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1. INTRODUCTION

The problem of protecting information and resources in systems with multiple
sensitivity or security levels [Bell and LaPadula 1975] has been studied exten-
sively. Flow analysis techniques have been used in Bodei et al. [1998, 1999]
axiomatic logic in Reitmas and Andrews [1980] while in Smith and Volpano
[1998] and Heintz and Riecke [1998] type systems have been developed for a
number of prototypical programming languages. In this article, we explore the
extent to which typing systems for ensuring various forms of security can also
be developed for the asynchronous π -calculus [Boudol 1992; Honda and Tokoro
1992]. Specifically, we show that the standard typing system for the picalculus
can be extended in a simple manner so as to address these issues. By varying
the types used two quite separate security issues can be addressed: resource
access control and information control. The former is described in terms of run-
time errors; the latter in terms of noninterference [Smith and Volpano 1998;
Focardi and Gorrieri 1997b].

The (asynchronous) π -calculus is a very expressive language for describing
distributed systems [Boudol 1992; Pierce and Turner 2000; Fournet et al. 1996]
in which processes intercommunicate using channels. Thus, n?(x)P is a process
which receives some value on the channel named n, binds it to the variable x
and executes the code P . Corresponding to this input command is the asyn-
chronous output command n!〈v〉 which outputs the value v on n. The set of
values which may be transmitted on channels includes channel names them-
selves; this, together with the ability to dynamically create new channel names,
gives the language its descriptive power.

Within the setting of the π -calculus, we wish to investigate the use of types
to enforce security policies. To facilitate the discussion we extend the syntax
with a new construct to represent a process running at a given security clear-
ance, σ [[P ]]. Here σ is some security level taken from a complete lattice of
security levels SL and P is the code of the process. Further, we associate with
each channel, the resources in our language, a set of input/output capabilities
[Pierce and Sangiorgi 1996; Hennessy and Riely 2002], each decorated with a
specific security level. Intuitively, if channel n has a read capability at level
σ , then only processes running at security level σ or higher may be read from
n. This leads to the notion of a security policy 6, which associates a set of ca-
pabilities with each channel in the system. The question then is to design a
typing system which ensures that processes do not violate the given security
policy.

Of course, this depends on when we consider such a violation to take place.
For example, if 6 assigns the channel or resource n the highest security level
top, then it is reasonable to say that a violation will eventually occur in

c!〈n〉 | bot [[c?(x) x?( y) P ]]
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as after the communication on c, a low level process, bot [[n?( y) P ]] has gained
access to the high-level resource n. Underlying this example is the principle that
processes at a given security level σ should have access to resources at security
level at most σ . We formalize this principle in terms of a relation P

67−→ err,
indicating that P violates the security policy 6.

To prevent such errors, we restrict attention to security policies that are
somehow consistent. Let 0 be such a consistent policy; consistency is defined
by restricting types so that they respect a subtyping relation. We then introduce
a typing system, 0 ` P , which ensures that P can never violate 0:

If 0 ` P , then for every context C [ ] such that 0 ` C [P ] and every
Q that occurs during the execution of C [P ], that is, C [P ] 7→∗ Q , we
have Q

07−→/ err.

Thus, our typing system ensures that low-level processes will never gain ac-
cess to high-level resources. The typing system implements a particular view
of security, which we refer to as the R-security policy, as it offers protection
to resources. Here communication is allowed between high-level and low-level
principals, provided, of course, that the values involved are at the appropriate
security level.

This policy does not rule out the possibility of information leaking indirectly
from high-security to low-security principals. Suppose h is a high channel and
hl is a channel with high-level write access and low-level read access in:

top[[h?(x) if x = 0 then hl!〈0〉 else hl!〈1〉]] | bot[[hl?(z) Q]].

This system can be well typed although there is some implicit information flow
from the high-security agent to the low-security one; the value received on the
high-level channel h can be determined by the low-level process Q .

It is difficult to formalize exactly what is meant by implicit information
flow and in the literature various authors have instead relied on noninterfer-
ence [Goguen and Meseguer 1992; Roscoe et al. 1994; Focardi and Gorrieri
1997b; Ryan and Schneider 1997], a concept more amenable to formaliza-
tion, which ensures, at least informally, the absence of implicit information
flow.

To obtain such results for the π -calculus, we need, as the above example
shows, a stricter security policy, which we refer to as the I-security policy. This
allows a high-level principal to read from low-level resources but not to write to
them. Using the terminology of Bell and LaPadula [1975] and Denning [1977]:

—write up: A process at level σ may only write to channels at level σ or above
—read down: A process at level σ may only read from channels at level σ or

below.

In fact, the type-checking system remains the same and we only need constrain
the notion of type. In this restricted type system well typing, 0° P , ensures a
form of noninterference.

To formalize this noninterference result, we need to develop a notion of pro-
cess behaviour, relative to a given security level. Since the behavior of processes
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also depends on the type environment in which they operate, we need to define
a relation

P ≈σ0 Q

that intuitively states that, relative to 0, there is no observable distinction
between the behavior of P and Q at security level σ ; processes running at
security level σ can observe no difference in the behavior of P and Q . Lack of
information flow from high- to low-security levels now means that this relation
is invariant under changes in high-level values; or indeed under changes in
high-level behavior.

It turns out that the extent to which this is true depends on the exact for-
mulation of the behavioral equivalence ≈σ0. We show that it is not true if ≈σ0 is
based on observational equivalence [Milner 1993] or must testing equivalence
[De Nicola and Hennessy 1984]. But a result can be established if we restrict
our attention to may testing equivalence (here written 'σ0). Specifically, we will
show that, for certain H, K :

If 0°σ P, Q and 0°top H, K , then P 'σ0 Q implies P | H 'σ0 Q | K .

High-level behavior can be arbitrarily changed without affecting low-level
equivalences. This is the main result of the article.

The remainder of the article is organized as follows: In the next section, we
define the security π -calculus, giving a labeled transition semantics and a for-
mal definition of runtime errors. In Section 3, we design a set of types and a
typing system that implements the resource control policy. The types are an ex-
tension of the IO-types for the π -calculus from Pierce and Sangiorgi [1996] and
Hennessy and Riely [2002] in which security levels are associated with specific
capabilities. This section also contains Subject Reduction and Type Safety the-
orems. In Section 4, we motivate the restrictions required on types and terms
in order to implement the information control policy. We also give a precise
statement of our noninterference result, and give counter-examples to related
conjectures based on equivalences other than may testing. The proof of our
main theorem depends on an analysis of may testing in terms of asynchronous
sequences of actions [Castellani and Hennessy 1998], which, in turn, depends
on detailed operational semantics for our language, where actions are param-
terized relative to a typing environment. This is the topic of Section 5, which
also contains the proof of our main theorem.

2. THE LANGUAGE

The syntax of the security π -calculus, given in Figure 1, uses a predefined
set of names, ranged over by a, b, . . . , n and a set of variables, ranged over by
x, y , z. Identifiers are either variables or names. Security annotations, ranged
over by small Greek letters σ, ρ , . . . , are taken from a complete lattice 〈SL,¹,
u, t, top, bot〉 of security levels. We also assume for each σ a set of base values
BVσ , ranged over by bv. We require that all syntactic sets be disjoint.

