally, via local communication atk, to:

`[C(v)] | k[U ′1(v)]

In this final configuration, the cell has returned to its initial
state and the user has obtained the cell’s current contentsv.
In this example, the asynchronous output of theπ and join
calculi is mimicked by a particularly simple form of code
movement followed by local communication; indeed in fur-
ther examples we will use the abbreviation “k.i! 〈v〉” for the
thread “k :: i! 〈v〉nil.”

As a variation, we now define a “cell server” which gen-
erates “new cells” on request from a client. In the following

6

example, the server creates the cell at a new location and
then informs the client of its whereabouts.

CS2 ⇐= req?(x::y)
(
NC2 |CS2

)
NC2 ⇐= (νm)m:: (νp,g) (Cp,g | x.y! 〈m::(p,g)〉)

whereCp,g is the code for a cell, with some appropriate ini-
tial value.

A user which requests a new cell from the cell server
located at̀ might take the form:

U2⇐= `.req! 〈k::i〉 | i?(x::(y,z))U ′2(x,y,z)

Then the system̀[CS2] |k[U2] can evolve to:

`[CS2] | (ν̀ m)(νmp,g)
(
m[Cp,g] | k[U ′2(m,p,g)]

)
In this configuration, there is a new cell running at location
m, and the user has knowledge of this location together with
its methodsp andg. Note that here the new cell is running
at the server; i.e. the cell locationm is a sublocation of the
server locatioǹ .

An alternative is to define the server so that it generates
the new cell at a sublocation of the client, or more generally
at a location determined by the client.

CS3 ⇐= req?(x::i)
(
NC3 |CS3

)
NC3 ⇐= x :: (νp,g)

(
Cp,g | i! 〈p,g〉

)
Here the server receives a locationx together with a channeli
at that location. It first goes to the received locationx where
it starts a new cell and, in parallel, sends the names of the
cell’s methods on the local channeli.

To use such a server, a user might generate a new sublo-
cation with an associated channeli for receiving informa-
tion; then send these names to the server; and finally start a
process at the new location to receive the names of the cell
methods. Such a user is defined as follows:

U3⇐= (νm)m::
(
(νi) `.req! 〈m(i)〉 | i?(x,y)U ′3(x,y)

)
Now the system̀[CS3] | k[U3] evolves to a configuration in
which a new cell is generated at the client sitek:

`[CS3] | (νkm)(νmp,g)
(
m[Cp,g] | m[U ′3(p,g)]

)
,

We should point out a similar cell generator could also
be defined using the migrate primitive:

CS4 ⇐= req?(x::i)(NC4 |CS4)
NC4 ⇐= (ν̀ m)(νmp,g)m::

(
Cp,g |migx.x.i! 〈m::(p,g)〉

)
On receiving a request first the generator creates a new local
sublocationm and starts a new cell there. This sublocation
then migrates to the client’s location and informs the client
(e.g. U2) of the new method names.

These cell generators are open to various forms of inten-
tional and non-intentional misuse by clients. For example

the sublocations of the new cells may be killed by arbitrary
clients, or the methods might be interfered with: a client
may start new threads at the sublocationm that intercepts
data received on these channels. This undesirable activity
can be constrained by restricting the capabilities passed to
users. For example ifi is defined to communicate values of
type

loc{run}::(chan{snd}ζp,chan{snd}ζg)

then any user of the cell will only be able to use the chan-
nelsp andg to sendvalues. Additional constraints can be
specified in the typesζp andζg.

3 The Typing System

Judgments of the type system for basic processes have the
form

∆ ẁ P:proc

which may be read: “in the type environment∆ the processP
is properly typed to run at locationw.” For located processes,
the scriptw is dropped.

Type environments. In the example judgment above, the
type environment∆ records the type and location of the free
identifiers inP. We represent type environments (∆, Γ) as
partial maps inId ⇀ Type× Id and adopt several related no-
tations. Data stored in a type environment is retrieved us-
ing the projection functions “type∆” and “loc∆” which return
the type and location of an identifier, respectively. After al-
location, the location of an identifier is only significant for
channel types. For channel identifiersu, loc∆(u) returns the
location at whichu was allocated.

