
µABC: A Minimal Aspect Calculus

Glenn Bruns1, Radha Jagadeesan2?, Alan Jeffrey2??, and James Riely2???

1 Bell Labs, Lucent Technologies
2 DePaul University

Abstract. Aspect-oriented programming is emerging as a powerful tool for sys-
tem design and development. In this paper, we study aspects as primitive compu-
tational entities on par with objects, functions and horn-clauses. To this end, we
introduce µABC, a name-based calculus, that incorporates aspects as primitive. In
contrast to earlier work on aspects in the context of object-oriented and functional
programming, the only computational entities in µABC are aspects. We establish
a compositional translations into µABC from a functional language with aspects
and higher-order functions. Further, we delineate the features required to support
an aspect-oriented style by presenting a translation of µABC into an extended
π-calculus.

1 Introduction

Aspects [7, 21, 28, 23, 22, 3] have emerged as a powerful tool in the design and develop-
ment of systems (e.g., see [4]). To explain the interest in aspects, we begin with a short
example inspired by tutorials of AspectJ [1]. Suppose class L realizes a useful library,
and that we want to obtain timing information about a method foo() of L. With aspects
this can be done by writing advice specifying that, whenever foo is called, the current
time should be logged, foo should be executed, and then the current time should again
be logged. It is indicative of the power of the aspect framework that:

– the profiling code is localized in the advice,
– the library source code is left untouched, and
– the responsibility for profiling all foo() calls resides with the compiler and/or

runtime environment.

The second and third items ensure that, in developing the library, one need not worry
about advice that may be written in the future. In [13] this notion is called obliviousness.
However, in writing the logging advice, one must identify the pieces of code that need
to be logged. In [13] this notion is called quantification. These ideas are quite general
and are independent of programming language paradigm.

The execution of such an aspect-program can intuitively be seen in a reactive frame-
work as follows. View method invocations (in this case the foo() invocations) as
events. View advice code (in this case the logging advice) as running in parallel with the

? Supported by NSF grant #0244901.
?? Supported by NSF grant #0208549.

??? Supported by NSF grant #0347542.

2 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

other source code and responding to occurrences of events (corresponding to method
calls). This view of execution is general enough to accommodate dynamic arrival of
new advice by treating it as dynamically created parallel components. In the special
case that all advice is static, the implicit parallel composition of advice can be compiled
away — in aspect-based languages, this compile-time process called weaving. Infor-
mally, the weaving algorithm replaces each call to foo() with a call to the advice code,
thus altering the client code and leaving the library untouched.

Aspect-oriented extensions have been developed for object-oriented [21, 28], im-
perative [20], and functional languages [30, 31]. Furthermore, a diverse collection of
examples show the utility of aspects. These range from the treatment of inheritance
anomalies in concurrent object-oriented programming (eg. see [25] for a survey of such
problems, and [24] for an aspect-based approach) to the design of flexible mechanisms
for access control in security applications [5]. Recent performance evaluations of as-
pect languages [12] suggest that a combination of programming and compiler efforts
suffices to manage any performance penalties.

Much recent work on aspects is aimed at improving aspect-oriented language design
and providing solutions to the challenge of reasoning about aspect-oriented programs.
For example, there is work on adding aspects to existing language paradigms [30, 31],
on finding a parametric way to describe a wide range of aspect languages [10], on find-
ing abstraction principles [11], on type systems [18], and on checking the correctness
of compiling techniques using operational models [19] or denotational models [32]. A
strategy in much of this work is to develop an calculus that provides a manageable set-
ting in which to study the issues. Similarly to the way that aspect languages have been
designed by adding aspects to an existing programming paradigm, these calculi gener-
ally extend a base calculus with a notion of aspect. For example, [19] is based on an
untyped class-based calculus, [10] is based on the object calculus [2], and [31] is based
on the simply-typed lambda calculus.

If one wishes to study aspects in the context of existing programming languages,
then calculi of this style are quite appropriate. However, another role for an aspect cal-
culus is to identify the essential nature of aspects and understand their relationship to
other basic computational primitives. We follow the approach of the theory of concur-
rency — concurrency is not built on top of sequentiality because that would certainly
make concurrency more complex rather than sequentiality. Rather, concurrency theory
studies interaction and concurrency as primitive concepts and sequentiality emerges as
a special case of concurrency.

Along these lines, we aim here to establish aspects as primitive computational en-
tities on par with objects, functions, and horn clauses; separate from their integration
into existing programming paradigms. To this end we have created a minimal aspect
calculus called µABC.

We present µABC as a sequential deterministic calculus, with all concurrency being
implicit. The primitive entities of µABC are names, in the style of the pi-calculus [26]
and the join calculus [15]. It differs in the choice of the communication paradigm in
two ways: firstly, messages are broadcast (somewhat in the style of CSP [16]) to all
receivers; secondly, the joins of the join-calculus are generalized to permit receiver
code (ie. advice) to be conditional on second-order predicates over messages.

µABC: A Minimal Aspect Calculus 3

We show that functions and objects can be realized using µABC, demonstrating that
aspects are an expressive primitive. Interestingly, µABC achieves expressiveness with-
out explicit use of concurrency, providing an analysis that differs from those familiar
to the concurrency community. This is not to say that aspects are incompatible with
concurrency. The addition of explicit concurrency does not alter the basic development
of µABC — we eschew explicit concurrency in µABC in this extended abstract to make
the presentation manageable to a reader unfamiliar with aspects.

Organization. The rest of the paper is organized as follows. We begin with an informal
introduction to the techniques and results of the paper. The key technical ideas are
developed in the rest of the paper. Section 2 describes the syntax and dynamic semantics
of µABC. The two following sections describe encodings of the lambda-calculus, both
with and without aspects. Finally, we describe the translation of µABC into a variant of
the polyadic pi-calculus. In this extended abstract, we elide all proofs.

2 Minimal aspect-based calculus

Aspect-oriented languages add advice and pointcuts on top of events occurring in an
underlying model of computation. For example, in an imperative model, the events
might be procedure calls or expression evaluations. The pointcut language provides a
logic for describing events or event sequences. Here we restrict our attention to single
events, leaving the furtile ground of temporal pointcuts (such as AspectJ’s cflow) for
future work.

Advice associates a pointcut with executable code. When an event specified by the
pointcut occurs, the advice “fires”, intercepting the underlying event. Execution of the
event itself is replaced with execution of the advice body. Advice may optionally pro-
ceed to execute the underlying event at any point during execution of the advice body.
If many pieces of advice fire on the same event, then advice ordering indicates which
piece of advice will be executed; in this case, a proceed will cause execution of the next
piece of advice.

