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Abstract. We study mechanisms that permit program components to express role con-
straints on clients, focusing on programmatic security mechanisms, which permit access
controls to be expressed, in situ, as part of the code realizing basic functionality. In this
setting, two questions immediately arise. (1) The user of a component faces the issue of
safety: is a particular role sufficient to use the component? (2) The component designer
faces the dual issue of protection: is a particular role demanded in all execution paths of
the component? We provide a formal calculus and static analysis to answer both questions.

1. Introduction

This paper addresses programmatic security mechanisms as realized in systems such as
Java Authentication and Authorization Service (jaas) and .net. These systems enable two
forms of access control mechanisms1. First, they permit declarative access control to describe
security specifications that are orthogonal and separate from descriptions of functionality,
e.g., in an interface I, a declarative access control mechanism could require the caller to
possess a minimum set of rights. While conceptually elegant, such specifications do not
directly permit the enforcement of access control that is sensitive to the control and dataflow
of the code implementing the functionality — consider for example history sensitive security
policies that require runtime monitoring of relevant events. Consequently, jaas and .net
also include programmatic mechanisms that permit access control code to be intertwined
with functionality code, e.g., in the code of a component implementing interface I. On the
one hand, such programmatic mechanisms permit the direct expression of access control
policies. However, the programmatic approach leads to the commingling of the conceptually
separate concerns of security and functionality.
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There is extensive literature on policy languages to specify and implement policies
(e.g., [16, 28, 15, 5, 29, 13] to name but a few). This research studies security policies
as separate and orthogonal additions to component code, and is thus focused on declarative
security in the parlance of jaas/.net.

In contrast, we study programmatic security mechanisms. Our motivation is to extract
the security guarantees provided by access control code which has been written inline with
component code. We address this issue from two viewpoints:
• The user of a component faces the issue of safety: is a particular set of rights sufficient to
use the component? (ie. with that set of rights, there is no possible execution path that
would fail a security check. Furthermore, any greater set of rights will also be allowed to
use the component)
• The component designer faces the dual issue of protection: is a particular set of rights
demanded in all execution paths of the component? (ie. every execution path requires
that set of rights. Furthermore, any lesser set of rights will not be allowed to use the
component)

The main contribution of this paper is separate static analyses to calculate approximations
to these two questions. An approximate answer to the first question is a set of rights,
perhaps bigger than necessary, that is sufficient to use the component. On the other hand,
an approximate answer to the second question, is a set of rights, perhaps smaller than what
is actually enforced, that is necessary to use the component.

1.1. An overview of our technical contributions. There is extensive literature on Role-
Based Access-Control (rbac) models including nist standards for rbac [26, 12]; see [11] for
a textbook survey. The main motivation for rbac, in software architectures (e.g., [22, 21])
and frameworks such as jaas/.net, is that it enables the enforcement of security policies
at a granularity demanded by the application. In these examples, rbac allows permissions
to be de-coupled from users: Roles are the unit of administration for users and permissions
are assigned to roles. Roles are often arranged in a hierarchy for succinct representation
of the mapping of permissions. Component programmers design code in terms of a static
collection of roles. When the application is deployed, administrators map the roles defined
in the application to users in the particular domain.

In this paper, we study a lambda calculus enriched with primitives for access control,
dubbed λ-RBAC. The underlying lambda calculus serves as an abstraction of the ambient
programming framework in a real system. We draw inspiration from the programming
idioms in jaas and .net, to determine the expressiveness required for the access control
mechanisms. In a sequence of .net examples2, closely based on [18], we give the reader a
flavor of the basic programming idioms.

Example 1 ( [18]). In the .net Framework clr, every thread has a Principal object that
carries its role. This Principal object can be viewed as representing the user executing
the thread. In programming, it often needs to be determined whether a specific Principal
object belongs to a familiar role. The code performs checks by making a security call for
a PrincipalPermission object. The PrincipalPermission class denotes the role that a
specific principal needs to match. At the time of a security check, the clr checks whether

2In order to minimize the syntactic barrage on the unsuspecting reader, our examples to illustrate the
features are drawn solely from the .net programming domain. At the level of our discussion, there are no
real distinctions between jaas and .net security services.
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the role of the Principal object of the caller matches the role of the PrincipalPermission
object being requested. If the role values of the two objects do not match, an exception is
raised. The following code snippet illustrates the issues:

PrincipalPermission usrPerm =
new PrincipalPermission (null,"Manager");

usrPerm.Demand()
If the current thread is associated with a principal that has the the role of manager, the
PrincipalPermission objects are created and security access is given as required. If the
credentials are not valid, a security exception is raised.