The input construct “u?(X : A) P” binds all variables in the pattern X while
the construct “(new a : A) P” binds the name a. We have the usual notions of free
and bound names and variables, α-equivalence and substitution. We identify
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Fig. 1. Syntax.

terms up to α-equivalence. Let fn(P ) and fv(P ) denote the set of free names
and variables, respectively, of the term P . We use “P{|v/X |}” to denote the
substitution of the identifiers occurring in the value v for the variables occurring
in the pattern X . For “P{|v/X |}” to be well-defined, X and v must have the same
structure; to avoid unnecessary complications, we assume that a variable can
occur at most once in a pattern. The binding constructs have types associated
with them; these will be explained in Section 3, but are ignored for the moment.
In general, these types (and the various security annotations) will be omitted
from terms unless they are relevant to the discussion at hand.

The behavior of a process is determined by the interactions in which it can
engage. To define these, we give a labeled transition semantics (LTS) for the
language. The set Act of labels, or actions, is defined as follows:

µ ::= Actions
τ Internal action
(c̃ : C̃)a?v Input of v on a learning private names c̃
(c̃ : C̃)a!v Output of v on a revealing private names c̃.

In both the input and output actions, we require that c̃ be in fn(v). Let VAct =
Act\{τ } be the set of the visible actions, either input or output, ranged over by
α, β. Whenever these are used, we assume that the bound names c̃ occur in the
value v. Formally, the bound names of an action are defined by bn(τ ) = ∅ and
bn((c̃ : C̃)a!v) = bn((c̃ : C̃)a?v) = {c̃}. We also use E(α) to denote the bound names
in α, together with their types: E((c̃ : C̃)a!v) = E((c̃ : C̃)a?v) = (c̃ : C̃). Further, let
n(µ) be the set of names occurring in µ, whether free or bound. We say that the
actions “(c̃ : C̃)a?v” and “(c̃ : C̃)a!v” are complementary. Given a visible action α,
we write ᾱ to indicate the action complementary to α; note that bn(α) = bn(ᾱ)
and E(α) = E(ᾱ).

The LTS is defined in Figure 2 and, for the most part, the rules are straight-
forward; it is based on the standard operational semantics from Milner et al.
[1993] to which the reader is referred for more motivation. Note that in the in-
put rule (L-IN) we are assuming the action (c̃ : C̃)a?v is well-defined; in principle,
the process a?(X )P can input any value v, but, for the action to be valid, the
bound names c̃ must appear in v and moreover must be new to the process.

Informally a security policy associates with each channel a security level.
Our approach, slightly more general, is to incorporate this information into the

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.



Information Flow vs. Resource Access • 571

Fig. 2. Labelled transition semantics.

standard notion of channel types for the π -calculus [Pierce and Sangiorgi 1996;
Hennessy and Riely 2002], designed to rule out run-time mistypings, such as
sending a triple on a channel designed for pairs. In particular, we associate
security levels with capabilities on channels, rather than channels themselves,
although indirectly we are able to associate security levels with channels. To
this end, precapabilities and pretypes are defined as follows:

cap ::= Precapability
wσ 〈A〉 σ -level process can write values with type A
rσ 〈A〉 σ -level process can read values with type A

A ::= Pretype
Bσ Base type
{cap1, . . . , capk} Resource type (k ≥ 0)
(A1, . . . , Ak) Tuple type (k ≥ 0).

We tend to abbreviate a singleton set of capabilities, {cap}, as cap.
A security policy, 6, is a finite mapping from names to pretypes. Thus, for

example, if 6 maps the channel lh to the pretype {wbot〈B〉, rtop〈A〉}, for some
appropriate A, B, then low-level processes may write to lh, but only high-level
ones may read from it; this is an approximation of the security associated with
a mailbox. On the other hand, if 6 maps hl to {wtop〈B〉, rbot〈A〉}, then hl acts
more like an information channel; anybody can read from it, but only high-
level processes may place information there.
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Fig. 3. Runtime errors.

The import of a security policy may be underlined by defining what it means
to violate it. Our definition is given in Figure 3, in terms of a relation P

67−→ err.
As an example of runtime errors, we have that ρ[[a!〈v〉 P ]] 67−→ err if any of the
following hold: (a) 6(a) is undefined, (b) a has no write capability for processes
at level ρ, or (c) v contains a base value that is restricted from ρ-level processes.
As explained in the Introduction, here we are attempting to control access to
resources: channels and base values. Principals at level σ have access to all
resources at levels up to and including σ . So even if 6 assigns a a low-security
level, top[[a!〈v〉 P ]] does not cause a runtime error unless v can not be assigned
a type appropriate to 6(a).

Example 2.1 Here we assume the policy 6 defined above, mapping lh to
{wbot〈B〉, rtop〈A〉} and hl to {wtop〈B〉, rbot〈A〉}, for some appropriate A, B.

—Consider the process top[[c!〈hl〉]] | bot[[c?(x)x!〈v〉]]. Then, after one reduction
step, there is a security error because bot[[hl!〈v〉]] 67−→ err A low-security pro-
cess has write access to security channel hl on which write access is reserved
for high-security processes.

—Assuming an appropriate typing for c and v, the same security error does not
occur in top[[c!〈lh〉]] | bot[[c?(x)x!〈v〉]]. The low-security process bot[[lh!〈v〉 Q]]
has the right to write on the channel lh.

—If 6 assigns to the channel c a pretype that includes a capability of the form
rtop〈C〉, then, a priori, there is no type error in the expression c!〈lh〉, although
intuitively it involves a security leak; a low-security agent can read from c
a channel that has at least some capability that should only be accessible to
high-security principals. However, it is straightforward to place it in a con-
text in which a security leak occurs: c!〈lh〉 |bot[[c?(x)x!〈v〉]]. Thus, our typing
system will also be required to rule out such processes.

3. RESOURCE CONTROL

Our typing system will apply only to certain security policies, those in which the
pretypes are in some sense consistent. Consistency is imposed using a system
of kinds: the kind RTypeσ comprises the value types accessible to processes at
security level σ . These kinds are, in turn, defined using a subtyping relation on
precapabilities and pretypes.
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Definition 3.1 Let <: be the least preorder on precapabilities and pretypes
such that:

(U-WR) wσ 〈A〉 <: wσ 〈B〉 if B <: A
(U-RD) rσ 〈A〉 <: rρ〈B〉 if A <: B and σ ¹ ρ
(U-BASE) Bσ <: Bρ if σ ¹ ρ
(U-RES) {capi}i∈I <: {cap′j } j∈J if (∀ j )(∃i) capi<: cap′j
(U-TUP) (A1, . . . , Ak) <: (B1, . . . , Bk) if (∀i) Ai<: Bi.

For each ρ, let RTypeρ be the least set that satisfies:

(RT-WR)
A ∈ RTypeσ
{wσ 〈A〉} ∈ RTypeρ

σ ¹ ρ

(RT-RD) (RT-BASE)
A ∈ RTypeσ
{rσ 〈A〉} ∈ RTypeρ

σ ¹ ρ
Bσ ∈ RTypeρ

σ ¹ ρ

(RT-WRRD)
A ∈ RTypeσ (RT-TUP)
A′ ∈ RTypeσ ′
{wσ 〈A〉, rσ ′ 〈A′〉} ∈ RTypeρ

σ ¹ ρ
σ ′ ¹ ρ
A <: A′

Ai ∈ RTypeρ (∀i)
(A1, . . . , Ak) ∈ RTypeρ

.