In µABC, computational events are messages sent from a source to a target. The
source, message, and target are specified as names, represented as lower-case letters.
An example message command is the following:

letx= p�q : m

The four names in the command have different purposes, so we develop some distin-
guishing terminology. The source, p, and the target, q, are roles; m is a message; x is
a variable, which binds the value returned by the message. Messages include both ad-
vice a, . . . ,e and labels f , . . . , `. Commands may specify a sequence of messages. This
is useful for modeling both traditional method calls, p � q : `, and advice sequences,
p � q : a,b. For compatibility with declaration order, we read message sequences right
to left; in the command p�q : m,n, message n is processed before m.

The only other computational commands in µABC are return statements, which
terminate all command sequences; for example, “returnv” returns name v.

4 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Finally, the calculus includes commands for declaring roles and advice. An advice
declaration binds an advice name and specifies a pointcut and advice body. For example,
the following advice a causes any message k sent from p to q to be redirected as a
message `, sent from p to r. This is an “extreme” form of delegation. Messages to q are
delegated to r before q even receives them.

advice a[p�q : k]= letx= p� r : `; returnx

The term between brackets is a pointcut indicating that message k should be intercepted
when sent from p to q. The body of the advice is given after the first equality symbol.

The pointcut language allows for quantification over names. For example, the fol-
lowing variation captures every k-message sent to q, regardless of the sender. The advice
resends the message to q, renaming it to `; the sending role is unchanged.

advice a[∃z . z�q : k]=σy . letx= y�q : `; returnx

Here, z binds the source of the message in the pointcut, and y binds the source of the
message in the body of the advice. The binder σ is mnemonic for “source”. One may
also quantify over the target of a message; the corresponding binder is τ, for “target”.
The following code converts every k-message into a `-message with the same source
and target:

advice a[∃zs .∃zt . zs � zt : k]=σys . τyt . letx= ys � yt : `; returnx

In all the examples given so far, the advice causes all other code associated with the
event to be ignored. If we wish to allow many pieces of advice to trigger on a single
event, then we must encode the ability to “proceed”. The proceed binder, π, captures
the names of any other advice triggered by a pointcut. The following code captures
k-messages and executes other advice after redirecting the message to to `.

advice a[∃zs .∃zt . zs � zt : k]=σys . τyt .πb . letx= ys � yt : b, `; returnx

Reversing the order of b and `, “ys � yt : `,b”, causes other advice to execute before
redirecting the message. In this case, the `-message will only be sent if the other advice
uses its proceed binder. In general, b will be replaced with a sequence of messages when
the advice fires. If there is no other associated advice, then b will be replaced with the
empty sequence, in which case “ys � yt : `,b” and “ys � yt : b, `” execute identically.

µABC allows bounded quantification in pointcuts. As motivation, consider a class-
based language with advice, such as AspectJ. In such a language, one may specify
pointcuts based on class; all objects inhabiting the class will cause the pointcut to fire.
Both objects and classes are encoded in µABC as roles. In this case, a pointcut must
specify a subset of roles as the source or target of a message. We achieve this by asso-
ciating names with a partial order. The following declaration captures any k-message
sent to q from a sub-name of t.

advice a[∃z ≤ t . z�q : k]=σy . letx= y�q : `; returnx

The partial order is established through role declarations, such as the following, which
declares p to be a sub-name of q.

role p<q

µABC: A Minimal Aspect Calculus 5

In examples throughout the paper, the reserved name top is the largest name with re-
spect to this ordering. We therefore abbreviate “role p< top” as “role p.”

The role hierarchy is used extensively in the encoding of the class-based language
given in the full version of the paper [9].

Dynamics. Consider the following sequence of declarations, ~D.

role p; roleq; roler;
advice a[p�q : k]=σys . τyt .πb . (letz= yt � r : b; returnys);

Consider the execution of the following program using ~D.

~D; letx= p�q : j,k; returnx

Messages are processed using two rules which differentiate the type of the leading name
in the message list, in this case k. To distinguish these two forms of reduction, we
impose a syntactic distinction between advice and other names. Advice is named only
to simplify the semantics. The syntactic distinction makes it so that advice cannot fire
based on the execution of other advice. The advice lookup rule replaces the leading
label (or role) in a message list with the advice names that the label triggers. So k is
replaced with a.

~D; letx= p�q : j,a; returnx

The advice invocation rule replaces a message command with the appropriately in-
stantiated body of the triggered advice. Further reducing the program by this rule, we
obtain:

~D; letz= p� r : j; return p

The return variable has changed as the result of a double substitution. In the process of
inserting the advice body, occurrences of the let variable x are replaced with the return
value of the advice body. In this case, the return value, ys, is itself replaced with the
name of the source of the message, p.

2.1 Syntax and semantics of µABC

Syntax For any grammar X , define the grammars of lists as:

~X ::= X1, . . . ,Xn Comma-separated lists
~X ; ::= X1; . . .Xn; Semicolon-terminated lists

Write ε for the empty list.
We assume a set of names, ranged over by m, n. We further assume that names

are partitioned into two disjoint and distinguishable sets. Advice names are associated
with pointcuts and advice. Roles are use to name objects in the system as well message
labels.

f , . . . , `, p, . . . ,z Role (or Label)
a, . . . ,e Advice name

6 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Names may be roles or advice names.

m,n ::= ` a Name (or Message)

The grammar for µABC programs is as follows. We discuss point cuts, φ, below.

P,Q,R ::= Program
returnv Return
letx= p�q :~m;P Message Send
role p<q;P Role
advice a[φ]=σx . τy .πb .Q;P Advice

Let D and E range over declarations, which may be either role delcarations “role p<q”
or advice declarations “advice a[φ]=σx .τy.πb .Q”. Let B and C range over commands,
which may be declarations “D” or message sends “letx = p � q :~m”. Note that all pro-
grams have the form ~B; returnv.

– The command “letx= p�q :~m;P” binds x in P. Execution causes messages ~m to be
sent from p to q, binding the return value of last executed message to x.

– The declaration “role p<q;P” binds p in P. It declares p as a subrole of q.
– The declaration “advice a[φ]=σx . τy . πb . Q;P” binds a in Q and P; in addition, x,

y and z are bound in Q. It declares a to be an association between pointcut φ and
advice body σx . τy .πb .Q.

Omitted binders in an advice declaration are assumed to be fresh, for example:

advice [φ]=Q;P , advice a[φ]=σx . τy .πb .Q;P
where {a,x,y,b}∩ fn(Q) = /0 and a 6∈ fn(P)

Define bound and free names as usual. Write α= for the equivalence generated by con-
sistent renaming of bound names, [v/x] for the capture-free substitution of name v for
free name x, and [~m/a] for the capture-free substitution of the name list ~m for free name
a. Denote simultaneous substitution as [v/x,w/y].