In this vein, the intuitive operation of λ-RBAC is as follows. λ-RBAC program execution
takes place in the context of a role, say r, which can be viewed concretely as a set of
permissions. The set of roles used in a program is static: we do not allow the dynamic
creation of roles. λ-RBAC supports run-time operations to create objects (i.e. higher-order
functions) that are wrapped with protecting roles. The use of such guarded objects is
facilitated by operations that check that the role-context r is at least as strong as the
guarding role: an exception is raised if the check fails.

The next example illustrates that boolean combinations of roles are permitted in pro-
grams. In classical rbac terms, this is abstracted by a lattice or boolean structure on
roles.

Example 2 ( [18]). The Unionmethod of the PrincipalPermission class combines multiple
PrincipalPermission objects. The following code represents a security check that succeeds
only if the Principal object represents a user in the CourseAdmin or BudgetManager roles:
PrincipalPermission Perm1 =

new PrincipalPermission (null,"CourseAdmin");
PrincipalPermission Perm2 =

new PrincipalPermission(null,"BudgetManager’);

// Demand at least one of the roles using Union
perm1.Union (perm2).Demand ()

Similarly, there is an Intersect method to represent a “join” operation in the role lattice.

In λ-RBAC, we assume that roles form a lattice: abstracting the concrete union/inter-
section operations of these examples. In the concrete view of a role as a set of permissions,
role ordering is given by supersets, ie. a role is stronger than another role if it has more
permissions; join of roles corresponds to the union of the sets of permissions and meet of
roles corresponds to the intersection of the sets of permissions. Some of our results assume
that the lattice is boolean, i.e. the lattice has a negation operation. In the concrete view
of the motivating examples, the negation operation is interpreted by set complement with
respect to a maximum collection of permissions

Our study is parametric on the underlying role lattice.
The key operation in such programming is rights modulation. From a programming

viewpoint, it is convenient, indeed sometimes required, for an application to operate under
the guise of different users at different times. Rights modulation of course comes in two
flavors: rights weakening is overall a safe operation, since the caller chooses to execute with
fewer rights. On the other hand, rights amplification is clearly a more dangerous operation.
In the .net framework, rights modulation is achieved via a technique called impersonation.
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Example 3. Impersonation of an account is achieved using the account’s token, as shown
in the following code snippet:
WindowsIdentity stIdentity = new WindowsIdentity (StToken);
// StToken is the token associated with the Windows acct being impersonated

WindowsImpersonationContext stImp = stIdentity.Impersonate();
// now operating under the new identity

stImp.Undo(); // revert back

λ-RBAC has combinators to perform scoped rights weakening and amplification.
We demonstrate the expressiveness of λ-RBAC by building a range of useful combinators

and a variety of small illustrative examples. We discuss type systems to perform the two
analyses alluded to earlier: (a) an analysis to detect and remove unnecessary role-checks in
a piece of code for a caller at a sufficiently high role, and (b) an analysis to determine the
(maximal) role that is guaranteed to be required by a piece of code. The latter analysis ac-
quires particular value in the presence of rights modulation. For both we prove preservation
and progress properties.

1.2. Related work. Our paper falls into the broad area of research enlarging the scope of
foundational, language-based security methods (see [27, 19, 3] for surveys).

Our work is close in spirit, if not in technical development, to edit automata [16], which
use aspects to avoid the explicit intermingling of security and baseline code.

The papers that are most directly relevant to the current paper are those of Braghin,
Gorla and Sassone [7] and Compagnoni, Garalda and Gunter [10]. [7] presents the first con-
current calculus with a notion of rbac, whereas [10]’s language enables privileges depending
upon location.

Both these papers start off with a mobile process-based computational model. Both cal-
culi have primitives to activate and deactivate roles: these roles are used to prevent undesired
mobility and/or communication, and are similar to the primitives for role restriction and
amplification in this paper. The ambient process calculus framework of these papers pro-
vides a direct representation of the “sessions” of rbac— in contrast, our sequential calculus
is best thought of as modeling a single session.

[7, 10] develop type systems to provide guarantees about the minimal role required for
execution to be successful — our first type system occupies the same conceptual space as this
static analysis. However, our second type system that calculates minimum access controls
does not seem to have an analogue in these papers.