Let RType be the union of the kinds RTypeρ over all ρ.
Note that, if σ ¹ ρ, then RTypeσ ⊆ RTypeρ . Intuitively, low-level values are

accessible to high-level processes. However, obviously, the converse is not true.
For example, wtop〈〉 ∈ RTypetop, but wtop〈〉 is not in RTypebot. Note also that there
is no relation between subtyping and accessibility at a given security level. For
example:

wbot〈〉 ∈ RTypebot, {wbot〈〉, rtop〈〉} <: wbot〈〉 but {wbot〈〉, rtop〈〉} 6∈ RTypebot
rbot〈〉 ∈ RTypebot, rbot〈〉 <: rtop〈〉 but rtop〈〉 6∈ RTypebot

The compatibility requirement between read and write capabilities in a type
(RT-WRRD), in addition to the typing implications discussed in Hennessy and
Riely [2002], also has security implications. For example, suppose rbot〈Bσ 〉 and
wtop〈B〉 are capabilities in a valid channel type, for some type B. Then, a priori,
a high-level process can write to the channel while a low-level process may read
from it. However, the only possibility for σ is bot, that is, only low-level values
may be read. Moreover, the requirement B <: Bσ implies that B must also be
Bbot. So although high-level processes may write to the channel they may only
write low-level values.

PROPOSITION 3.2. For every ρ, RTypeρ is a preorder with respect to <:, with
both a partial meet operation u and a partial join t.

PROOF. Straightforward adaptation of Proposition 6.2 of Hennessy and Riely
[2002]. The partial operations u and t are first defined by structural induction
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Fig. 4. Typing rules.

on types. Typical clauses are

rσ 〈A〉 u rσ ′ 〈A′〉 = rσuσ ′ 〈A u A′〉
wσ 〈A〉 u wσ 〈A′〉 = wσ 〈A t A′〉

rσ 〈A〉 t rσ ′ 〈A′〉 = rσtσ ′ 〈A t A′〉
wσ 〈A〉 t wσ 〈A′〉 = wσ 〈A u A′〉.

One can then show, by induction on the definitions, that:

A ∈ RTypeρ and A ∈ RTypeρ ′ implies A u B ∈ RTypeρuρ ′ and
A t B ∈ RTypeρtρ ′ .

Finally, it is straightforward to show that u and t, defined in this manner, are
indeed partial meet and partial join operators.

We now discuss the typing system, which is defined using restricted security
policies, called type environments. A type environment is a finite mapping from
identifiers (names and variables) to types. We adopt some standard notation.
For example, let “0, u : A” denote the obvious extension of 0; “0, u : A” is only
defined if u is not in the domain of 0. The subtyping relation <:, together
with the partial operators u and t, may also be extended to environments.
For example, 0<:1 if for all u in the domain of 1, 0(u)<:1(u). The partial
meet enables us to define more subtle extensions. For example, 0 u {u : A} may
be defined even if u is already in the domain of 0. It is well defined when
0(u) u A exists; in which case, it maps u to this type. We normally abbreviate the
simple environment {u : A} to u : A and moreover use v : A to denote its obvious
generalization to values; this is only well defined when the value v has the same
structure as the type A.

The typing system is given in Figure 4 where the judgments are of the form
“0 `σ P”. If 0 `σ P , we say that P is a σ -level process. Also, let “0 ` P” abbreviate
“0 t̀op P”.

Intuitively “0 `σ P” indicates that the process P will not cause any security
errors if executed with security clearance σ . The rules are very similar to those
used in papers such as Pierce and Sangiorgi [1996] and Hennessy and Riely
[2002] for the standard I/O typing of the π -calculus. The rule (T-EQ), a nonstan-
dard rule for matching, is taken from Hennessy and Riely [2002], where it is
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explained and motivated. Essentially it allows processes to accumulate type
information on names, information which might be received piecemeal on dif-
ferent occurrences of the same name. It is shown to be particularly useful in
types systems, such as ours, in which types are viewed as capabilities.

The only significant use of the security levels is in the (T-IN) and (T-OUT) rules,
where the channels are required to have a specific security level. This is inferred
using auxiliary value judgments, of the form 0 ` v : A. It is interesting to note
that security levels play no direct role in their derivation. One might expect
that the judgments for values would need to ensure that a value written to a
channel be accessible at the appropriate security level. This job, however, is
already handled by our definition of types. For example, in order for wσ 〈A〉 to
be a type, A must be a type accessible to σ .

The typing system enjoys many expected properties, the proof of which we
leave to the reader.

PROPOSITION 3.3.

—(SPECIALIZATION) 0 ` v : A and A <: B then 0 ` v : B
—(WEAKENING) 0 `σ P and 1 <: 0 then 1`σ P
—(RESTRICTION) 0, u : A `σ P and u 6∈ fv(P ) ∪ fn(P ) implies 0 `σ P.

The main technical tool required for Subject Reduction is, as usual, a substi-
tution result.

LEMMA 3.4 (SUBSTITUTION). If 0 ` v : A, then

—0 ` u : A implies 0 ` u{|v/X |}
—0, X : A `σ P implies 0 `σ P{|v/X |}

PROOF. Easily reconstructed from the corresponding proof in Hennessy and
Riely [2002, Lemma 4.7].

THEOREM 3.5 (SUBJECT REDUCTION). Suppose 0 `σ P. Then

— P
τ−→Q implies 0 `σ Q

— P
(c̃ : C̃)a?v−→ Q implies there exists a type A such that 0 ` a : rδ〈A〉 for some

δ ¹ σ , and if 0 u v : A is well defined, then 0 u v : A `σ Q.
— P

(c̃ : C̃)a!v−→ Q implies there exists a type A such that 0 ` a : wδ〈A〉 for some
δ ¹ σ , 0, c̃ : C̃ ` v : A and 0, c̃ : C̃ `σ Q.

PROOF. The three statements are proved simultaneously by induction on
the inference P

µ−→ Q . We examine some cases.

The rule (L-IN): a?(X : A)P
(c̃ : C̃)a?v−→ P{|v/X |}. Because 0 `σ a?(X : A) P we

know 0 `a : rσ 〈A〉 and 0, X : A `σ P . Now suppose 0 u v : A is well defined.
By Weakening, we obtain (0 u v : A), X : A `σ P and therefore, applying
the Substitution Lemma, we obtain 0 u v : A `σ P{|v/X |}. The rule (L-OUT) is
similar.

We consider one example of the rule (L-CTXT): ρ[[P ]]
µ−→ ρ[[P ′]] because P

µ−→
P ′. The precise details depend on µ, but in each of the three possibilities the
reasoning is very similar; so suppose µ is an input action (c̃ : C̃)a?v. We know,

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.



576 • M. Hennessy and J. Riely

by well typing, that 0 `σuρ P and therefore we may apply induction to obtain a
type A and a δ ¹ σ u ρ such that 0 ` a : rδ〈A〉; in particular δ ¹ σ . Now suppose
0 u v : A exists. Then, again by induction, we know 0 u v : A`σuρ P ′ and therefore
applying the typing rule (T-SR) we obtain the required 0 u v : A `σ ρ[[P ′]].

The rule (L-OPEN): (new b : B) P
(b : B)(c̃ : C̃)a!v−→ P ′ because P

(c̃ : C̃)a!v−→ P ′. Here, we
know 0, b : B `σ P and therefore applying induction to the action P

(c̃ : C̃)a!v−→ P ′

we obtain a type A such that0, b : B, c̃ : C̃`σ P ′ and0, b : B, c̃ : C̃ ` v : A; moreover
0, b : B ` a : rδ〈A〉, for some δ ¹ σ . However, since (L-OPEN) requires that b 6= a,
we may conclude, as required, 0 ` a : rδ〈A〉.