Pointcuts The grammar for pointcuts is as follows.

φ,ψ ::= Pointcut
true false True, False
φ∧ψ φ∨ψ And, Or
∀x ≤ p .φ ∃x ≤ p .φ All, Some
p�q : ` ¬p�q : ` Atom, Not Atom

The satisfaction relation, “~D;` p � q : ` sat φ”, states that message p � q : ` satisfies φ

assuming the role hierarchy given by ~D. Satisfaction is defined in the standard way,
building up from the atoms. We say that pointcuts φ and ψ overlap in ~D; if for some p,
q and `, ~D;` p�q : ` sat φ and ~D;` p�q : ` sat ψ.

We write “p . `” for the pointcut which fires when p or one of its subroles receives
message `:

p . ` , ∃x ≤ top .∃y ≤ p . x� y : `

µABC: A Minimal Aspect Calculus 7

Dynamic semantics The reduction relation, P _ P′, is defined by two rules. The first
defines advice lookup. The second defines advice invocation. Advice lookup replaces
the message p�q : ` with p�q :~a, where ~a is the advice associated with p�q : `. The
order in the sequence of advice is the same as the declaration order. The rule treats the
rightmost message in a sequence.

~D; letz= p�q :~m, `;P _ ~D; letz= p�q :~m,~a;P

where [~a] =
[

a
∣∣∣∣(advicea[φ] · · ·) ∈ ~D
and ~D;` p�q : ` sat φ

]
Advice invocation replaces the message p�q :a with the body of a. This requires a few
substitutions to work. Suppose the body of a is “σx .τy.πb.Q”, where Q is “~B; returnv”.
Suppose further that we wish to execute “letz= p � q :~m,a;P”. The source of the mes-
sage is p, the target is q, the body to execute is ~B returning v, and the subsequent
messages are ~m. This leads us to execute ~B[p/x,q/y,~m/b] then P[v/z]. The substitution in P
accounts for the returned value of Q. As a final detail, we must take care of collisions
between the bound names of Q and P. We define the notation “letz=Q;P” to abstract
the details of the required renaming.

letz=Q;P , ~B;P[v/z]
where bn(~B)∩ fn(P) = /0 and Q α= ~B; returnv

With this notation, the rule can be written as follows.

~D; letz= p�q :~m,a;P _ ~D; letz=Q[p/x,q/y,~m/b];P
where (advice a[· · ·]=σx . τy .πb .Q) ∈ ~D

Note that in the reduction semantics, the ordering of advice is significant only for over-
lapping pointcuts.

Garbage collection In the following sections, we present encodings that leave behind
useless declarations as the terms reduce. In order to state correctness of the translations,
we must provide a way to remove unused declarations from a term. For example, the
following rule allows for collection of unused roles:

~D; role p<q;P
gc
_ ~D;P where p 6∈ fn(P)

An adequate set of garbage collection rules is given in the full version of the paper [9].

3 Translation of other AOP languages into µABC

The small collection of basic orthogonal primitives of µABC make it a viable candi-
date to serve a role analogous to that of object-calculi in the study of object-oriented
programming, provided that it is expressive enough. We establish the expressive power
of µABC by compositional translations from the following languages that add aspects
added on top of distinct underlying programming paradigms:

8 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

– A lambda-calculus with aspects — core minAML [31].
– An imperative class-based language (in the spirit of Featherweight Java [17], Mid-

dleweight Java [8], and Classic Java [14]) enhanced with aspects [19].

On one hand, the translations support our hypothesis that µABC captures a significant
portion of the world of aspects. On the other hand, they establish that aspects, in isola-
tion, are indeed a full-fledged computational engine.

In this extended abstract, we discuss only minAML; the encoding of the class-based
language is given in the full version [9]. We start with a discussion of functions and
conditionals.

3.1 Functions and conditionals

The encodings in this section rely heavily on the following notation. In a context ex-
pecting a program, define “x” as the program which returns x, and define “p�q :~m” as
the program which returns the result of the message:

x , returnx
p�q :~m , letx= p�q :~m; returnx

Given this shorthand, we encode abstraction and application as follows, where f
and g are fresh roles and “call” and “arg” are reserved roles that are not used elsewhere.
The basic idea is to model an abstraction as a piece of advice that responds to “call” —
in response to this method, the advice body invokes the argument by emitting “arg” to
initiate evaluation of the argument. An application is encoded in a manner consistent
with this protocol: in an application, the argument is bound to advice that triggers on
“arg”.

λx .P , role f ;
advice [f . call]=τy . letx= y� y :arg;P;
return f

RQ , let f =R;
roleg< f ;
advice [g .arg]=Q;
g�g : call

Example 1. The encoding of (λx .P)Q is “~D;g�g : call”, where ~D; is as follows:

~D;= role f ;
advice a[f . call]=τy . letx= y� y :arg;P;
roleg< f ;
advice b[g .arg]=Q;

This term reduces as:

(λx .P)Q = ~D;g�g : call
_ ~D;g�g : a
_ ~D; letx=g�g :arg;P
_ ~D; letx=g�g : b;P
_ ~D; letx=Q;P
gc
_ letx=Q;P

µABC: A Minimal Aspect Calculus 9

From here, Q is reduced to a value v, then computation proceeds to P[v/x].

This is the expected semantics of call-by-value application, except for the presence of
the declarations ~D, which we garbage collect.

Example 2. We now give a direct encoding of the conditional. The encoding shows one
use of advice ordering. Define “if p≤ q then P else Q” as the following program, where
r is a fresh role and “if” is a reserved role.

if p ≤ q then P else Q , roler;
advice [∃x ≤ top . x� r : if]=Q;
advice [∃x ≤ q . x� r : if]=P;
p� r : if

Note that P makes no use of its proceed variable, and so if P fires it effectively blocks
Q. We can verify the following.

~D; if p ≤ q then P else Q _∗ gc
_

{
P if ~D;` p ≤ q
Q otherwise

3.2 Encoding core MinAML in µABC

We sketch an encoding into µABC of the function-based aspect language MinAML
defined by Walker, Zdancewic and Ligatti [31]. We treat a subset of core MinAML
which retains the essential features of the language. Our goal, in this extended abstract,
is not to provide a complete translation, but rather to show that the essential features
of [31] are easily coded in µABC. In particular, in [31], advice is considered to be a
first-class citizen, where here we treat it as second-class.