More globally, our paper has been influenced by the desire to serve loosely as a metalan-
guage for programming rbac mechanisms in examples such as the jaas/.net frameworks.
Thus, our treatment internalizes rights amplification by program combinators and the am-
plify role constructor in role lattices. In contrast, the above papers use external — i.e.
not part of the process language — mechanisms (namely, user policies in [10], and rbac-
schemes in [7]) to enforce control on rights activation. We expect that our ideas can be
adapted to the process calculi framework. In future work, we also hope to integrate the
powerful bisimulation principles of these papers.

Our paper deals with access control, so the extensive work on information flow, e.g.,
see [24] for a survey, is not directly relevant. However, we note that rights amplification
plays the same role in λ-RBAC that declassification and delimited release [9, 25, 20] plays in
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the context of information flow; namely that of permitting access that would not have been
possible otherwise. In addition, by supporting the internalizing of the ability to amplify code
rights into the role lattice, our system permits access control code to actively participate in
managing rights amplification.

1.3. Rest of the paper. We present the language in Section 2, the type system in Sec-
tion 3 and illustrate its expressiveness with examples in Section 4. We discuss methods for
controlling rights amplification in Section 5. Section 6 provides proofs of the theorems from
Section 3.

2. The Language

After a discussion of roles, we present an overview of the language design. The remaining
subsections present the formal syntax, evaluation semantics, typing system, and some simple
examples.

2.1. Roles. The language of roles is built up from role constructors. The choice of role
constructors is application dependent, but must include the lattice constructors discussed
below. Each role constructor, κ, has an associated arity, arity(κ). Roles A–E have the form
κ(A1, . . . , An).

We require that roles form a boolean lattice; that is, the set of constructors must include
the nullary constructors 000 and 111, binary constructors t and u (written infix), and unary
constructor ? (written postfix). 000 is the least element of the role lattice. 111 is the greatest
element. u and t are idempotent, commutative, associative, and mutually distributive meet
and join operations respectively. ? is the complement operator.

A role may be thought of as a set of permissions. Under this interpretation, 000 is the
empty set, while 111 is the set of all permissions.

The syntax of terms uses role modifiers, ρ, which may be of the form ↑A or ↓A. We use
role modifiers as functions from roles to roles, with ρLA M defined as follows:

↑ALB M = A tB ↓ALB M = A uB
In summary, the syntax of roles is as follows.

κ ::= 000 | 111 | t | u | ? | · · · Role constructors

A–E ::= κ(A1, . . . , An) Roles

ρ ::= ↑A | ↓A Role modifiers

Throughout the paper, we assume that all roles (and therefore all types) are well-formed,
in the sense that role constructors have the correct number of arguments.

The semantics of roles is defined by the relation “A .= B” stating that A and B are
provably equivalent. In addition to any application-specific axioms, we assume the standard
axioms of boolean algebra. We say that A dominates B (notation A > B) if A .= A t B
(equivalently B .= A uB) is derivable. Thus we can conclude 111 > A tB > A > A uB > 000,
for any A, B.

The role modifier ↓A creates a weaker role (closer to 000), thus we refer to it as a restriction.
Dually, the modifier ↑A creates a stronger role (closer to 111), and thus we refer to it as an



6 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELY

amplification. While this ordering follows that of the nist rbac standard [12], it is dual to
the normal logical reading; it may be helpful to keep in mind that, viewed as a logic, 111 is
“false”, 000 is “true”, t is “and”, u is “or” and > is “implies.”

2.2. Language overview. Our goal is to capture the essence of role-based systems, where
roles are used to regulate the interaction of components of the system. We have chosen to
base our language on Moggi’s monadic metalanguage because it is simple and well under-
stood, yet rich enough to capture the key concepts. By design, the monadic metalanguage is
particularly well suited to studying computational side effects (or simply effects), which are
central to our work. (We expect that our ideas can be adapted to both process and object
calculi.)

The “components” in the monadic metalanguage are terms and the contexts that use
them. To protect terms, we introduce guards of the form {A}[M], which can only be
discharged by a context whose role dominates A. The notion of context role is formalized in
the definition of evaluation, where A . M → N indicates that context role A is sufficient to
reduce M to N . The term check M discharges the guard on M . The evaluation rule allows
A . check {B}[M]→ [M] only if A > B.