Theupdatefunction is written postfix as∆, wu:ζ, which
denotes the environment obtained by adding the identifieru
to ∆ with typeζ at locationw. To be well defined,w must be
a location already defined in∆ andu must be fresh. In fact,
we make a stronger requirement: for locations, “∆, wu:λ” is
defined only if

subl ∈ perm(type∆(w))

and, similarly for channels, “∆, wu:κ” is defined only if

newc ∈ perm(type∆(w))

For example, assuming thatw has thesubl andnewc per-
missions in∆, we have the following:

type∆,wu:κ(u) = κ loc∆,wu:κ(u) = w
type∆,wu:λ(u) = λ loc∆,wu:λ(u) = u

The update function is generalized, structurally, to val-
ues. Thus, we write∆, wU :ζ for the extension of∆ with the
identifiers inU at typeζ and locationw. For example:

∆, w(m,a):(λ,κ) = ∆, wm:λ, wa:κ
∆, w(m::a):(λ::κ) = ∆, wm:λ, ma:κ

7

(V1)
type∆(x)≤ κ

∆ ẁ x:κ
loc∆(x) = w

(V2)
type∆(a)≤ κ

∆ ẁ a:κ
loc∆(a) = w

(V3)
type∆(x)≤ λ

∆ ẁ x:λ ∆ ` x:λ

(V4)
type∆(`)≤ λ

∆ ẁ `:λ ∆ ` `:λ

(V5)
∀i : ∆ ẁ V i :ζi

∆ ẁ Ṽ:ζ̃

(V6)
∆ ẁ u:λ ∆ ù V:κ̃

∆ ẁ (u::V):(λ::κ̃)

(L1)
∆ ` P, Q

∆ ` nil ∆ ` P|Q

(L2)
∆, `a:κ ` P

∆ ` (ν̀ a:κ)P

(L3)
∆, `m:λ ` P

∆ ` (ν̀ m:λ)P

(L4)
∆ ` `:loc{run} ∆ `̀P

∆ ` `[P]

(P1)
∆ ẁ u:ζ, v:ζ

∆ ẁ u = v:bool

(P2)
∆ ẁ u:λ

∆ ẁ ↑u:bool ∆ ẁ �u:bool ∆ ẁ�u:bool

(B8)
∀i : ∆ ẁ ui :chan{rcv}ζi ∆, wXi :ζi ẁ Pi

∆ ẁ ∑i ui?(Xi :ζi)Pi

(B1)
∆ ẁ P, Q

∆ ẁ nil ∆ ẁ ∗P ∆ ẁ P|Q

(B2)
∆, wa:κ ẁ P

∆ ẁ (νa:κ)P

(B3)
∆, wm:λ ẁ P

∆ ẁ (νm:λ)P

(B4)
∆ ẁ u:loc{run} ∆ ù P

∆ ẁ u ::P

(B5)
∆ ẁ w:loc{mig}, u:loc{subl}, P

∆ ẁ migu.P

(B6)
∆ ẁ w:loc{halt}

∆ ẁ halt

(B7)
∆ ẁ ϕ:bool, P, Q

∆ ẁ if ϕ then P else Q

(B9)
∆ ẁ u:chan{snd}ζ, V:ζ, Q

∆ ẁ u! 〈V〉Q

Table 5: Typing relation for values (V), located processes (L), predicates (P), and basic processes (B)

chanγ ′ζ′ ≤ chanγζ if γ ′ ⊇ γ and if rcv ∈ γ thenζ′ ≤ ζ
if snd ∈ γ thenζ ≤ ζ′

locγ ′ ≤ locγ if γ ′ ⊇ γ
λ′::ζ′ ≤ λ::ζ if λ′ ≤ λ andζ′ ≤ ζ

(ξ1...ξn) ≤ (ζ1...ζn) if ξi ≤ ζi , 1≤ i ≤ n

Table 4: The subtyping relation

Subtyping. The typing system is built up using thesubtype
relationdefined inSection4, which adapts the subtyping re-
lation of [16] to our type system. Intuitivelyξ≤ ζ indicates
thatξ is less restrictivethanζ, in the sense that whenever a
context is well formed under the assumption thatr has type
ζ, then it is also well formed assuming thatr has the more
general typeξ. Said another way, every value of typeξ is
also a value of typeζ.

For example, if a context is well formed assuming that`
has the permissionrun, then clearly it is also well formed
under the assumption that` has the permissionsrun and
mig. Thereforeloc{run,mig} is consideredmore permissive
thanloc{run}; that is:

loc{run,mig} ≤ loc{run}

Note that more permissive types arelower in the ordering.