Core MinAML extends the lambda calculus with:

– The expression new p;P creates a new name r which acts as a hook.
– The expression {p . z � Q}>>P attaches the advice λz . Q to the hook p. The new

advice is executed after any advice that was previously attached to p.
– The expression {p . z � Q}<<P is similar, except that the new advice is executed

before any previously attached advice.
– The expression p〈P〉 evaluates P and then runs the advice hooked on p.

The encoding into µABC directly follows these intuitions and is as follows, where p is a
fresh role and “hook” is a reserved role. The subtle difference between the encoding of
before and after previous advice is a paradigmatic use of the proceed binder in µABC.

new p;P , role p;advice [p .hook]=λx . x;P

{p . x�Q}<<P , advice [p .hook]=τz .πb . (λx . lety=Q;(z� z : b)(y));P

{p . x�Q}>>P , advice [p .hook]=τz .πb . (λy . letx= (z� z : b)(y);Q);P

p〈P〉, (p� p :hook)P

10 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Example 3. Walker, Zdancewic and Ligatti present the following example. We show
the reductions under our encoding. For the purpose of this example, we extend µABC
with integers and expressions in the obvious way.

new p;{p . x1 � x1 +1}<<{p . x2 � x2 ∗2}>> p〈3〉

This translates to “~D;(p� p :hook)3”, where ~D; is:

role p;
advice a[p .hook]=λx0 . x0;
advice b[p .hook]=τz .πb .λx1 . lety1 = x1 +1;(z� z : b)(y1);
advice c[p .hook]=τz .πb .λy2 . letx2 = (z� z : b)(y2);x2 ∗2;

and reduction proceeds as follows.

~D;(p� p :hook)3
_~D;(p� p : a,b,c)3
_~D;(λy2 . letx2 = (p� p : a,b)(y2);x2 ∗2)3

_∗ gc
_~D; letx2 = (p� p : a,b)(3);x2 ∗2
_~D; letx2 = (λx1 . lety1 = x1 +1;(p� p : a)(y1))(3);x2 ∗2

_∗ gc
_~D; letx2 = (lety1 =3+1;(p� p : a)(y1));x2 ∗2

_∗ gc
_~D; letx2 = (p� p : a)(4);x2 ∗2
_~D; letx2 = (λx0 . x0)(4);x2 ∗2

_∗ gc
_~D; letx2 =4;x2 ∗2
_~D;8
gc
_8

4 Class-based calculus with advice

We define a class-based language, enhanced with aspects, and present its translation
into µABC.

In contrast to most formal class-based languages [17, 8, 14], our class-based lan-
guage is untyped since our focus is on the dynamic aspects. Thus it has no explicit
casts and models “message not understood” by the absence of reductions. It supports
variables and declarations through “lets” and mutability through fields. It supports “in-
stanceof” checks that permit the detection if an object can be viewed as residing at a
given type. The language is between Featherweight [17] and Middleweight [8] Java in
expressiveness. Thus, the underlying class-based language that we discuss incorporates
the essential features of (imperative) object calculi used to study languages such as Java.

The grammar for class-based programs is given in Table 1. Free and bound names
and pointcut satisfaction are defined in Appendix B. Reduction is defined with respect
to a fixed sequence of global declarations, ~D. The reduction relation, given in Table 2,
has the form

~H; p{P} 7→ ~H ′; p{P′}

µABC: A Minimal Aspect Calculus 11

Table 1 Syntax of class-based programs

P,Q,R ::= (Program)
B;P (Command)
if p : t then P else Q (If)
returnv (Return)

B,C ::= (Command)
~H (Heap)
letx= p{Q} (Let)
letx= p.`(~v) (Call Method)
letx= p.~a(~v) (Call Advice)
letx= p. f (Get Field)
letx= p.~m (Get Advice)
set p. f = v (Set)

D,E ::= (Declaration)
class t <:u{~M} (Class)
advice a[φ](~x){Q} (Advice)

H, I ::= (Heap)
object p : t {~F} (Object)

F,G ::= (Field)
field f = v (Field)

M,N ::= (Method)
method`(~x){Q} (Method)

φ,ψ ::= (Pointcut)
· · · (As for µABC)
∃x : t .φ (Existential)
∀x : t .φ (Universal)

where p is the controlling object of program P. The controlling object is the source
object for method invocations. The target object, instead, is gleaned from the syntax of
method calls “q.`(~v)”. Advice may be attached to method call or field get operations.

We now discuss the rules for method invocation. The first rule involving a call to
method ` looks up both the relevant advice a and the relevant method implementations
t::`. The dynamic type of the object is used in both lookup operations. An execution
order is constructed, making the advice have higher priority than the method imple-
mentations. Advice is ordered according to the declaration order. Implementations are
ordered according to the class hierarchy.

~H; p{letx=q.`(~v);P} 7→ ~H; p{letx=q.~b,~a(~v);P}

where [~a] =
[

a
∣∣∣∣(advicea[φ] · · ·) ∈ ~D
and ~D;~H;` p�q : ` sat φ

]
and [~b] =

[
t::`

∣∣∣∣(class t <:u{. . . ,method` · · · , . . .}) ∈ ~D
and ~D; ~H;` q : t

]
The advice is then executed in order

~H; p{letx=q.~a,a(~v);P} 7→ ~H; p{letx= p{Q′};P}
where (advice a[· · ·](~x){Q}) ∈ ~D
and Q′ = Q[p/this,q/target,~a/proceed,~v/~x]

until the advice is exhausted, at which point a method implementation is chosen.

~H; p{letx=q.~a, t::`(~v);P} 7→ ~H; p{letx=q{Q′};P}
where (class t <:u{. . . ,method`(~x){Q}, . . .}) ∈ ~D
and Q′ = Q[q/this,~v/~x,~a/super]

Our translation into µABC requires that a class be declared before any the advice
which might effect it. For simplicity, we impose a stronger requirement. The class-based
language allows updates to the heap but not to the set of declarations.