The context role may vary during evaluation: given context role A, the term ρ(M)
evaluates M with context role ρLA M. Thus, when ↓B(M) is evaluated with context role A,
M is evaluated with context role AuB. A context may protect itself from a term by placing
the use of the term in such a restricted context. (The syntax enforces a stack discipline on
role modifiers.) By combining upwards and downwards modifiers, code may assume any role
and thus circumvent an intended policy. We address this issue in Section 5.

These constructs are sufficient to allow protection for both terms and contexts: terms
can be protected from contexts using guards, and contexts can be protected from terms
using (restrictive) role modifiers.

2.3. Syntax. Let x, y, z, f , g range over variable names, and let bv range over base values.
Our presentation is abstract with respect to base values; we use the types String, Int and
Unit (with value unit) in examples. We use the standard encodings of booleans and pairs
(see Example 14). The syntax of values and terms are as follows.

V,U,W ::= M,N,L ::= Values; Terms
bv | x V Base Value
λx.M M N | fix M Abstraction
{A}[M] check M Guard
[M] let x=M;N Computation

ρ(M) Role Modifier

Notation. In examples, we write A(M) to abbreviate ↓000(↑A(M)), which executes M at
exactly role A.

The variable x is bound in the value “λx.M ” (with scopeM) and in the term “ let x=M;
N ” (with scope N). If x does not appear free in M , we abbreviate “λx.M ” as “λ.M ”.
Similarly, if x does not appear free in N , we abbreviate “ let x=M;N ” as “M;N ”. We
identify syntax up to renaming of bound variables and write N{x :=M} for the capture-
avoiding substitution of M for x in N .
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In the presentation of the syntax above, we have paired the constructors on values
on the left with the destructors on computations on the right. For example, the monadic
metalanguage distinguishes 2 from [2] and [1+1]: the former is an integer, whereas the
latter are computations that, when bound, produce an integer. The computation value [M]
must be discharged in a binding context — see the reduction rule for let, below. Similarly,
the function value λx.M must be discharged by application; in the reduction semantics
that follows, evaluation proceeds in an application till the term in function position reduces
to a lambda abstraction. {A}[M] constructs a guarded value; the associated destructor is
check .

The monadic metalanguage distinguishes computations from the values they produce
and treats computations as first class entities. (Any term may be treated as a value via the
unit constructor [M].) Both application and the let construct result in computations; how-
ever, the way that they handle their arguments is different. The application “(λx.N) [M]”
results in N{x := [M]}, whereas the binding “ let x= [M];M ” results in N{x :=M}.

2.4. Evaluation and role error. The small-step evaluation relation A . M → M ′ is
defined inductively by the following reduction and context rules.

(r-app)

A . (λx.M) N →M{x := N}

(c-app)

A . M →M ′

A . M N →M ′ N

(r-fix)

A . fix (λx.M)→M{x := fix (λx.M)}

(c-fix)

A . M →M ′

A . fix M → fix M ′

(r-chk)

A . check {B}[M]→ [M]
A > B

(c-chk)

A . M →M ′

A . check M → check M ′

(r-bind)

A . let x= [M];N → N{x :=M}

(c-bind)

A . M →M ′

A . let x=M;N → let x=M ′;N

(r-mod)

A . ρ(V )→ V

(c-mod)

ρLA M . M →M ′

A . ρ(M)→ ρ(M ′)

The rules r/c-app for application, r/c-fix for fixed points and r/c-bind for let are
standard. r-chk ensures that the context role is sufficient before discharging the relevant
guard. c-mod modifies the context role until the relevant term is reduced to a value, at
which point r-mod discards the modifier.

The evaluation semantics is designed to ensure a role-monotonicity property. Increasing
the available role-context cannot invalidate transitions, it can only enable more evolution.

Lemma 4. If B . M →M ′ and A > B then A . M →M ′.

Proof. (Sketch) The context role is used only in r-chk. Result follows by induction on the
evaluation judgement.
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Via a series of consecutive small steps, the final value for the program can be determined.
Successful termination is written A . M � V which indicates that A is authorized to run
the program M to completion, with result V . Viewed as a role-indexed relation on terms,
� is reflexive and transitive.

Definition 5. (a) M0 evaluates to Mn at A (notation A . M0 � Mn) if there exist terms
Mi such that A . Mi → Mi+1, for all i (0 ≤ i ≤ n − 1). (b) M diverges at A (notation
A . M →ω) if there exist terms Mi such that A . Mi →Mi+1, for all i ∈ N.