In the case of channel typeschanγζ, the parameterζ con-
stitutes a contract between sender and receiver. A receiver
may use the received value withat most the capabilities
specified byζ. More permissive types allow the receiver to
assume that the data has more capabilities. For example:

chan{rcv}(loc{run,mig}) ≤ chan{rcv}(loc{run})

On the other hand, a sender is obliged to send values that
haveat leastthe capabilities specified byζ. More permissive
types allow the sender to send data with fewer capabilities.
Thus:

chan{snd}(loc{run}) ≤ chan{snd}(loc{run,mig})

In short, input (rcv) is covariant and output (snd) is con-
travariant. For further discussion, see [16].

Typing. The judgments of the typing system are given in
Section5, where we abbreviate the statement “∆ ẁ P:proc”
to “∆ ẁ P” and “∆ ` P:proc” to “ ∆ ` P”. In the table two
auxiliary typing judgments are also given: for values and
predicates. The typing system is defined on explicitlytagged
terms, although it ignores tags entirely. Tags are included so
that runtime error and type safety can be defined below.

Many of the rules are adapted from those of [16], al-
though the style of presentation is somewhat different. We
make heavy use of judgments concerning identifiers. The

8

judgment∆ ẁ u:κ should be read “in∆, u is a channel iden-
tifier at locationw with at leastthe permissions declared in
κ.” Similarly, both∆ ẁ u:λ and∆ ` u:λ should be read “in
∆, u is a location identifier with at least the permissions de-
clared inλ.”

As an example of the use of the type rules, consider the
judgment∆ ẁ u?(X:ζ)P. To infer thatu?(X:ζ)P is well-
typed to run atw it must be that:

• the identifieru is a channel atw which has at least the
permissionrcv and a transmission type at least as per-
missive asζ; and
• the continuationP is typable given the additional as-

sumption that the values to be input have the typeζ.

So in order to infer thata?(x:κ)P is well-typed atw, it must
be thatP is typable using the extra assumption thatx is a
channel (of typeκ) located atw. Similarly, to infer that
a?((z::x):(λ::κ))P is well-typed, it must be thatP is typable
under the extra assumptions thatz is a location (of typeλ)
andx a channel (of typeκ) located atz.

It is worth pointing out a difference between rules(B4)

and (B5) for thread movement and migration, respectively.
To typemigu.P at w it must be thatP is well-typed at the
samelocation,w. On the other hand, to typeu :: P at w it
must be thatP is well-typed to at thenewlocationu.

There is also a subtlety concerning the matching of chan-
nel names. In well-typed terms channels can only be com-
pared at their home location. Let us write[a = b]P as an
abbreviation for the matching termif a = b then P else nil.
This term can only be typed in an environment in which
loc∆(a) = loc∆(b). This means that

a?(x::y) b?
(
x′::y′

)
[y = y′]P

cannot be typed. However the following term is typable,
assuming thatP can also be typed in the appropriate envi-
ronment:

a?
(
x::(y,y′)

)
x :: [y = y′]P

The typing system satisfies a number of standard prop-
erties which are collected below. First we lift the subtyping
relation to type environments. We say thatΓ is refined by∆
(Γ≤ ∆) if for everyu in dom(∆):

typeΓ(u)≤ type∆(u) and locΓ(u) = loc∆(u)

Lemma 3.1 (Weakening, narrowing).
(a) If ∆ ` P then∆, wu:ζ ` P.
(b) If ∆, wu:ζ ` P andξ≤ ζ then∆, wu:ξ ` P.
(c) If ∆ ` P andΓ≤ ∆ thenΓ ` P.

Proof. (c) is immediate from (a) and (b). (a) and (b) follow
by induction on the type relation, relying on similar results
for basic processes. �

(e-run) `[P] err−−→ if run /∈ perm(`)
(e-rcv) (νkai) `[∑i ai?(Xi)Pi] err−−→

if k 6= ` or rcv /∈ perm(a)
(e-snd) (νka) `[a! 〈V〉Q] err−−→ if k 6= ` or snd /∈ perm(a)

(e-comm) `[∑i ai?(Xi :ζi)Pi] | `[b! 〈V〉Q] err−−→
if ∃i : ai = b: refine(V, ζi) undefined

(e-cond1) (νka) `[if a = b then P else Q] err−−→ if k 6= `

(e-cond2) (νkb) `[if a = b then P else Q] err−−→ if k 6= `

(e-goto) `[k :: P] err−−→ if run /∈ perm(k)
(e-mig) `[migk.P] err−−→ if mig /∈ perm(`)

or subl /∈ perm(k)
(e-halt) `[halt] err−−→ if halt /∈ perm(`)
(e-loc) `[(νm)P] err−−→ if subl /∈ perm(`)

(e-chan) `[(νa)P] err−−→ if newc /∈ perm(`)

(e-str)
P err−−→

(νr)P err−−→ P|R err−−→

P≡Q Q err−−→

P err−−→

Table 6: The error predicate

Theorem 3.2 (Subject Reduction).
(a) If P≡ P′ then∆ ` P if and only if∆ ` P′.
(b) If L.P−→ L′ .P′ then∆ ` P implies∆ ` P′.