As a final example, consider the rule (L-COM) : P | Q τ−→ (new E(α)) (P ′ | Q ′)
because P

α−→ P ′ and Q
ᾱ−→ Q ′. Without loss of generality, we may assume α

is the input action (c̃ : C̃)a?v. We know 0 `σ P, Q and therefore we may apply
induction to both reduction statements. Applying it to Q

ᾱ−→ Q ′ we obtain
0, c̃ : C̃ ` v : A and 0, c̃ : C̃`σ Q . The former implies that 0 u v : A is well defined
and therefore induction applied to P

α−→ P ′ gives 0 u v : A`σ P ′. Since 0, c̃ : C̃ `
v : A, it follows that 0, c̃ : C̃<:0 u v : A and therefore, by Weakening we have
0, c̃ : C̃`σ P ′. An application of (T-STR), followed by (T-NEW), gives the required
0 `σ (new E(α))(P ′ | Q ′).

Remark. Most of the restrictions imposed on types are essential to achieving
Subject Reduction, but a few are not. First, the Subject Reduction theorem
remains true if we weaken (U-WR) to:

wσ 〈A〉 <: wρ〈B〉 if B <: A and σ ¹ ρ,

and the proof remains the same. Were we to adopt this rule, it would be true that
every process typable at level σ would also be typable at level ρ, for σ ¹ ρ. Given
our actual definition, this is not true. Nonetheless, every process typable at σ
can be trivially rewritten so that it is typable at ρ given our definition (one must
simply surround output actions with explicit security restrictions). We have
adopted the stronger rule because it is necessary in the next section and results
in no substantive loss of expressivity. Note also that with our more restrictive
defintion of type the statement of the output clause of Subject Reduction can be
strengthened; because of the restriction the only possible value of δ is σ . How-
ever, the clause as it stands remains true with the weakened version of (U-WR).

Second, we have limited types to contain at most one read and one write ca-
pability. We have done so to simplify the proofs, particularly in the next section.
This clearly results in a loss of expressiveness. We have yet to find, however, a
compelling example that requires a resource to have more than one read or one
write capability. It is usually sensible to simply take the meet.

We can now prove the first main result:

THEOREM 3.6 (TYPE SAFETY). If 0 ` P, then for every closed context C [ ] such
that 0 ` C [P ] and every Q such that C [P ] τ−→∗ Q we have Q

07−→/ err.

PROOF. By Subject Reduction, we know that 0 t̀op Q and, therefore, it is
sufficient to prove that 0 t̀op Q implies Q

07−→/ err. In fact, we prove the contra-
positive, Q

07−→ err implies 0 t̀op Q by induction on the definition of Q
07−→ err.
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This is a straightforward inductive proof on the derivation of Q
07−→ err. For

example, consider the case (E-RD). Suppose that ρ[[a?(X )P ]] 07−→ err because σ ¹
ρ implies for all A, rσ 〈A〉 /∈ 6(a). By supposition, we have that 0(a) either has no
read capability or it has a read capability at level δ, where δ 6¹ ρ. In either case,
the judgment 0 `ρ a?(X ) P cannot be derived, and therefore 0 t̀opρ [[a?(X ) P ]] is
also underivable.

We end this section with a brief discussion on the use of the syntax σ [[P ]]
in our language. We have primarily introduced it in order to discuss typing
issues. Having defined our typing system, we may now view σ [[P ]] simply as
notation for the fact that, relative to the current typing environment 0, the
process P is welltyped at level σ , that is, 0 `σ P . Technically, we can view σ [[P ]]
to be structurally equivalent to P , assuming we are working in an environment
0 such that 0 `σ P . This will be formalized in Section 5.

4. INFORMATION FLOW

We have shown in the previous sections that, in well-typed systems, processes
running at a given security level can only access resources appropriate to that
level. However, as pointed out in the Introduction, this does not rule out (im-
plicit) information flow between levels. Consider the following system

top[[h?(x) if x = 0 then hl!〈0〉 else hl!〈1〉]] | bot[[hl?(z) Q]] (?)

executing in an environment in which h is a top-level read/write channel and
hl is a top-level write and bot-level read channel. This system can be well-
typed, using R-types, so the processes only access resources appropriate to their
security level. Nevertheless there is some implicit flow of information from top
to bot; the low-level process, bot[[hl?(z) Q]], by testing the value received on z can
gain some information about the high-level value x received by the high-level
process on the high-level channel h.

One way of formalizing this notion of flow of information is to consider the
behavior of processes and how it can be influenced. If the behavior of low-
level processes is independent of any high-level values in its environment,
then we can say that there can be no implicit flow of information from high
level to low level. This is not the case in the example above. Suppose, for ex-
ample, that Q is the code fragment “if z = 0 then l1!〈〉 else l2!〈〉”. If (?) were
placed in an environment with ‘top[[h!〈0〉]]’, then the resource l1 would be
called. If, instead, (?) were placed in an environment with ‘top[[h!〈42〉]]’, then
l2 would be called. In other words, the behavior of the low-level process can
be influenced by high-level changes; there is a possibility of information flow
downwards.

This is not surprising in view of the type associated with the channel hl; in
the terminology of Bell and LaPadula [1975], it allows a write down from a
high-level process to a low-level process. Thus, if we are to eliminate implicit
information flow between levels in well-typed processes, we need to restrict fur-
ther the allowed types; types such as {wtop〈〉, rbot〈〉} clearly contradict the spirit
of secrecy. Thus, for the rest of the article we work with the more restrictive set
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IType, the Information types. In order for {wσ 〈A〉, rσ ′ 〈A′〉} to be in IType, it must
be that σ ¹ σ ′; this is not necessarily true for types in RType.

Definition 4.1. For each ρ, let ITypeρ , be the least set that satisfies the rules
in Definition 3.1, with (RT-WRRD) replaced by:

(IT-WRRD)
A ∈ ITypeσ
A′ ∈ ITypeσ ′
{wσ 〈A〉, rσ ′ 〈A′〉} ∈ ITypeρ

σ ¹ σ ′
σ ′ ¹ ρ
A <: A′

Let IType be the union of ITypeρ over all ρ. We write 0°σ P if 0 `σ P can be
derived from the rules of Figure 4 using these more restrictive types.

All of the results of the previous section carry over to the stronger typing
system; we leave their elaboration to the reader.

Unfortunately, due to the expressiveness of our language, the use of I-types
still does not preclude information flow downwards, between levels. Consider
the system

top[[h?(x) if x = 0 then bot [[l !〈0〉]] else bot [[l !〈1〉]]]] | bot[[l?(z) Q]]

executing in an environment in which h is a top-level read/write channel and l
is a bot-level read/write channel. This system can be well typed using I-types,
but there still appears to be some some implicit flow of information from top to
bot. The problem here is that our syntax allows a high-level process, which can
not write to low-level channels, to evolve into a low-level process which does
have this capability; we need to place a boundary between low- and high-level
processes that ensures a high-level process never gains write access to low-level
channels. This is the aim of the following definition:

Definition 4.2 Define the security levels of a term below ρ, slρ(P ), as follows:

slρ(∗P ) = slρ(P ) slρ0 = {ρ} slρ(σ [[P ]]) = {σ u ρ} ∪ slσuρ(P )
slρ((new a : A) P ) = slρ(P ) slρ(u!〈v〉) = {ρ} slρ(P | Q) = slρ(P ) ∪ slρ(Q)

slρ(u?(X : B) P ) = slρ(P ) slρ(if u = v then P else (Q)) = slρ(P ) ∪ slρ(Q)

A process P is σ -free if for every ρ in sltop(P ), ρ 6¹ σ .

Note that top ∈ sltop(P ) for every P and therefore, if P is σ -free, it must be
that σ 6= top.