Evaluation can fail because a term diverges, because a destructor is given a value of the
wrong shape, or because an inadequate role is provided at some point in the computation.
We refer to the latter as a role error (notation A . M  err), defined inductively as follows.

A . check {B}[M]  err
A 6> B

ρLA M . M  err

A . ρ(M)  err

A . M  err

A . M N  err

A . M  err

A . fix M  err

A . M  err

A . let x=M;N  err

A . M  err

A . check M  err

Example 6. Recall from Section 2.3 that B(M) abbreviates ↓000(↑B(M)), and define
test<B> as follows3.

test<B> M= check {B}[unit]

test<B> is a computation that requires context role B to evaluate. For example, ↓B?(test<B>)
produces a role error in any context, since ↓B? restricts any role-context to the negation of
the role B.

Example 7. We now illustrate how terms can provide roles for themselves. Consider the
following guarded function:

from<A,B> M= {A}[λy.B(y)]

from<A,B> is a guarded value that may only be discharged by A, resulting in a function
that runs any computation at B. Let test<B> M= check {B}[unit]. No matter what the
relationship is between A and B, the following evaluation succeeds:

A . let z= check from<A,B>; z test<B>� B(test<B>)� [unit]

from<A,B> is far too powerful to be useful. After the A-guard is discharged, the resulting
function will run any code at role B. One can provide specific code, of course, as in λy.B(M).
Such functions are inherently dangerous and therefore it is desirable constrain the way in
which such functions are created. The essential idea is to attach suitable checks to a function
such as λg.λy.B(g y), which takes a non-privileged function and runs it under B. There
are a number of subtleties to consider in providing a general purpose infrastructure to create
terms with rights amplification. When should the guard be checked? What functions should
be allowed to run, and in what context? In Example 21, we discuss the treatment of these
issues using the Domain and Type Enforcement access control mechanism.

3We do not address parametricity here; the brackets in the names test<B> and from<A,B> are merely
suggestive.
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3. Typing

We present two typing systems that control role errors in addition to shape errors.
The first typing system determines a context role sufficient to avoid role errors; that

is, with this role, there is no possible execution path that causes a role error. This system
enables the removal of unnecessary role-checks in a piece of code for a caller at a sufficiently
high role.

The second system determines a context role necessary to avoid role errors; that is, any
role that does not dominate this role will cause every execution path to result in a role error.
Stated differently, the second system calculates the role that is checked and tested on every
execution path and thus determines the amount of protection that is enforced by the callee.

Technically, the two systems differ primarily in their notions of subtyping. In the absence
of subtyping, the typing system determines a context role that is both necessary and sufficient
to execute a term without role errors.

Because it clearly indicates the point at which computation is performed, the monadic
metalanguage is attractive for reasoning about security properties, which we understand as
computational effects. The type [T ] is the type of computations of type T . We extend the
computation type [T ] to include an effect that indicates the guards that are discharged during
evaluation of a term. Thus the term check {A}[1+1] has type 〈A〉[Int] — this type indicates
that the reduction of the term to a value (at type Int) requires A. Guarded values inhabit
types of the form {A}[T ] — this type indicates the protection of A around an underlying
value at type T . These may be discharged with a check, resulting in a term inhabiting the
computation type 〈A〉[T ].

The syntax of types is given below, with the constructors and destructors at each type
recalled from Section 2.3.

T, S ::= V,U,W ::= M,N,L ::= Types; Values; Terms
Base bv | x V Base Value
T � S λx.M M N | fix M Abstraction
{A}[T ] {A}[M] check M Guard
〈A〉[T ] [M] let x=M;N Computation

ρ(M) Role Modifier

3.1. Subtyping. The judgments of the subtyping and typing relations are indexed by α
which ranges over {1, 2}. The subtyping relation for 〈A〉[T ] reflects the difference between
the two type systems.

If role A suffices to enable a term to evaluate without role errors, then any higher role
context also avoids role errors (using Lemma 4). This explains the subtyping rule for the
first type system — in particular, 1̀ 〈A〉[T ] <: 〈111〉[T ], reflecting the fact that the top role is
sufficient to run any computation.