Proof. By induction on the definitions of structural equiva-
lence and reduction, respectively. The only non-trivial case
is the reduction rule for communication. �

Runtime errors. We now turn our attention to explaining
in what way our typing system excludes the possibility of
runtime error. Informally, a process produces a runtime error
if:

• it attempts to send a value on a channel that violates
the channel’s type, or
• it attempts to perform an action without having the nec-

essary permissions.

In Section6, we formalize this intuition by defining an er-
ror predicate on terms (which we write postfix asP err−−→):
if P err−−→ thenP may immediately produce a runtime error.
The definition is long but straightforward. For example the
process̀ [k :: p] produces a runtime error if the term lacks
permission either to run at̀(run /∈ perm(`)) or to run atk
(run /∈ perm(k)).

The most complicated case is for a potential communica-
tion:

R= `[a?(X:ζ)P] | `[a! 〈V〉Q]

Note that here, according to our conventions, name(r) =
name(r) = r, so both the abstraction and the concretion must
be at the same location and channel in order for communi-
cation (or error) to occur. This termR produces a runtime
error under any of the following conditions:

9

• a lacksrcv permission,
• a lacks thesnd permission,
• either` or ` lacks therun permission, or
• the valueV is incompatible with the received typeζ,

i.e. refine(V, ζ) is undefined.

R will also produce an error if it is placed within a context
that allocatesa at a locationk different from`.

Type safety. In general it is not reasonable to expect
that well-typed terms are free of runtime errors for the sim-
ple reason that, by design, the typing systemignores tags,
which, instead, are the basis for the definition of runtime er-
ror. For example, ifhalt is not in the permissions of̀, then
`[halt] will generate a runtime error, even though the term
can be typed by any∆ that provides̀ with run andhalt
permissions. The problem is that the permissions decorat-
ing ` need not beconsistentwith the type environment. The
problem is resolved by adding side conditions to the rules
for names inSection5. These rules become:

(V2)
type∆(a)≤ κ

∆ ẁ a:κ
loc∆(a) = w
perm(a)⊇ perm(κ)

(V4)
type∆(`)≤ λ

∆ ẁ `:λ ∆ ` `:λ
perm(`)⊇ perm(λ)

We write ∆ P to indicate that∆ ` P can be derived in
this slightly more exacting typing system, where the tags on
identifiers are examined to ensure that they are consistent
with their intended use, as indicated by their derived types.
We have the following:

Theorem 3.3 (Type Safety).
(a) If L.P−→ L′ .P′ then∆ P implies∆ P′.
(b) ∆ P implies¬(P err−−→).

Proof. The proof of (a) is readily adapted from the proof of
Theorem3.2. (b) is proved contrapositively, by induction on
the definition of errors, relying on the fact that “untypability”
is preserved by≡, composition and restriction. �

In light of the Type Safety Theorem, we are justified in
dropping tags from well-typed terms; in particular the reduc-
tion relation, given inSection2, can safely be interpreted
on untagged processes. If∆ ` P is a closed term, we can
generate an error-free tagged term simply by decorating ev-
ery occurrence of a namer in P with the permissions found
in type∆(r) (of course,∆ must be augmented when passing
through a restriction). Note, however, that this translation is
not preserved by reduction: the permissions associated with
an instance of a name arerefinedwhen the name is commu-
nicated.

4 The Semantic Theory

In this section we show how a semantic theory can be de-
veloped for Dπ, using the ideas ofbarbed congruencefrom

L.`[∑i ai?(Xi)Q]↓ai? if L ` ↑`
L.`[a! 〈V〉P]↓a! if L ` ↑`

L. (ν̀ a)P↓β if L.P↓β anda /∈ n(β)
L. (ν̀ m)P↓β if L.P↓β

L.P|Q↓β if L.P↓β

L.P↓β if P≡Q andL.Q↓β

Table 7: The commitment predicates

[20]. The basic approach is to say that two processesP and
Q are semantically equivalent if in everyappropriatecontext
C, C[P]

.
≈C[Q], where

.
≈ is a simple behavioral equivalence

based on some notion ofobservation. For this simple equiv-
alence

.
≈ we adapt the definition ofbarbed bisimulation; we

are then left with the question of what are appropriate con-
texts in this typed language.