In general σ -freedom restricts the ability of processes to reduce their security
level to σ ; this will restrict their ability to write to σ -level processes, but not
their ability to read from them. The definition may appear complicated, but,
unfortunately, it is not sufficient to disallow occurrences of σ [[ ]] from P . Con-
sider, for example, the process ρ1[[ρ2[[Q]]]], where ρ1 6¹ σ . This does not contain
any occurrence of σ [[ ]], (assuming it does not occur in Q), but if ρ1 u ρ2 = σ , then
effectively Q is running at security level σ , although there is no occurrence of
σ in the term.

To what extent, therefore, does σ -freedom preclude implicit information flow?
We avoid giving a formal definition of implicit information flow. Instead, we can
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demand that, in order to informally preclude such information flow, low-level
behavior be completely independent of arbitrary high-level behavior; it should
not be possible to influence low-level behaviour by changing high-level behavior.
This can be formalized as a noninterference result of the form:

Suppose P and Q are σ -level processes and P ≈σ Q . Further sup-
pose that H and K are arbitrary top-level σ -free processes. Then,
P |H ≈σ Q | K .

Here≈σ is some form of behavioral equivalence that is sensitive only to behavior
of processes that are σ -level or lower. It turns out that such a result is very
dependent on the exact formulation used, as the following example illustrates.

Let A denote the type {wbot〈〉, rbot〈〉} and B denote {rbot〈〉}. Further, let 0 map a
and b to A and B, respectively, and n to the type {wbot〈A〉, rbot〈A〉}. Now consider
the terms P and H defined by

P ⇐ bot[[n!〈a〉 | n?(x : A) x!〈〉]] H ⇐ top[[n?(x : B) b?( y) 0]].

It is very easy to check that 0° P, H and that H is bot-free. Note that, in
the term P |H, there is contention between the low- and high-level processes
for who will receive a value on the channel n. This means that, if we were to
base the semantic relation ≈ on any of strong bisimulation equivalence, weak
bisimulation equivalence [Milner 1989] or must testing [De Nicola and Hennessy
1984], we would have

P |0 6≈σ P |H.
The essential reason is that the consumption of writes can be detected; the
reduction

P | H
τ−→ bot[[n?(x : A) x!〈〉]] | top[[b?( y).0]]

cannot be matched by P |0. Using the terminology of [De Nicola and Hennessy
1984], P |0 guarantees the test bot[[a?(x)ω!〈〉]] whereas P |H does not.

Even obtaining results with respect to may testing, defined in Section 5, is
delicate. If we allowed synchronous tests, then we would also have:

P |0 6≈σ P |H.
Let T be the test bot[[b!〈〉ω!〈〉]]. Then, P |H |T may eventually produce an out-
put onωwhereas P |0 |T cannot. However, since our language is asynchronous,
such tests are not allowed.

In the following section, we prove a noninterference result using may testing
on processes typable using I-types. Note that, as indicated by the examples
above, we can rewrite our informal notion of noninterference in an equivalent,
but simpler manner. It is sufficient to insist that

P |H ≈σ P for all σ -level processes P and top-level σ -free pro-
cesses H.

This is the formulation used in Focardi and Gorrieri [1995], and if the equiva-
lence ≈σ enjoys reasonable properties this is sufficient to ensure

P |H ≈σ P | K
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for all top-level σ -free processes H, K . Indeed, our proof will proceed in this
manner.

5. NONINTERFERENCE UP TO MAY TESTING

May equivalence is defined in terms of tests. A test is a process with an occur-
rence of a new reserved resource name ω. We use T to range over tests, with the
typing rule 0°σ ω!〈〉 for all 0 and σ . When placed in parallel with a process P ,
a test may interact with P , producing an output on ω if some desired behavior
of P has been observed.

Definition 5.1 We write T⇓ if T τ−→∗ T ′
ω!〈〉−→.

We wish to capture the behavior of processes at a given level of security.
Consequently, we only compare their ability to pass tests that are well-typed at
that level. The definition must also take into account the environment in which
the processes are used, as this determines the security level associated with
resources.

Definition 5.2 We write P 'σ0 Q if for every test T such that 0°σT :

(P |T )⇓ if and only if (Q |T )⇓ .
Note that in the definition of “P 'σ0 Q”, P and Q need not be well-typed.
0 is a constraint on the environment in which the processes are run, not on
the processes themselves. Nevertheless, at least in this article, the definition
will only be applied to processes that are well behaved with respect to the
constraint 0.

We can now state the main result of the article.

THEOREM 5.3 (NONINTERFERENCE). If 0°σ P, Q and 0°top H, K where H and
K are σ -free processes, then P 'σ0 Q implies P |H 'σ0 Q | K .

As already indicated, this theorem will follow if we can establish that

P 'σ0 P |H
for all P, H satisfying the constraints of the theorem. The proof of this fact
relies on constructing sufficient conditions to guarantee that two processes are
may equivalent. This is the topic of the next section, which is followed by a
section giving the proof of the noninterference result.

5.1 Sufficient Conditions

The purpose of the LTS semantics given in Figure 5 is to capture the possible
interactions in which a process can engage with its environment. However,
our language is typed and therefore the type environment, constraining the
environment, may forbid interactions which the process, in principle, is capable
of performing. For example, if 0 is an environment that associates with the
channel a only a read capability, then we will have the identity

a?(X ) P 'σ0 0
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Fig. 5. Context LTS.

because there can be no test T such that 0°σT , which can interact with a?(X ) P
to discover its behavior.

In other words, we need to modify the LTS semantics to take into account the
environment in which the process is being tested. This leads us to judgments
of the form 0 B P

µ−→σ 0
′ B P ′. Intuitively, this should be read:

Let T be a test such that 0°σT . Then P can interact with T by per-
forming the actionµ and evolving to P ′. As a result of this interaction,
the capabilities of the context may be increased, as reflected in 0′.

The modified LTS is defined in Figure 5 and the rules are straightforward.
However, note that, in the rule (C-OUT), it should be informally understood that
the environment already knows the value v being output; it is only in the rule
(C-OPEN) where the environment learns new information.

Some properties of this modified LTS are easy to establish. For example, in
0 B P

µ−→σ 0
′ B P ′ the new environment 0′ is completely determined by 0 and

the action µ. If µ is τ , then 0′ coincides with 0; otherwise, it is 0 augmented
with the type environment E(µ), the bound names together with their declared
types. For this reason, the following lemma is easily established:

LEMMA 5.4. 0 B P
µ−→σ 0

′ B P ′ and 0° P implies 0′ ° P ′.

PROOF. By induction on the derivation of the judgement 0 B P
µ−→σ

0′ B P ′.
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There are also very simple conditions that ensure that a priori untyped
actions may be performed in a type environment:

LEMMA 5.5. Let P
α−→ Q.

— Suppose α is (c̃ : C̃) a?v. If 0°a : wδ〈B〉, where δ ¹ σ , and 0, c̃ : C̃° v : B then
0 B P

α−→σ 0, c̃ : C̃B Q.
— Suppose α is (c̃ : C̃) a!v. If 0°a : rδ〈B〉, where δ ¹ σ , then 0 B P

α−→
σ0, c̃ : C̃B Q.

PROOF. A simple proof by induction on the derivation of P
α−→ Q .

However, it is the following Decomposition Lemma, which makes the aug-
mented LTS of interest:

LEMMA 5.6 (DECOMPOSITION). Suppose 0°σT and 0° P. Then P |T τ−→ R
implies one of the following:

(a) R = P ′ |T and 0 B P
τ−→ 0 B P ′,

(b) R = P |T ′ and T
τ−→ T ′,

(c) R = (new c̃ : C̃) P ′ |T ′ and 0 B P
(c̃ : C̃)a!v−→σ 0

′ B P ′ and T
(c̃ : C̃)a?v−→ T ′, or

(d) R = (new c̃ : C̃) P ′ |T ′ and 0 B P
(c̃ : C̃)a?v−→σ 0

′ B P ′ and T
(c̃ : C̃)a!v−→ T ′.