On the other hand, if a role A of the role-context is checked and tested on every execution
path of a term, then so is any smaller role. This explains the subtyping rule for the first
type system — in particular, 2̀ 〈A〉[T ] <: 〈000〉[T ], reflecting the fact that the bottom role is
vacuously checked in any computation.
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ὰ Base <: Base

ὰ T <: T ′

ὰ {A}[T ] <: {A′}[T ′]
if α = 1 then A′ > A
if α = 2 then A > A′

ὰ T
′ <: T ὰ S <: S′

ὰ T � S <: T ′ � S′
ὰ T <: T ′

ὰ 〈A〉[T ] <: 〈A′〉[T ′]
if α = 1 then A′ > A
if α = 2 then A > A′

Lemma 8. The relations ὰ T <: S are reflexive and transitive.

3.2. Type systems. Typing is defined using environments. An environment,

Γ ::= x1:T1, . . . , xn:Tn
is a finite partial map from variables to types.

As usual, there is one typing rule for each syntactic form plus the rule t-sub for sub-
sumption, which allows the use of subtyping. Upwards and downwards role modifiers have
separate rules, discussed below. The typing rules for the two systems differ only in their
notion of subtyping and in the side condition on t-mod-dn; we discuss the latter in Exam-
ple 15.

(t-base)

Γ ὰ bv : Base

(t-var)

Γ, x:T ,Γ′ ὰ x : T

(t-sub)

Γ ὰ M : T
Γ ὰ M : T ′

ὰ T <: T ′

(t-abs)

Γ, x:T ὰ M : S
Γ ὰ λx.M : T � S

x /∈ dom(Γ)

(t-app)

Γ ὰ M : T � S Γ ὰ N : T
Γ ὰ M N : S

(t-fix)

Γ ὰ M : T � T

Γ ὰ fix M : T
(t-grd)

Γ ὰ M : T
Γ ὰ {A}[M] : {A}[T ]

(t-chk)

Γ ὰ M : {A}[T ]
Γ ὰ check M : 〈A〉[T ]

(t-unit)

Γ ὰ M : T
Γ ὰ [M] : 〈000〉[T ]

(t-bind)

Γ ὰ M : 〈A〉[T ] Γ, x:T ὰ N : 〈B〉[S]
Γ ὰ let x=M;N : 〈A tB〉[S]

x /∈ dom(Γ)

(t-mod-up)

Γ ὰ M : 〈B〉[T ]
Γ ὰ ↑A(M) : 〈B uA?〉[T ]

(t-mod-dn)

Γ ὰ M : 〈B〉[T ]
Γ ὰ ↓A(M) : 〈B〉[T ]

if α = 1 then A > B

The rules t-base, t-var, t-sub, t-abs, t-app and t-fix are standard. For example,
the identity function has the expected typing, ὰ λx.x : T � T, for any T . Nonterminating
computations can also be typed; for example, ὰ fix (λx.x) : T, for any T .

Any term may be injected into a computation type at the least role using t-unit. Thus,
in the light of the earlier discussion on subtyping, if ὰ M : T then, in the first system, [M]
inhabits 〈A〉[T ] for every role A; in the second system, the term inhabits only type 〈000〉[T ],
indicating that no checks are required to successfully evaluate the value [M].
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Computations may be combined using t-bind4. If M inhabits 〈A〉[T ] and N inhabits
〈B〉[S], then “M;N ” inhabits 〈A tB〉[S]. More generally, we can deduce:

ὰ λx. let x′= x;x′ : 〈A〉[〈B〉[T ]]� 〈A tB〉[T ]

In the first type system, this rule is motivated by noting that the role context AtB suffices
to successfully avoid role errors in the combined computation if A (resp. B) suffices for M
(resp. N). For the second type system, consider a role C that is not bigger than A t B —
thus C is not bigger than at least one of A,B. If it is not greater than A, by assumption on
typing of M , every computation path of M in role context C leads to a role-error. Similarly
for B. Thus, in role context C, every computation path in the combined computation
leads to a role error. Furthermore, using the earlier subtyping discussion, the sequence also
inhabits 〈111〉[S] in the first system and 〈000〉[S] in the second.

The rule t-grd types basic values with their protection level. The higher-order version
of {A}[] has the natural typing:

ὰ λx.{A}[x] : T � {A}[T ]

Recall that in the transition relation, check {A}[N] checks the role context against A. The
typing rule t-chk mirrors this behavior by converting the protection level of values into
constraints on role contexts. For example, we have the typing:

ὰ λx.check x : {A}[T ] � 〈A〉[T ]

In the special case of typing Γ ὰ check {A}[N] : 〈A〉[T ], we can further justify in the two
systems as follows. In terms of the first type system, the role context passes this check if it
is at least A. In terms of the second type system, any role context that does not include A
will cause a role-error.