12 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 2 Class-based reduction

~H; p{if q : t then P else Q} 7→ ~H; p{R} where R = P if ~D; ~H;` q : t and R = Q otherwise

~H; p{~I;Q} 7→ ~H;~I′; p{Q′} where~I;Q α=~I′;Q′ and bn(~H)∩bn(~I′) = /0

~H; p{letx=q{Q};P} 7→ ~H ′; p{letx=q{Q′};P} where ~H;q{Q} 7→ ~H ′;q{Q′}
~H; p{letx=q{returnv};P} 7→ ~H; p{P[v/x]}

~H; p{letx=q.`(~v);P} 7→ ~H; p{letx=q.~b,~a(~v);P} where [~a] =
[

a
∣∣∣∣(advicea[φ] · · ·) ∈ ~D
and ~D;~H;` p�q : ` sat φ

]
and [~b] =

[
t::`

∣∣∣∣(class t <:u{. . . ,method` · · · , . . .}) ∈ ~D
and ~D; ~H;` q : t

]
~H; p{letx=q.~a,a(~v);P} 7→ ~H; p{letx= p{Q′};P} where (advice a[· · ·](~x){Q}) ∈ ~D

and Q′ = Q[p/this,q/target,~a/proceed,~v/~x]
~H; p{letx=q.~a, t::`(~v);P} 7→ ~H; p{letx=q{Q′};P} where (class t <:u{. . . ,method`(~x){Q}, . . .}) ∈ ~D

and Q′ = Q[q/this,~v/~x,~a/super]

~H; p{letx=q. f ;P} 7→ ~H; p{letx=q.v,~a;P} where [~a] =
[

a
∣∣∣∣(advicea[φ] · · ·) ∈ ~D
and ~D;~H;` p�q : f sat φ

]
and ~H = (~H1,objectq : t {~F1,field f = v,~F2}, ~H2)

~H; p{letx=q.~m,a;P} 7→ ~H; p{letx= p{Q′};P} where (advice a[· · ·](~x){Q}) ∈ ~D
and Q′ = Q[p/this,q/target,~m/proceed]

~H; p{letx=q.~m,v;P} 7→ ~H; p{P[v/x]}
~H; p{setq. f = v;P} 7→ ~H ′; p{P} where ~H = (~H1,objectq : t {~F1,field f =w,~F2}, ~H2)

and ~H ′ = (~H1,objectq : t {~F1,field f = v,~F2}, ~H2)

µABC: A Minimal Aspect Calculus 13

Table 3 Translation from class-based calculus into µABC

J∃x : t .φK = ∃x ≤ t . JφK
J∀x : t .φK = ∀x ≤ t . JφK

Jclass t <:u{~M};K = role t <u; tJ~M;K
Jobject p : t {~F};K = role p< t; pJ~F ;K

pJfield f = v;K = advice a[false]= returnv;
advice [p . f]=σx . τy .πb . x� y : a,b;

tJmethod`(~x){Q};K = advice [t . `]=τthis .πsuper .λ~x . thisJQK;

Jadvice a[φ](~x){Q};K = advice a[JφK]=σthis . τtarget .πproceed .λ~x . thisJQK;

pJ~H;PK = J~H;KpJPK
pJif q : t then P else QK = if q ≤ t then pJPK else pJQK

pJletx=q{Q};PK = letx=qJQK; pJPK
pJletx=q.`(~v);PK = letx= (p�q : `)~v; pJPK
pJletx=q.~a(~v);PK = letx= (p�q :~a)~v; pJPK

pJletx=q. f ;PK = letx= p�q : f ; pJPK
pJletx= p.~m;PK = letx= p�q :~m; pJPK
pJsetq. f = v;PK = qJfield f = v;KpJPK

pJreturnvK = returnv

Note that in the class-based language, the heap is cyclic. This is needed because of
field update, which can create cyclic heaps. In comparison, no declarations in µABC
create cyclic scope.

Translation We now turn our attention to the translation into µABC. A semantic con-
figuration ~H; p{P} is translated as follows.

J~H; p{P}K = J~H;KpJPK

The translation function is described in Table 3. The translation on pointcuts, declara-
tions and heap elements is generated homomorphically.

The translation of methods and fields warrants comment. These functions record the
class t of a method and the object p of a field. The special variables this and super may
appear in the method body Q. The treatment of this is standard: this is the target of the
method call. The treatment of super is non-standard: super is not an object variable, but
a method variable, referencing the superclass method which the subclass overrides. The
encoding of field declarations uses two pieces of advice. The first provides a name a at
which to store the value of the field. The second triggers the proceed advice on the field
before calling a to return the stored value.

The translation function on programs records the controlling object p. The control-
ling object is used as the source role for messages. The translation preserves and reflects
reduction.

Proposition 4. If ~H; p{P} 7→ ~H ′; p{P′} and J~H; p{P}K = Q then Q _∗ gc
_Q′

where J~H ′; p{P′}K = Q′.

14 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Proposition 5. If Q _ Q′ and J~H; p{P}K = Q then ~H; p{P} 7→ ~H ′; p{P′} for
some ~D′, ~H ′,P′.

Theorem 6. If J~H; p{P}K = Q then ~H; p{P} 7→∗ ~H ′; p{returnv} iff Q _∗ ~E; returnv.

5 Polyadic π-calculus with pointcuts

We identify the features required to support an aspect-oriented style by presenting a
translation of µABC into a variant of the polyadic π-calculus [26]. The motivation for
this portion of the paper is the striking analogies between aspects and concurrency that
go beyond our use of concurrency techniques (eg. names, barbed congruences) to study
aspects.

Firstly, there are the superficial similarities. Both aspects and concurrency assign
equal status to callers/senders and callees/receivers. Both cause traditional atomicity
notions to break with the concomitant effects on reasoning — aspects do this by refining
atomic method calls into potentially multiple method calls, and concurrency does this
by the interleaving of code from parallel processes.

Secondly, there are deeper structural similarities. The idea of using parallel compo-
sition to modify existing programs without altering them is a well-understood modular-
ity principle in concurrent programming. Such an analysis is an essential component of
the design of synchronous programming languages [6]. Construed this way, the classical
parallel composition combinator of concurrency theory suffices for the “obliviousness”
criterion on aspect-oriented languages [13] — the behavior of a piece of program text
must be amenable to being transformed by advice, without altering the program text.

If this informal reasoning is correct, one might expect that the only new feature that
an expressive concurrent paradigm needs to encode µABC is a touch of “quantification”,
which has been identified as the other key ingredient of the aspect style [13].

Our translation into a polyadic π-calculus is an attempt to formalize this reasoning.
Consider a variant of the π-calculus with a hierarchy on names, so the new name process
now has the form new x<y;P. We also consider a slight generalization of the match
combinator present in early versions of the π-calculus [27], which permits matching on
the hierarchy structure on names. The form of the match process is [~x sat φ]P where φ is
a formula in a pointcut language that is essentially a boolean algebra built from atoms
of the form ~x. The generalized match construct can express traditional (mis)matching
via [x = y]P = [x sat y]P.

The dynamics of π is unchanged, apart from an extra rule to handle the generalized
matching construct that checks the hierarchy of names (written here as ~D;) for facts
relating to the names (here~z).

~D ` [~z sat φ]P � P where ~D `~z sat φ

We describe a compositional translation from µABC to the polyadic π-calculus with
these mild extensions.

µABC: A Minimal Aspect Calculus 15

5.1 Syntax and semantics of π with pointcuts

Syntax The grammar for pointcuts is as for µABC, except for the atoms.