Furthermore, in the last two cases 0′ °σ T ′.

PROOF. By induction on the derivation of P |T τ−→ R. The only interesting
case is when this is inferred using the rule (L-COM), where R has the form
(new c̃ : C̃) (P ′ |T ′). There are two possibilities.

First, suppose P
(c̃ : C̃)a!v−→ P ′, T

(c̃ : C̃)a!v−→ T ′. By Subject Reduction applied
to 0°σT , we know 0°a : wδ〈B〉, for some δ ¹ σ and some type B such that
0, c̃ : C̃° v : B. We may now apply the previous Lemma, to obtain the required
0 B P

(c̃ : C̃)a!v−→σ 0, c̃ : C̃B P ′. The fact that 0′ °σT ′ follows by Subject Reduction.

The second case, when P outputs and T inputs, is similar. Here, P
(c̃ : C̃)a!v−→

P ′, T
(c̃ : C̃)a!v−→ T ′ and the only difficulty is to show that 0, c̃ : C̃°σT ′. We know,

by Subject Reduction, that 0°a : rσ 〈A〉 and if 0 u v : A exists then 0 u v : A°σ T ′.
However we also know 0° P and therefore by Subject Reduction, applied to
P

(c̃ : C̃)a!v−→ P ′ we know 0, c̃ : C̃° v : B for some type B such that 0°a : wρ〈B〉.
It follows that B<: A and therefore, by Weakening, 0, c̃ : C̃° v : A. This means
0 u v : A is indeed well defined, and 0, c̃ : C̃<:0 u v : A. Applying Weakening
again, we obtain the required 0, c̃ : C̃°σT ′.

Note that, in this lemma, the requirement 0° P is essential to ensure
that, if T receives a value v, then that value is compatible with the type
environment 0.

May testing is determined by the traces, s, t, in VAct∗ which processes can
perform. Let ε represent the empty trace. The notion of complementary actions
lifts element-wise to traces, s̄. The names in a trace n(s) is defined as the union
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of the names in the individual actions; likewise the bound names in a trace
bn(s) is defined as the union of the bound names in the individual actions.

Definition 5.7 (Traces). Let 0 B P s=⇒σ0
′ B P ′ be the least relation such that:

(TR− τ )
(TR− ε) 0 B P

τ−→σ 0 B P ′

0 B P ε=⇒σ0 B P

0 B P ′ s=⇒σ0
′′ B P ′′

0 B P s=⇒σ0′′ B P ′′

(TR− α)
0 B P α=⇒σ 0

′ B P ′

0′ B P ′ s=⇒σ0
′′ B P ′′

0 B P α·s=⇒σ0′′ B P ′′
n(α) ∩ bn(s) = ∅

We use 0 B P
s−→σ to mean that 0 B P

s−→σ 0
′′ B P ′′ for some 0′′ B P ′′.

We can generalize the function E from actions to sequences by:

E(ε) = ∅ E((c̃ : C̃) a?v · s) = {c̃ : C̃}, E(s) E((c̃ : C̃) a!v · s) = {c̃ : C̃}, E(s).

Note that E(s) = E(s̄). This notation enables us to generalize the Decomposi-
tion Lemma, Lemma 5.6, to traces. The statement assumes a definition of the
untyped reductions P

s−→P ′, similar to that in Definition 5.7.

PROPOSITION 5.8 (TRACE DECOMPOSITION). Suppose 0°σ T and 0° P. Then
P |T τ−→∗ 0′ B R implies there exists a trace s such that R has the form
(new E(s)) (P ′ |T ′) and 0 B P s=⇒σ0

′ B P ′ and T s̄=⇒T ′ and 0′ °σ T ′.

PROOF. By induction on the length of P |T τ−→∗ R, using Lemma 5.6.

In general, the converse to this result is not true; the behavior of a process P
is not determined by the set of sequences s such that 0 B P s=⇒σ . For example,
if 0 allows the value v to be sent and received on channel a at level σ , then

0 'σ0 a?(X ) 0 |a!〈v〉.
Our language is asynchronous and therefore, as in [Honda and Tokoro [1992]
and Castellani and Hennessy [1998], we need to consider the asynchronous
actions of processes.

Definition 5.9 (Asynchronous Traces). Let 0 B P s=⇒a
σ 0

′ B Q be the least
relation which, in addition to the clauses in Definition 5.7, satisfies

(C-AIN)
0°a : wδ〈B〉,
0, c̃ : C̃° v : B,
0, c̃ : C̃B P | δ[[a!〈v〉]] s=⇒a

σ 0 B Q

0 B P (c̃ : C̃)a?v,s=====⇒
a

σ 0 B Q

δ ¹ σ
c̃ /∈ fn(P ).

Again we use 0 B P s=⇒a
σ to mean that 0 B P s=⇒a

σ 0
′′ B P ′′ for some 0′′ B P ′′.
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The ability to compose asynchronous traces depends on the fact that our lan-
guage is asynchronous. To state the required compositional property, we need
a structural equivalence on processes. This is least equivalence preserved by
the static operators, σ [[ ]], | and (new a), generated by the following equations,
where for convenience the types of bound variables are omitted.

(S-SR) P ≡0 σ [[P ]] if 0°σ P
(S-SRSR) σ [[ρ[[P ]]]] ≡0 (σ u ρ)[[P ]]
(S-SRPAR) σ [[P | Q]] ≡0 σ [[P ]] | σ [[Q]]
(S-SRNEW) σ [[(new a) P ]] ≡0 (new a) σ [[P ]]
(S-NEWNEW) (new a) (new b) P ≡0 (new b) (new a) P if a 6= b
(S-NEWPAR) P | (new a) Q ≡0 (new a)(P | Q) if a 6∈ fn P
(S-COMM) P | Q ≡0 Q | P
(S-ZERO) P |0 ≡0 P
(S-ITER) ∗P ≡0 ∗P | P.

The first three equations allow us to manipulate the typing annotations σ [[ ]],
as discussed briefly at the end of Section 3; the remainder are familiar from
Milner et al. [1993]. We leave to the reader the rather tedious chore of proving
that this equivalence is preserved under reductions:

LEMMA 5.10. If P ≡0 Q and P
µ−→ P ′, then there exists some Q ′ ≡0 P ′ such

that Q
µ−→ Q ′.

LEMMA 5.11 (ASYNCHRONOUS ACTIONS). If 0°σT and T
(c̃ : C̃)a!v−→ T ′ then T ≡0

(new c̃ : C̃) (δ[[a!〈v〉]] |T ′), for some δ ¹ σ .

PROOF. By induction on the derivation of T
(c̃ : C̃)a!v−→ T ′ . We give two exam-

ples.

—a!〈v〉 a!v−→ 0.
Since 0°σ a!〈v〉, we have a!〈v〉 ≡0 σ [[a!〈v〉]] and the result follows.

—ρ[[P ]] (c̃ : C̃)a!v−→ ρ[[P ′]] because P
(c̃ : C̃)a!v−→ P ′.

0°σ ρ[[P ]] implies 0°σuρ P and so by induction

P ≡0 (new c̃ : C̃) (δ[[a!〈v〉]] | P ′)
for some δ ¹ σ u ρ. Using the rules (S-SRNEW) (S-SRSR) and (S-SRPAR) we can
then show ρ[[P ]] ≡0 (new c̃ : C̃) (ρ u δ[[a!〈v〉]] | ρ[[P ′]]).