Role modifiers are treated by separate rules for upwards and downwards modifiers.
The rule for t-mod-up is justified for the first type system as follows. Under assumption

that B suffices to evaluate M without role-errors, consider evaluation of ↑A(M) in role
context B uA?. This term contributes A to role context yielding At (B uA?) = (AtB)u
(A tA?) = B for the evaluation of M . For the second type system, assume that if a role is
not greater than B, then the evaluation of N leads to a role error. Consider the evaluation
of ↑A(M) in a role context C that does not exceed B u A?. Then, the evaluation of M
proceeds in role context C t A which does not exceed B and hence causes a role error by
assumption.

The rule for t-mod-dn is justified for the first type system as follows. Under assumption
that B suffices to evaluateM without role-errors, and A is greater than B consider evaluation
of ↓A(M) in role context B. This term alters role-context B to BuA = B for the evaluation
of M , which suffices. For the second type system, assume that if a role is not greater than
B, then the evaluation of N leads to a role error. Consider the evaluation of ↓A(M) in a
role context C that does not exceed B. Then, C uA certainly does not exceed B and so the
evaluation of M causes a role error by assumption.

Example 16 and Example 15 discuss alternate presentations for the rules of typing for
the role modifiers.

In stating the results, we distinguish computations from other types. Lemma 10 holds
trivially from the definitions.

4The distinction between our system and dependency-based systems can be see in t-bind, which in dcc
[1, 2, 30] states that ` let x=M;N : 〈B〉[S] if B > A, where `M : 〈A〉[T ] and x:T ` N : 〈B〉[S].
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Definition 9. Role A dominates type T (notation A ≥ T ) if T is not a computation type,
or T is a computation type 〈B〉[S] and A > B.

Lemma 10. (a) If A > B and B ≥ T then A ≥ T . (b) If 1̀ T <: S and A ≥ S then A ≥ T .
(c) If 2̀ T <: S and A ≥ T then A ≥ S.

The following theorems formalize the guarantees provided by the two systems. The
proofs may be found in Section 6.

Theorem 11. If 1̀ M : T and A ≥ T , then either A . M →ω or A . M � V for some V .

Theorem 12. If 2̀ M : T and A 6≥ T , then either A . M →ω or there exists N such that
A . M � N and A . N  err.

For the first system, we have a standard type-safety theorem. For the second system,
such a safety theorem does not hold; for example 2̀ check {111}[unit] : 〈111〉[Unit] and 111 .
check {111}[unit] → [unit] but 6 2̀ [unit] : 〈111〉[Unit]. Instead Theorem 12 states that a term
run with an insufficient context role is guaranteed either to diverge or to produce a role
error.

3.3. Simple examples.

Example 13. We illustrate combinators of the language with some simple functions. The
identity function may be given its usual type:

ὰ λx.x : T� T

The unit of computation can be used to create a computation from any value:

ὰ λx.[x] : T� 〈000〉[T]

The let construct evaluates a computation. In this following example, the result of the
computation x′ must itself be a computation because it is returned as the result of the
function:

ὰ λx. let x′= x; x′ : 〈A〉[〈B〉[T]]� 〈A t B〉[T]
The guard construct creates a guarded term:

ὰ λx.{A}[x] : T� {A}[T]

The check construct discharges a guard, resulting in a computation:

ὰ λx.check x : {A}[T]� 〈A〉[T]

The upwards role modifier reduces the role required by a computation.

ὰ λx.↑B(x) : 〈A〉[T] � 〈A u B?〉[T]

The first typing system requires that any computation performed in the context of a down-
ward role modifier ↓B() must not require more than role B:

ὰ λx.↓B(x) : 〈A〉[T] � 〈A〉[T] (where B > A if α = 1)

In the first type system, the last two judgments may be generalized as follows:

1̀ λx.ρ(x) : 〈ρLA M〉[T]� 〈A〉[T]

Thus a role modifier may be seen as transforming a computation that requires the modifier
into one that does not. For further discussion see Example 16.
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Example 14 (Booleans). The Church Booleans, tru
M= λt.λf. t and fls

M= λt.λf. f, illustrate
the use of subtyping. In the two systems, these may be given the following types.