φ,ψ ::= . . . Pointcut (As for µABC)
~x Atom
¬~x Not Atom

The grammar of processes is standard, except for a generalized match construct.

P,Q,R ::= Process
z〈~x〉 z(~x)P Output, Input
0 P | Q Termination, Parallel
!P Replication
new x<y;P New Name
[~x sat φ]P Match

The matching construct allows for both matching and mismatching. We can define “[x =
y]P” as “[x sat y]P” and “[x 6= y]P” as “[x sat ¬y]P”.

Dynamic semantics Let X range over partially ordered finite sets of names, and write
X ` x ≤ y when x ≤ y can be derived from X . The semantics of pointcuts X `~x sat φ is
as for µABC except for the atoms:

X ` z1, . . . ,zn sat z1, . . . ,zn
X ` z1, . . . ,zn sat ¬x1, . . . ,xm if n 6= m or zi 6= xi for some i

The dynamic semantics X ` P � P′ is given by the usual π-calculus rules, the only
difference being that the semantics of pointcuts requires the partial order X in the re-
duction:

X `~z sat φ

X ` [~z sat φ]P � P

and so the structural rule for new must include the partial order:

X ,x < y ` P � P′ x 6∈ X
X ` new x<y;P � new x<y;P′

The remainder of the dynamic semantics is as given in [26].

5.2 Encoding µABC in π

We now show that µABC can be translated (via a spaghetti-coded CPS transform [29])
into our polyadic π-calculus.

In our translation, following the intuitions expressed in the introduction, advice is
simply placed in parallel with the advised code. However, we need to account for a cou-
ple of features that disallow the straightforward use of parallel composition and cause
the superficial complexity of the translation. First, we need to do some programming to
make a single message of interest activate potentially several pieces of advice. Second,

16 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 4 Translation from µABC to π

~D;` JD;PK(k,c,ρ) = new a<c;(Q |!a(r,s, `,x,y,k′,c′)(
[r,s, ` sat JφK]Q′

| [r,s, ` sat ¬JφK]c〈r,s, `,x,y,k′,c′〉
))

where D = advice a[φ]=σx . τy .πb .P′

and ~D;D;` JPK(k,a,ρ) = Q
and ~D;D;` JP′K(k′,c′,ρ∪{b 7→ (c,r,s, `)}) = Q′

~D;` JD;PK(k,c,ρ) = new p<q;Q
where D = role p<q and ~D;D;` JPK(k,c,ρ) = Q

~D;` Jletx= p�q : ε;PK(k,c,ρ) = new k′ <k;(error〈p,q, `, p,q,k′,c〉 | k′(x,c′)Q)
~D;` Jletx= p�q : `;PK(k,c,ρ) = new k′ <k;(c〈p,q, `, p,q,k′,c〉 | k′(x,c′)Q)

where ~D;` JPK(k,c′,ρ) = Q
~D;` Jletx= p�q : b;PK(k,c,ρ) = new k′ <k;(d〈r,s, `, p,q,k′,c〉 | k′(x,c′)Q)

where ρ(b) = (d,r,s, `) and ~D;` JPK(k,c′,ρ) = Q
~D;` Jletx= p�q :~a,b;PK(k,c,ρ) = new k′ <k;(b〈r,s, `, p,q,k′,c〉 | k′(x,c′)Q)

where [~a,b] =

[
a

∣∣∣∣∣
advicea[φ] · · · ∈ ~D
~D;` a ≤ b
~D;` r � s : ` sat φ

]
and ~D;` JPK(k,c′,ρ) = Q

~D;` JreturnvK(k,c,ρ) = k〈v,c〉

the order of invocation of the advice is fixed, so we are forced to program up explicitly
the order in which the message is passed down the advice chain.

We will, in fact, translate a sublanguage, but one which contains all programs we
consider interesting. A program P = ~D;Q is user code whenever, for any call p � q :~m
contained in P, we have:

– ~m is a role `; or
– ~m is an advice name b bound as a proceed variable — that is, there is an enclosing

advice declaration advice a[φ]=σx . τy .πb . · · · .

Unfortunately, user code is not closed under reduction: if P is user code, and P _ P′,
then P′ is not necessarily user code. We defined user closed code, which is closed under
reduction.

Definition 7. A program P = ~D;Q is user closed whenever, for any call p � q :~m con-
tained in P, we have either:

– ~m is a role `; or
– ~m is an advice name b bound as a proceed variable; or
– ~m is a sequence “~a” and for some~b, r, s and `:

[~a,~b] =

[
c

∣∣∣∣∣advicec[φ] · · · ∈ ~D
~D;` r � s : ` sat φ

]

µABC: A Minimal Aspect Calculus 17

Let ρ be a partial function from names to quadruples of names. We define the trans-
lation ~D;` JPK(k,c,ρ) = Q in Table 4. Write “~D;` JPK = Q” as shorthand for “~D;`
JPK(result,error, /0) = Q”.

The translation uses communication of seven-tuples 〈r,s, `,x,y,k,c〉. Here r is the
original caller, s is the original callee, ` is the original method name, x is the current
caller of a piece of advice, y is the current callee, k is a continuation c is the name of
the most recently declared advice. Whenever a method is called, the translation goes
through the list c, checking advice in order. This encodes advice lookup.

Note that the translation is partial: there exist programs P such that there is no Q for
which JPK = Q. However, on user closed programs, the translation is total: there always
exists such a Q. Moreover, on user code, the translation is a function: Q is uniquely
determined by P.

Theorem 8. For any user code P, if JPK = Q then P _∗ ~D; returnv
iff ` Q �∗ new~x<~y;(Q′ | result〈v〉).

6 Conclusions and Future work.

µABC was deliberately designed to be a small calculus that embodies the essential fea-
tures of aspects. However, this criterion makes µABC an inconvenient candidate to serve
in the role of a meta-language that is the target of translations from “full-scale” aspect
languages. There is recent work on such meta-languages (eg. [10] builds on top of the
full object calculus), and the bridging of the gap between µABC and such work remains
open for future study. In this vein, we are exploring the addition of temporal connec-
tives to the pointcut logic of µABC. Such an approach provides a principled way to
understand and generalize features in existing aspect languages, e.g. cflow in AspectJ,
that quantify over sequences of events.

There is ample evidence that aspect-oriented programming is emerging as a power-
ful tool for system design and development. From the viewpoint of CONCUR, aspects
provide two intriguing opportunities. First, the techniques and approaches that have
been explored in concurrency theory provide the basis for a systematic foundational
analysis of aspects. Our description of µABC and its expressiveness falls into this cat-
egory. In a more speculative vein, the large suite of tools and techniques studied in
concurrency theory are potentially relevant to manage the complexity of reasoning re-
quired by aspect-oriented programming. Our translation of µABC into the pi-calculus
is a step in understanding this connection.