PROPOSITION 5.12 (TRACE COMPOSITION). Suppose 0°σ T. If 0 B P s=⇒a
σ 0
′ B P ′

and T s̄=⇒ T ′, then P |T τ−→∗ (new E(s)) (P ′ |T ′).
PROOF. By induction on the derivation 0 B P s=⇒a

σ 0
′ B P ′. We examine the

most interesting case, when s has the form α.s′ and α is the input action
(c̃ : C̃) a?v. Further, let us assume that the derivation T s̄=⇒ T ′ has the form
T

ᾱ−→
∗

T ′′ s̄=⇒ T ′. There are two (interesting) possibilities for the derivation
0 B P s=⇒a

σ 0
′ B P ′.
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—0 B P α=⇒a
σ 0
′ B P ′. Using Subject Reduction, we can show that 0′ °σ T ′′, since

0′ is determined by the action α. So we may apply induction to obtain a
reduction P ′′ |T ′′ τ−→∗ (new E(s′)) (P ′ |T ′). We also have, by the rule (L-COM),
P |T τ−→ (new c̃ : C̃) (P ′′ |T ′′). By combining these we may easily obtain a
required reduction P |T τ−→∗ (new E(s)) (P ′ |T ′).

—0, c̃ : C̃B P | δ[[a!〈v〉]] s′=⇒
a

σ 0′ B P ′, where 0°a : wδ〈B〉 and 0, c̃ : C̃° v : B.
Again, we can apply induction to obtain a derivation (P | δ[[a!〈v〉]]) |T ′′ τ−→∗
(new E(s′)) (P ′ |T ′). and therefore

(new c̃ : C̃) (P | δ[[a!〈v〉]] |T ′′) τ−→∗ (new E(s)) (P ′ |T ′).

However, we can we apply the previous lemma to the derivation T
ᾱ−→ T ′′

to obtain the fact that T ≡0 (new c̃ : C̃) (δ[[a!〈v〉]] |T ′′). Moreover, since the
names c̃ are new to P , we have

P |T ≡0 (new c̃ : C̃) (P | δ[[a!〈v〉]] |T ′′)
and the result follows.

These two results immediately give us a sufficient condition for two processes
to be semantically equivalent.

Definition 5.13. We write 0°σ P 'aseq Q to mean 0 B P s=⇒a
σ if and only if

0 B Q s=⇒a
σ , for every sequence s.

THEOREM 5.14. Suppose 0° P, Q. Then 0°σ P 'aseq Q implies P 'σ0 Q.

PROOF. Immediate from the Trace Composition and Decomposition
results.

5.2 Proof of the Main Result

The proof of the noninterference result will now depend on comparing the traces
of the processes P and P |H. First, we must show some properties of σ -free
processes.

LEMMA 5.15. If H is σ -free and H
µ−→ H ′, then H ′ is also σ -free.

PROOF. A simple induction on H
µ−→ H ′.

We now show that, in appropriate environments, σ -free processes can never
perform σ -level write actions. Unfortunately, the proof, which is inductive, re-
quires a slight generalization of the notion of σ -freedom.

Definition 5.16. We say P is σ -free relative to δ if ρ 6¹ σ for every ρ in slδ(P ).

Note that, if P is σ -free relative to δ, then, since δ ∈ slδ(P ), we know that
δ 6¹ σ . Also, P being σ -free relative to top means precisely that P is σ -free.
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LEMMA 5.17. Suppose 0°δ P, where P is σ -free relative to δ. Then 0 B P
α−→ρ

0′ B P ′, where α is an output action, implies ρ 6¹ σ .

PROOF. By induction on the derivation of 0 B P
α−→ρ 0

′ B P ′. We give the
two most important cases.

—0 Ba!〈v〉 a!v−→ρ 0 B0, because 0°a : rρ ′ 〈A〉 for some ρ ′ ¹ ρ. But from 0°δ a!〈v〉
we have 0°a : wδ〈B〉 and by the fact that 0(a) must be a well-defined type
δ ¹ ρ ′. Since δ 6¹ σ , it follows that ρ 6¹ σ .

—0 B ε[[Q]] α−→ρ 0 B ε[[Q ′]] because 0 B Q
α−→ρ 0 B Q . Here, we need to apply

induction.

Note that slδ(P ) = {ε u δ} ∪ slεuδ(Q) and, therefore, Q is σ -free relative to
εuδ. Moreover, 0°δ P implies 0°εuδ Q and, therefore, induction can be applied
to obtain the required ρ 6¹ σ .

The main technical result required for noninterference is given in the follow-
ing proposition:

PROPOSITION 5.18. Suppose 0°σ P and 0°top H, where H is σ -free. Then
0 B P |H s=⇒a

σ implies 0 B P s=⇒a
σ .

PROOF. The proof is by induction on the derivation of 0 B P |H s=⇒a
σ . We

examine the most interesting cases.

—0 B P |H τ−→σ 0 B R s=⇒a
σ . The most important case here is when there

is communication between P and H. Here, P
α−→ P ′, H

ᾱ−→ H ′, R is
(new c̃ : C̃) (P ′ |H ′), where c̃ are the bound variables in α. There are two
possibilities.
—Output from P to H; α has the form (c̃ : C̃) a!v. Let us examine the

trace 0 B (new c̃ : C̃) (P ′ |H ′) s=⇒a
σ . Somewhere in s the names in c̃ may

be exported. In general, we can construct a related trace sc such that
0, c̃ : C̃B (P ′ |H) sc=⇒a

σ , with the property that for any Q , 0, c̃ : C̃B Q sc=⇒a
σ

implies 0 B Q sc=⇒a
σ ; sc is obtained from s by omitting any bounds (c : C)

found on its output actions.
Now, we may apply induction to 0, c̃ : C̃B (P ′ |H ′) sc=⇒a

σ , since 0°σ P ′

by Subject Reduction and 0, c̃ : C̃°top H ′ by Lemma 5.4. This gives
0, c̃ : C̃B P ′ sc=⇒a

σ .
Applying Lemma 5.11, we know that P is structurally equivalent to

(c̃ : C̃)(a!〈v〉 | P ′). Trivially, 0, c̃ : C̃B (a!〈v〉 | P ′) sc=⇒a
σ from which it follows

immediately that 0 B P s=⇒a
σ .

—Output from H to P . We show that this case is not possible as it would
involve a write down. Here, α would have the form (c̃ : C̃) a?v and applying
Subject Reduction to both 0°σ P and 0°top H we would obtain both 0°a :
rσ 〈A〉 and 0°a : wtop〈B〉. Since 0 is a well-defined type, this would imply
top ¹ σ , which contradicts the fact that H is σ -free.
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—0 B P |H α−→σ 0
′ B R s′=⇒

a

σ , where α is an input action (c̃ : C̃) a?v. Here, again,
there are two possibilities, depending on which of P, H performs the input
move. In the former case, a simple argument by induction suffices. If, on the
other hand, it is H, an application of induction gives 0′ B P

s′−→
a

σ .
However, from the inference 0 BH

α−→σ 0
′ BH, we know that 0°a : wδ〈A〉,

for some δ ¹ σ , and some A such that 0′ ° v : A. From the result of the appli-
cation of induction, we can deduce 0′ B (δ[[a!〈v〉]] | P ) s′=⇒

a

σ ; This is sufficient
for us to apply Definition 5.9 to conclude 0 B P s=⇒a

σ .