We first adapt the definition of barbed bisimulation [20]
to Dπ. At this point we ignore entirely the tags on names,
instead working with closed, well-typed terms. Throughout
this section, let∆ andΓ range overclosedtype environments
(i.e. environments whose domain contains no variables). For
convenience, we extend our type system to process configu-
rations using the rule

∆ ` P locs(L)⊆ locs(∆)

∆ ` L.P

and define:

PConfig
def= {M | ∃∆ : ∆ `M}

PConfig(∆) def= {M | ∆ `M}

The (strong) commitment predicates, defined over con-
figurations inSection7, determine the ability of a located
process to immediately communicate on a specific chan-
nel. We useβ to range over the set ofcommitments,
{a!,a? | a∈ Chan}. The commitmenta? indicates that a
process is willing to accept data on channela, whereas the
commitmenta! indicates that it is willing to offer data on
channela. The strong commitment predicates are gener-
alized toweakpredicates in the standard manner: let=⇒
denote the reflexive transitive closure of−→, and letM⇓β if
M =⇒M′ andM′ ↓β.

Definition 4.1 (Barbed bisimilarity). For each ∆, let
.
≈∆ be the largest symmetric relation overPConfig(∆)×
PConfig(∆) such that wheneverM

.
≈∆ N:

(a) ∀β : M⇓β impliesN⇓β, and
(b) ∀M′ : M −→M′ implies∃N′ : N =⇒N′ andM′

.
≈∆ N′.

We say that configurationsM andN arebarbed bisimilar at
∆ if M

.
≈∆ N. �

We now define the related contextual congruence. Intu-
itively we wish to say thatM is equivalent toN at ∆ if M

10

andN are inPConfig(∆) and for everyappropriatecontext
C, C[M]

.
≈∆ C[N]. These contexts are intended to provide

testingscenarios for the termsM and N [10]; therefore it
is sufficient to restrict our attention to contexts in which a
located processR (the experimenter, or observer) is run in
parallel with M and N. Thus,barbed equivalenceat ∆, (
≈∆) is derived from barbed bisimilarity by quantifying over
a restricted set of contexts:

Definition 4.2 (Barbed equivalence).(L.P) ≈∆ (K.Q)
if ∀R: ∆ ` R: (L.P|R)

.
≈∆ (K.Q |R) �

Note that while thefree namesin R are constrained by∆,
this property is not preserved by reduction:Rmay export an
arbitrary number of private names intoP andQ, effectively
making these names free in the continuations ofR.

Barbed equivalence provides a primitive proof technique
for reasoning about processes. Indeed, substantial theorems
can be established this way [16, 1]. Proofs using the def-
inition of barbed congruence directly, however, are hard
work due to the quantification over all possible observers.
It is useful, therefore, to find alternative characterizations
of the equivalence which do not involve universal quantifi-
cation over observers. Such alternative characterizations,
in the form of (labelled) bisimulation relations, have been
given, for example, for the synchronous and asynchronous
π-calculi [20, 4] and for distributedCCS [18]. In the full
paper, we present such an alternative characterization of
barbed equivalence for Dπ, for image-finite processes.
Space does not permit us to present the full definition here,
rather we discuss some of the issues involved in developing
the labelled transition system(LTS) which is the basis of the
alternative characterization.

In constructing a labelled transition relation for the or-
dinaryπ-calculus [15, 20, 4], one must be careful to distin-
guish the communication of afree name(which a testing
context may already know about) from the communication
of a bound name(which is guaranteed to be fresh for any
testing context). In theπ-calculus only thepossessionof a
name is important: either a tester has a name or it doesn’t
(i.e. either the name is free or it’s not).

In Dπ the story is more complex. A testing context may
have a channel, for example, without having the permission
to communicate on it; or it may have a location, without
having permission to kill it. To see the effect that this will
have on the labelled transition relation, consider the process

P = `[(νa)(νm) c! 〈a,m〉(Q |a?(z)nil)]

wherec has the typeκc = chan{rcv,snd}(κa,λm) and κa =
chan{rcv,snd}(λa). Using the ordinary sorting rules of theπ-
calculus, a process that receives the value(a,m) is immedi-
ately able to send the valuemon channela. Thus in theLTS,
one expects the transitions:

P (ν̀ a)(ν̀ m)c!(a,m)−−−−−−−−−−→ `[Q] | `[a?(z)nil] a?(m)−−−→ `[Q]

In Dπ, the permission capabilitiesλm andλa (given in the
typesκc andκa, above) are crucial in determining whether
there is any context that can observe this series of actions.
λa specifies the capabilities required for values that are sent
on a, andλm specifies the capabilities that the context may
assume to be present in the received locationm. Thus, the
edge labelled “a?(m)” is possible only if the received capa-
bilities satisfy the requirements ona, i.e. λm≤ λa. There-
fore the transitions of theLTS must be parameterized by a
type constraint, expressing the knowledge of the context or
environment.