References

1. AspectJ website. http://www.eclipse.org/aspectj/.
2. Martin Abadi and Luca Cardelli. A Theory of Objects. Springer Verlag, 1996.
3. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object-

interactions using composition-filters. In In object-based distributed processing, LNCS,
1993.

4. Association of Computing Machinery. Communications of the ACM, Oct 2001.

18 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

5. Lujo Bauer, Jarred Ligatti, and David Walker. A calculus for composing security policies.
Technical Report TR-655-02, Dept. of Computer Science, Princeton University, 2002.

6. A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270–1282, September 1991.

7. L. Bergmans. ”Composing Concurrent Objects - Applying Composition Filters for the De-
velopment and Reuse of Concurrent Object-Oriented Programs”. Ph.d. thesis, University of
Twente, 1994. http://wwwhome.cs.utwente.nl/∼bergmans/phd.htm.

8. G.M. Bierman, M.J. Parkinson, and A.M. Pitts. An imperative core calculus for Java and
Java with effects. Technical Report 563, University of Cambridge Computer Laboratory,
April 2003.

9. G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. µABC: A minimal aspect calculus. Full
version, available at http://fpl.cs.depaul.edu/ajeffrey/papers/muABCfull.pdf,
2004.

10. Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parameterized aspect calculus: A core
calculus for the direct study of aspect-oriented languages. Submitted for publication, at
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf, oct 2003.

11. Daniel S. Dantas and David Walker. Aspects, information hiding and modularity. Submitted
for publication, at http://www.cs.princeton.edu/∼dpw/papers/aspectml-nov03.
pdf, 2003.

12. Bruno Dufour, Christopher Goard, Laurie Hendren, Clark Verbrugge, Oege de Moor, and
Ganesh Sittampalam. Measuring the dynamic behaviour of AspectJ programs, 2003.

13. R. Filman and D. Friedman. Aspect-oriented programming is quantification and oblivious-
ness, 2000.

14. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In ACM
Symposium on Principles of Programming Languages (POPL), pages 171–183, 1998.

15. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In 7th International Conference on Concurrency Theory (CON-
CUR’96), pages 406–421, Pisa, Italy, 1996. Springer-Verlag. LNCS 1119.

16. C. A. R. Hoare. Communicating Sequential Processes. Int. Series in Computer Science.
Prentice Hall, 1985.

17. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, May 2001.

18. R. Jagadeesan, A. Jeffrey, and J. Riely. A typed calculus for aspect-oriented programs. Sub-
mitted for publication, at http://fpl.cs.depaul.edu/ajeffrey/papers/typedABL.
pdf, 2003.

19. Radha Jagadeesan, Alan Jeffrey, and James Riely. An untyped calculus of aspect oriented
programs. In Conference Record of ECOOP 03: The European Conference on Object-
Oriented Programming, volume 2743 of Lecture Notes in Computer Science, 2003.

20. Gregor Kiczales and Yvonne Coady. http://www.cs.ubc.ca/labs/spl/projects/

aspectc.html.
21. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.

Griswold. An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355,
2001.

22. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Confer-
ence on Object-Oriented Programming (ECOOP), 1997.

23. K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, 1996.

µABC: A Minimal Aspect Calculus 19

24. C. V. Lopes. ”D: A Language Framework for Distributed Programming”. Ph.d. thesis,
Northestern University, 1997. ftp://ftp.ccs.neu.edu/pub/people/lieber/theses/
lopes/dissertation.pdf.

25. Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in object-
oriented concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, pages 107–150.
MIT Press, 1993.

26. R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and H. Schwicht-
enberg, editors, Logic and Algebra of Specification, pages 203–246. Springer-Verlag, 1993.

27. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100(1):1–40, 1992.

28. H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace ap-
proach. In Proceedings of the Symposium on Software Architectures and Component Tech-
nology: The State of the Art in Software Development, 2001.

29. Gordon Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

30. David Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-order languages.
In Conference Record of AOSD 03: The 2nd International Conference on Aspect Oriented
Software Development, 2003.

31. David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Conference Record
of ICFP 03: The ACM SIGPLAN International Conference on Functional Programming,
2003.

32. Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. TOPLAS, 2003. To appear.

20 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

A Bound and Free Names

Bound and free names are defined as follows:

bn(B1, . . . ,Bn) = bn(B1)∪·· ·∪bn(Bn)
bn(role p · · ·) = {p}

bn(advicea[φ] · · ·) = {a}
bn(letx= · · ·) = {x}

fn(~B; returnv) = fn(~B)∪ ({v}\bn(~B))
fn(ε) = /0

fn(~B;~C) = fn(~B)∪ (fn(~C)\bn(~B))
fn(role p<q) = {q}

fn(advice a[φ]=σx . τy .πb .Q) = fn(φ)∪ (fn(Q)\{x,y,b})
fn(letx= p�q :~m) = {p,q,~m}

fn(true) = fn(false) = /0

fn(p�q : `) = fn(¬p�q : `) = {p,q, `}
fn(φ∧ψ) = fn(φ∨ψ) = fn(φ)∪ fn(ψ)

fn(∃x ≤ p .φ) = fn(∀x ≤ p .φ) = {p}∪ (fn(φ)\{x})

B Class-based reduction

The syntactic categories involved in the reduction relation are described below.
Define the bound names of a declarations and commands to be as for µABC with

the addition of the following two rules.

bn(class t · · ·) = {t}
bn(set p. f = v) = /0

The free names of a program are defined as follows.

fn(B;P) = fn(B)∪ (fn(P)\bn(B))
fn(if p : t then P else Q) = {p, t}∪ fn(P)∪ fn(Q)

fn(returnv) = {v}
fn(ε) = /0

fn(~H,~I) = (fn(~H)\bn(~I))∪ (fn(~I)\bn(~H))
fn(letx= p{Q}) = {p}∪ fn(Q)
fn(letx= p.`(~v)) = {p, `,~v}
fn(letx= p.~a(~v)) = {p,~a,~v}

fn(letx= p. f) = {p, f}
fn(set p. f = v) = {p, f ,v}

fn(class t <:u{~M}) = {u}∪ fn(~M)
fn(advice a[φ](~x){Q}) = fn(φ)∪ (fn(Q)\{~x,target,this,proceed})

fn(object p : t {~F}) = {t}∪ fn(~F)
fn(field f = v) = { f ,v}

fn(method`(~x){Q}) = {`}∪ (fn(Q)\{~x,this,super})

µABC: A Minimal Aspect Calculus 21

The instance-of relation ~D; ~H;` p : t indicates that object p is an instance of class t.