—0 B P |H α−→σ 0′ B s′=⇒
a

σ , where α is an output action (c̃ : C̃) a!v. Here,
Lemma 5.17 implies that H can not be responsible for the action; it must
be P , and again a simple inductive argument suffices.

—s has the form α.s′, where α is an input action (c̃ : C̃) a?v, and 0, c̃ : C̃B P |H |
δ[[a!〈v〉]] s′=⇒

a

σ , because 0°a : wδ〈B〉 and 0, c̃ : C̃° v : B.
Since 0, c̃ : C̃°σ (P |a!〈v〉), we may apply induction to obtain 0, c̃ : C̃B

(P | δ[[a!〈v〉]]) s′=⇒
a

σ . Again, we may now use Definition 5.9 to obtain the re-
quired 0, c̃ : C̃B P s′=⇒

a

σ .

Given this technical result, we can now prove the Noninterference Theorem.

THEOREM 5.3. If 0°σ P, Q and 0°top H, K , where H, K are σ -free processes,
then:

P 'σ0 Q implies P |H 'σ0 Q | K .
PROOF. To establish the result, as has already been explained, it is sufficient

to show that P 'σ0 P |H. In fact, by Theorem 5.14, it is sufficient to show
0 B P s=⇒a

σ implies 0 B P |H s=⇒a
σ , which is immediate, and 0 B P |H s=⇒a

σ

implies 0 B P s=⇒a
σ ; this follows from the previous proposition.

Note that the requirement that P, Q be well-typed processes at level σ is
necessary for this result to be true. For example, consider the process P defined
by h?(x) l? y .0 in an environment 0 in which h, l are high-level and low-level
resources, respectively. Then, P 'bot

0 0. However, P |H /'bot
0 H, where H is the

high-level process h!〈〉.

6. CONCLUSIONS AND RELATED WORK

In this article, we have proposed a simple typing system for enforcing a variety
of security properties for the security π -calculus. The types are obtained by
adding security levels to the standard input/output types of the π -calculus
[Pierce and Sangiorgi 1996; Hennessy and Riely 2002]. The main novelty is
a uniform typing system, a simple extension to that in Pierce and Sangiorgi
[1996] which can handle two disparate security issues, by a minor variation in
the set of types. The first set, called R-Types, is designed with resource access
control in mind; the security level of a resource (or more formally a capability
on a resource) dictates the security clearance required by any process seeking
to access that resource. In future work, we hope to extend these types for use
in distributed systems [Riely and Hennessy 1999]. The second set, the more
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restricted I-types, controls the (implicit) flow of information from high-to low-
security levels; this is formalized via a noninterference result for may testing
equivalence over our security π -calculus.

There is considerable tension between the expressiveness of the language
under investigation, the restrictiveness of the type system and the strength
of the noninterference result possible. The π -calculus is very expressive and,
consequently, there are many different ways in which a context may discern
a difference in process behaviors. For example, as we have seen, the con-
text can test if a process has the ability (or not) to rendez-vous on a specific
channel. These types of distinguishing contexts are not available in sequen-
tial languages, such as those studied in Volpano et al. [1996] and Boudol and
Castellani [2001]. Consequently, to ensure noninterference, type systems for
the π -calculus have to be much more restrictive than for sequential or simple
multithreaded languages. Our type system establishes noninterference with
respect to a relatively weak equivalence, may testing. Stronger results, in the
sense of noninterference with respect to more discriminating equivalences such
as must testing or observational equivalence, might be obtained by restricting
further the ability to be well typed. For example, we could introduce types
that ensure that there is no contention between high-level and low-level pro-
cesses over read access to channels or types that ensure that, when a high-
level process reads a value from a low-level channel, it immediately restores it.
This line of research has been pursued further in Honda et al. [2000], where,
at the expense of extending considerably the syntax of the π -calculus, they
have introduced a much more sophisticated type system, which includes, lin-
ear, receptive types and adaptations of the behavior types from Yoshida [1996].
They hope to establish noninterference theorems with respect to some notion
of bisimulation equivalence (which is much stronger than testing) but the
precise details have yet to be published. Nevertheless, there is a danger in
this approach. As the sophistication of the type system increases, not only do
type checking and type inference become more complicated, there is also the
likelihood that much of the expressive power of the underlying language is
lost.

An alternative (and much more established) approach, Volpano et al. [1996]
starts with a much less expressive language (essentially a sequential language
of while programs) and, by using a relatively weak type system, obtains a rel-
atively strong noninterference result—at least as formulated in Boudol and
Castellani [2001]. But as the expressiveness of the language is increased [Smith
and Volpano [1998] and Boudol and Castellani 2001], the restricting power of
the type system must, in turn, be increased, to rule out more potentially inter-
fering behaviors, and, in turn, the noninterference results can only be obtained
with respect to weaker equivalences. At this point, it is fair to say that the
relative importance of the parameters

—expressiveness of the language

—expressiveness of the type system

—strength of equivalence used in noninterference
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remains to be elucidated. But we believe that the security π-calculus is an ex-
cellent vehicle in which such questions can be explored.

Methods for controling information flow are a central research issue in com-
puter security [Denning 1977; Goguen and Meseguer 1992; Smith and Volpano
1998], and in the Introduction, we have indicated a number of different ap-
proaches to its formalization. Noninterference has emerged as a useful concept
and is widely used to infer (indirectly) the absence of information flow. In publi-
cations such as Roscoe et al. [1994] and Focardi and Gorrieri [1995], it has been
pointed out that process algebras may be fruitfully used to formalize and inves-
tigate this concept; for example, in Focardi et al. [1997], process-algebra-based
methods are suggested for investigating security protocols, essentially using a
formalization of noninterference for CCS.

However, in these publications, the noninterference is always defined behav-
iorally, as a condition on the possible traces of CCS or CSP processes; useful
surveys of trace-based noninterference may be found in Focardi and Gorrieri
[1995] and Ryan and Schneider [1997]. Here, we work with the more expres-
sive π -calculus, which allows dynamic process creation and network recon-
figuration. Our approach to noninterference is also more extensional in that
it is expressed in terms of how processes effect their environments, relative
to a particular behavioral equivalence. However, the proof of our main result,
Theorem 5.3, describes may equivalence in terms of (typed) traces; presumably,
a trace based definition of noninterference, similar in style to those in Focardi
and Gorrieri [1995] and Ryan and Schneider [1997] could be extracted from
this proof.

More importantly, our approach differs from much of the recent process-
calculus-based security research in that we develop purely static methods
for ensuring security. Processes are shown to be secure not by demonstrating
some property of trace sets, using a tool as such as that in Focardi and Gorrieri
[1997a], but by type-checking. The long-term hope is that type systems such
as these will be incorporated into security-aware programming languages.
Thus, users working at a given security level would automatically have their
applications type-checked at that level; moreover, the variety of types used,
for example, R-types versus I-types, could vary according to the particular
application.

Types have also been used in this manner in Abadi [1997], for an extension of
the π -calculus called the spi-calculus. But there, the structure of the types are
very straightforward; the type Secret representing a secret channel, the type
Public representing a public one, and Any which could be either. However, the
main interest is in the type rules for the encryption/decryption primitives of
the spi-calculus. The noninterference result also has a different formulation to
ours; it states that the behavior of well-typed processes is invariant, relative to
may testing, under certain value-substitutions. Intuitively, it means that the
encryption/decryption primitives preserve values of type Secret from certain
kinds of attackers. It would be interesting to add these primitives to the our
security π -calculus and to try to adapt the associated type rules to the set of
I-Types.
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