Continuing to discuss this example, note that while the
context’s ability to use the received valuea is constrained by
the type of the channel on which the value was received, this
is not true for the threadQ. The use of the namesa andm in
Q is constrained only by the allocation type of these names
(via the restriction operator). The allocation type is in gen-
eral more permissive than the received type. In particular,Q
may be able to sendm on a, even though no valid context is
able to do this.

A second complication arises due to the fact that the
name of a location may be communicated while the name
of the location’s parent remains hidden, or private. For ex-
ample, we will have (for appropriate∆):

L. (ν̀ k) (νkm)`[a! 〈m〉a! 〈k〉P] ∆7−→ a!m

(νk)(L, `k, km . `[a! 〈k〉P])

Note that in the residual, the restriction onm is lifted, while
that on its parentk is maintained. In additionL must be
updated to record the ancestry ofm, which of course includes
k, and thus the restriction onk is forced to sit outside the
configuration, encompassingL.

In such a restricted configuration, the restriction operator
limits the power of an outside observer to establish the struc-
ture of the location tree. Suppose in the above example that
m is alive and is communicated with therun capability. In
this case an observer can establish thatm is an descendant
of ` (using the predicate�` at m) but cannot establishm’s
parentage;i.e. for no k will the predicate�k be true atm.
From the standpoint of the receiver, the locationm is anor-
phan. In the example, the subsequent communication ofk
helps to clarify the ancestry ofm:

(νk)(L, `k, km . `[a! 〈k〉P]) ∆7−→ a!kL, `k, km . `[P]

The reverse situation occurs when a process receives
a location from the environment without knowledge of its
parentage. Rather than arestricted configuration, the result
is a configuration with apartial location tree, i.e. a local
tree in which some nodes are “missing”. TheLTS is defined
over these restricted, partial configurations.

The transitions of theLTS are labelled with actionsµ, de-
fined as follows:

µ :: = τ a!V:ζ (νr̃)a?V

↓` ↓L `�k ` k L k

11

Here, the labelτ represents anautonomousaction,i.e. an ac-
tion that does not require the cooperation of the surrounding
context. These include internal communication, goto, mi-
gration, halt and conditional testing. Note that some of these
actions are not “internal” in the traditional sense. In the full
paper, we prove thatτ−→ and the reduction relation coincide.
The other actions all require participation by the surrounding
context. Four of these forms of actions are straightforward,
being simple generalizations of those used in [18]:

a!V:ζ the context receivesV with permissionsζ.
(νr̃)a?V the context sendsV, revealing private names̃r.

↓` the context kills locatioǹ.
`�k the context moves̀ to k.

The other three forms of actions involve the manipulation of
private locations maintained by the context but hidden from
the process. In the first of these, the context moves location
` to be a child of a private location.

` k the context moves̀ to a private descendant ofk.

In the last two forms of action, the context manipulates lo-
cations which are already sublocated at a private location.
In the following explanations, suppose thatL is a set of or-
phans and thatm is a hidden ancestor of (all locations in)
L, and thatm is a descendant of all known ancestors of (all
locations in)L.

↓L the context killsm, a private ancestor ofL.
L k the context movesm, a private ancestor ofL, to k

or to a private descendant ofk.

Having defined theLTS, we face one remaining compli-
cation before arriving at a suitable notion of bisimulation.
In the ordinaryπ-calculus, when a context receives a name
repeatedly it is only the first reception that “matters”; after
the first reception the name is known, and it remains known
henceforth. In Dπ, again, the situation is more subtle. Con-
sider the process:

P = (νma)(νmb) `[c! 〈m::a〉c! 〈m::b〉]

After a context receives both communications onc, it
“knows” of both channelsa andb at m. We might expect
that it could, therefore, send the pair(a,b); however, no
well typed context is capable of sending this value. The
two copies ofm are received into separate variables with
separate typings.