~D; ~H;` p : t if object p : t {~F} ∈ ~H
~D; ~H;` p : u if class t <:u{~M} ∈ ~D and ~D; ~H;` p : t

The satisfaction relation ~D;~H;` p � q : ` sat φ is the same as for µABC, except for the
quantifiers.

~D;~H;` p�q : ` sat ∃x : t .φ if for some ~E; and some s,
~D;~E; ~H;` s : t and
~D;~E;~H;` p�q : ` sat φ[s/x]

~D;~H;` p�q : ` sat ∀x : t .φ if for every ~E; and every s,
~D;~E; ~H;` s : t implies
~D;~E;~H;` p�q : ` sat φ[s/x]

C Pointcut Semantics

The ordering relation on names “~D;` p ≤ q” and a satisfaction relation for pointcuts
“~D;` p�q : ` sat φ” are defined as follows:

~D;` p ≤ p always
~D;` p ≤ r if for some q, ~D;` p ≤ q and roleq<r ∈ ~D

~D;` p�q : ` sat true always
~D;` p�q : ` sat p�q : ` always
~D;` p�q : ` sat ¬p′�q′ : `′ if (p�q : `) 6= (p′�q′ : `′)
~D;` p�q : ` sat φ∧ψ if ~D;` p�q : ` sat φ and

~D;` p�q : ` sat ψ

~D;` p�q : ` sat φ∨ψ if ~D;` p�q : ` sat φ or
~D;` p�q : ` sat ψ

~D;` p�q : ` sat ∃x ≤ r.φ if for some ~E; and some s,
~D;~E;` s ≤ r and
~D;~E;` p�q : ` sat φ[s/x]

~D;` p�q : ` sat ∀x ≤ r.φ if for every ~E; and every s,
~D;~E;` s ≤ r implies
~D;~E;` p�q : ` sat φ[s/x]

On the face of it, the definition of quantifiers in relies on potential extensions of ~D
and is not computationally realizable. We give an equivalent intensional definition in
the following Proposition, which performs only finitely many tests.

Proposition 9. The definition of pointcut semantics is equivalent to the following:

~D;` p�q : ` sat φ[⊥/x]
or ~D;` p�q : ` sat φ[s/x]
for some s s.t. ~D;` s ≤ r
~D;` p�q : ` sat ∃x ≤ r.φ

~D;` p�q : ` sat φ[⊥/x]
and ~D;` p�q : ` sat φ[s/x]
for every s s.t. ~D;` s ≤ r
~D;` p�q : ` sat ∀x ≤ r.φ

22 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

where we define φ[⊥/x] as generated homomorphically by:

(∃y ≤ p .φ)[⊥/x]

=
{

φ[⊥/x,⊥/y] if p = x
∃y ≤ p . (φ[⊥/x]) otherwise

(∀y ≤ p .φ)[⊥/x]

=
{

φ[⊥/x,⊥/y] if p = x
∀y ≤ p . (φ[⊥/x]) otherwise

(p�q : `)[⊥/x]

=
{

false if x ∈ {p,q, `}
p�q : ` otherwise

(¬p�q : `)[⊥/x]

=
{

true if x ∈ {p,q, `}
¬p�q : ` otherwise

D Semantics of the π calculus

The bound names of a process is generated homomorphically from the following.

bn(new x<y;P) = {x}
bn(z(~x)P) = {~x}

The free names of a process are defined as follows

fn(z(~x)P) = {z}∪ fn(P)\{~x}
fn(z〈~x〉) = {z,~x}

fn(P | Q) = fn(P)∪ fn(Q)
fn(0) = /0

fn(!P) = fn(P)
fn(new x<y;P) = {y}∪ fn(P)\{x}
fn([~x sat φ]P) = {~x}∪ fn(φ)∪ fn(P)

Alpha equivalence and substitution are standard. The structural equivalence is the least
equivalence generated by the following.

P≡ P′ if P α= P′

P | Q≡ P′ | Q′ if P ≡ P′ and Q ≡ Q′

new x<y;P≡ new x<y;P′ if P ≡ P′

P | Q≡Q | P
P | 0≡ P

!P≡ P |!P
new x<y;(P | Q)≡ P | new x<y;Q if x 6∈ fn(P)
new x<y;new x′ <y′;P ≡ new x′ <y′;new x<y;P

if x 6= y′ and x′ 6= y

µABC: A Minimal Aspect Calculus 23

The reduction rules are as follows.

X ` z(~x)P | z〈~y〉� P[~y/~x]

X `~z sat φ

X ` [~z sat φ]P � P

X ,x < y ` P � P′

X ` new x<y;P � new x<y;P′

X ` P � P′

X ` P | Q � P′ | Q

X ` P � Q
P ≡ P′

Q ≡ Q′

X ` P′ � Q′

Define ¬φ as the DeMorgan dualized version of φ. Garbage collection is defined as the
least preorder generated from the following rules.

x 6∈ fn(P)

X ` new x<y;P
gc
� P

X `~x sat ¬φ

X ` [~x sat φ]P
gc
� P

X ,x < y ` P
gc
� P′

X ` new x<y;P
gc
� new x<y;P′

X ` P
gc
� P′

X ` P | Q
gc
� P′ | Q

X ` Q | P
gc
� Q | P′

24 Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely

E Garbage collection

Define garbage collection as the preorder generated by the following rules:

~D; role p<q;P
gc
_ ~D;P where p 6∈ fn(P)

~D; role p<q;~E;advice [φ] · · · ;P
gc
_ ~D; role p<q;~E;P

where p 6∈ fn(~E;P)
and φ = r � p : `
or φ = ∃x ≤ r.∃y ≤ p . x� y : `
or φ = ∃x ≤ p .∃y ≤ r. x� y : `

~D;advice [φ] · · · ;~E;P
gc
_ ~D;~E;P

where advice a[φ]=σx . τy .R ∈ ~E

~B; letz= p�q :~m,a,~n;P
gc
_ ~B; letz= p�q :~m′,a,~n;P

where advice a[φ]=σx . τy .R ∈ ~B

The first rule allows for the collection of unused roles. The second and third allow for
the collection of advice with pointcuts that never fire. The last two rules allow for the
removal of advice that is blocked by preceding advice that never proceeds. Garbage
collection is confluent.

Proposition 10. If P
gc
_P′ and P

gc
_P′′ then P′ gc

_Q and P′′ gc
_Q for some Q.

Garbage collection commutes with reduction.

Proposition 11. If P _ P′ and P
gc
_Q then Q _ Q′ where P′ gc

_Q′.