It is worthwhile pointing out that communication oflocal
names is somewhat more powerful than the communication
of remotenames. For example, consider:

Q = (νma)(νmb) `[m::c! 〈a〉c! 〈b〉]

After receiving botha andb from Q, a context can indeed
send the pair(a,b), as evidenced by the process:

k[m:: c?(x)c?(y)d! 〈x,y〉]

A similar problem arises with permissions: receiving two
copies of a name, one withsnd permission and another with
rcv permission, does not grant the same capabilities as re-
ceiving a single copy of the name with bothsnd and rcv
permissions. This characteristic is shared by both remote
and local communication, as exemplified byP andQ, above.

Our solution to the problem is to define bisimulation with
respect to a more general notion of type environment which
allows us to distinguish permissions associated with each in-
stance of a name. A similar approach has been developed
independently by Boreale and Sangiorgi in order to define
bisimulations for theπ-calculus without matching [6].

5 Conclusions

We have presented a novel foundational language, Dπ,
for the study of typed distributed systems. The language
includes constructs for process migration and failure. In
the operational semantics, explicit tags are used to indicate
the permissions associated with each instance of a name;
when passing values, processes communicate tags as well
as names, possibly reducing the permissions available on
a name before sending it. We then defined a type system
for Dπ which ensures that for well-typed terms, tags can
be ignored without the risk of names being used in ways
that violated their permissions. Finally we defined barbed
congruence under constraint∆ and outlined the design a
labeled transition system which captures this relation.

Related work. There are two strains of related work; the
first concerns the language itself, the second, the type sys-
tem. Our model of location hierarchy, migration and fail-
ure is similar to model used in the distributed join calculus
(DJoin) of Fournet, Gonthier and their co-workers [12]. Dπ
is a larger language, however; in addition to permissions,
Dπ includes synchronous communication, the goto operator,
for code movement, and position testing; all of these require
nontrivial encodings in DJoin. In addition, message routing
is not “automatic” as it is in DJoin. To send a message to a
remote location in Dπ, a process must first spawn a thread
which goes to that location. These features make locations
more “visible” in Dπ than they are in DJoin.

The goto operation is based on the “spawn” operation
found in Facile [13] and related calculi [2, 3]; this operator
is objective [8] and operates only oninactive code, mak-
ing it very inexpensive to implement. By contrast, the sub-
jective “migration” operator of DJoin operates on running
code, making it more flexible and costlier to implement. By
including both types of code movement in Dπ, we bring the
semantics of these operations up to the “top level” of the
calculus, rather than relying on complex encodings whose
semantic implications are difficult to ascertain.

Process movement is also the central concern of Cardelli
and Gordon’s ambient calculus [8], although in their work
locations (orambients) are used to model a hierarchy of ad-
ministrative domains, rather than, as in Dπ, a hierarchy of

12

physical distribution as determined by failure dependencies.
Dπ arose from an attempt to understand the use of per-

missions in distributed systems and in this sense, it is related
to work on the spi-calculus [1] of Abadi and Gordon. There,
however, the permissions are used to control the ability to
interpret data that has been received.

The type system most closely related to ours is that of
Pierce and Sangiorgi [16]. Besides the fact that we treat a
distributed language, with an extended collection of types,
we have made two main contributions, building on [16].
First we presented our language in such a way that the com-
munication of permissions is explicit; we believe that this
gives our Type Safety Theorem more operational intuition
than that of [16]. Second, we have outlined an alternative
characterization of barbed congruence, relativised to a typ-
ing constraint, as a bisimulation relation. We have been care-
ful to construct the language so that a context can determine
the structure of entire location tree and can test every name
for equality. Without these properties our alternative charac-
terization would fail.

Other type systems for controlling the use of names in
distributed systems have been presented by Amadio [3] and
Sewell [22]. Amadio’s type system seeks to guarantee that
names are defined at only one location; his type system also
guarantees that at every moment there is exactly one abstrac-
tion placed at each channel. Sewell studies a language sim-
ilar to Dπ, but closer in spirit to the join calculus. He gen-
eralizes the type system of Pierce and Sangiorgi by distin-
guishing local from non-local communication, with the goal
of allowing compiler optimizations.

Recently, Boreale and Sangiorgi [6] have presented an al-
ternative characterization of the equivalence studied in [16]
for a calculus without matching. Using their technique, one
should be able to extend our results to a distributed language
with the ability to match names explicitly predicated upon a
permission.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Technical Report 414, University of Cambridge
Computer Laboratory, January 1997.

[2] R. Amadio and S. Prasad. Localities and failures. InProc. 14th Foun-
dations of Software Technology and Theoretical Computer Science,
volume 880 ofLecture Notes in Computer Science. Springer-Verlag,
1994.

[3] Roberto Amadio. An asynchronous model of locality, failure, and
process mobility. InCOORDINATION ’97, volume 1282 ofLecture
Notes in Computer Science. Springer-Verlag, 1997.

[4] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimu-
lations for the asynchronousπ-calculus. In U. Montanari and V. Sas-
sone, editors,CONCUR: Proceedings of the International Conference
on Concurrency Theory, volume 1119 ofLecture Notes in Computer
Science, pages 147–162, Pisa, August 1996. Springer-Verlag.

[5] Gérard Berry and Ǵerard Boudol. The chemical abstract machine. In
Conference Record of the ACM Symposium on Principles of Program-
ming Languages, pages 81–94, San Francisco, January 1990. ACM
Press.

[6] Michele Boreale and Davide Sangiorgi. Typed bisimulation for the
pi-calculus. Talk at EXPRESS97, September 1997.

[7] G. Boudol. Asynchrony and theπ-calculus. Research Report 1702,
INRIA, Sophia-Antipolis, 1992.

[8] L. Cardelli and A. D. Gordon. Mobile ambients, 1997. Draft, Avail-
able fromhttp://www.cl.cam.ac.uk/users/adg/.

[9] Luca Cardelli. A language with distributed scope.Computing Sys-
tems, 8(1):27–59, January 1995. A preliminary version appeared in
Proceedings of the 22nd ACM Symposium on Principles of Program-
ming.

[10] R. De Nicola and M. C. B. Hennessy. Testing equivalences for pro-
cesses.Theoretical Computer Science, 34:83–133, 1984.

[11] C. Fournet and G. Gonthier. The refliexive CHAM and the join-
calculus. InConference Record of the ACM Symposium on Principles
of Programming Languages, Paris, January 1996. ACM Press.

[12] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
calculus of mobile agents. In U. Montanari and V. Sassone, editors,
CONCUR: Proceedings of the International Conference on Concur-
rency Theory, volume 1119 ofLecture Notes in Computer Science,
pages 406–421, Pisa, August 1996. Springer-Verlag.

[13] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of
concurrent and functional programming.International Journal of Par-
allel Programming, 18(2):121–160, 1989.

[14] Robin Milner. The polyadicπ-calculus: a tutorial. Technical Re-
port ECS-LFCS-91-180, Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh,
UK, October 1991. Also inLogic and Algebra of Specification, ed. F.
L. Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[15] Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, Parts I and II.Information and Computation, 100:1–
77, September 1992.

[16] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes.Mathematical Structures in Computer Science,
6(5):409–454, 1996. Extended abstract in LICS ’93.

[17] Benjamin C. Pierce and David N. Turner. Pict: A programming lan-
guage based on the pi-calculus. Technical Report CSCI 476, Com-
puter Science Department, Indiana University, 1997. To appear in
Proof, Language and Interaction: Essays in Honour of Robin Milner,
Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, MIT Press.

[18] James Riely and Matthew Hennessy. Distributed processes and lo-
cation failures. Computer Science Technical Report 2/97, University
of Sussex, Department of Computer Science, 1997. Available from
http://www.cogs.susx.ac.uk/.

[19] James Riely and Matthew Hennessy. A typed language for distributed
mobile processes. Computer Science Technical Report 4/97, Univer-
sity of Sussex, Department of Computer Science, 1997. Available
from http://www.cogs.susx.ac.uk/.

[20] Davide Sangiorgi.Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, University of Edin-
burgh, 1992.

[21] Davide Sangiorgi. Localities and true-concurrency in calculi for mo-
bile processes.Theoretical Computer Science, 155, 1996.

[22] Peter Sewell. Global/local subtyping for a distributedπ-calculus.
Technical Report 435, Computer Laboratory, University of Cam-
bridge, August 1997.

[23] Gert Smolka. The oz programming model. In Jan van Leeuwen, edi-
tor, Computer Science Today, volume 1000 ofLecture Notes in Com-
puter Science, pages 324–343. Springer-Verlag, 1995.

[24] David Turner.The Polymorphic Pi-Calculus: Theory and Implemen-
tation. PhD thesis, Edinburgh University, 1995.

13

	Introduction
	Language
	Syntax
	Reduction semantics
	Examples

	The Typing System
	The Semantic Theory
	The Semantic Theory