Bool1
M= 〈A〉[T ]� 〈B〉[T ]� 〈A tB〉[T ] 1̀ tru, fls : Bool1

Bool2
M= 〈A〉[T ]� 〈B〉[T ]� 〈A uB〉[T ] 2̀ tru, fls : Bool2

These types reflect the intuitions underlying the two type systems. The first type system
reflects a “maximum over all paths” typing, whereas the second reflects a “minimum over all
paths” typing. The conditional may be interpreted using the following derived rules.

Γ 1̀ L : Bool1 Γ 1̀ M : 〈A〉[T ] Γ 1̀ N : 〈B〉[T ]
Γ 1̀ if L then M else N : 〈A tB〉[T ]

Γ 2̀ L : Bool2 Γ 2̀ M : 〈A〉[T ] Γ 2̀ N : 〈B〉[T ]
Γ 2̀ if L then M else N : 〈A uB〉[T ]

�

Example 15 (t-mod-dn). The side condition on t-mod-dn does not effect typability in
second typing system, but may unnecessarily decrease the accuracy of the analysis, as can
be seen from the following concrete example.

Let M,N be terms of type 〈B〉[T ].

Γ ὰ M : 〈B〉[T ]
Γ ὰ M : 〈A uB〉[T ]

(t-sub)

Γ ὰ ↓A(M) : 〈A uB〉[T ]
(t-mod-dn)

With the side condition, the term let x= ↓A(M);N would have to be given a type of the
form 〈AuB〉[T ], even though bothM and N have type 〈B〉[T ]. Without the side condition,
the “better” type 〈B〉[T ] may be given to the entire let expression.

Example 16 (Alternative rule for role modifiers). In the first typing system, t-mod-up
and t-mod-dn may be replaced with the following rule, which we call t-mod-*.

Γ 1̀ M : 〈ρLB M〉[T ]
Γ 1̀ ρ(M) : 〈B〉[T ]

Consider ρ = ↑A. Because C > (A t C) uA?, the following are equivalent.

Γ 1̀ M : 〈A t C〉[T ]
Γ 1̀ ↑A(M) : 〈C〉[T ]

(t-mod-*)

Γ 1̀ M : 〈A t C〉[T ]
Γ 1̀ ↑A(M) : 〈(A t C) uA?〉[T ]

(t-mod-up)

Γ 1̀ ↑A(M) : 〈C〉[T ]
(t-sub)

Because (D uA?) tA > D, the following are equivalent.

Γ 1̀ M : 〈D〉[T ]
Γ 1̀ M : 〈(D uA?) tA〉[T ]

(t-sub)

Γ 1̀ ↑A(M) : 〈D uA?〉[T ]
(t-mod-*)

Γ 1̀ M : 〈D〉[T ]
Γ 1̀ ↑A(M) : 〈D uA?〉[T ]

(t-mod-up)

Consider ρ = ↓A. Because A > A u C and C > A u C, the following are equivalent.

Γ 1̀ M : 〈A u C〉[T ]
Γ 1̀ ↓A(M) : 〈C〉[T ]

(t-mod-*)

Γ 1̀ M : 〈A u C〉[T ]
Γ 1̀ ↓A(M) : 〈A u C〉[T ]

(t-mod-dn)

Γ 1̀ ↓A(M) : 〈C〉[T ]
(t-sub)
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Suppose A > D. Then D uA > D, and the following are equivalent.
Γ 1̀ M : 〈D〉[T ]

Γ 1̀ M : 〈D uA〉[T ]
(t-sub)

Γ 1̀ ↓A(M) : 〈D〉[T ]
(t-mod-*)

Γ 1̀ M : 〈D〉[T ]
Γ 1̀ ↓A(M) : 〈D〉[T ]

(t-mod-dn) �

Example 17 (A sublanguage). The following proper sublanguage is sufficient to encode the
computational lambda calculus. Here values and terms are disjoint, with values assigned
value types T and terms assigned computation types 〈A〉[T ].

T, S ::= Base | T � 〈A〉[S] | {A}[T ]

V,U,W ::= bv | x | λx.M | {A}[V ]
M,N,L ::= [V ] | V U | fix V | check V | let x=M;N | ρ(M)

Encoding the Church Booleans in this sublanguage is slightly more complicated than in
Example 14; tru and fls must accept thunks of type Unit � 〈A〉[S] rather than the simpler
blocks of type 〈A〉[S].

Operations on base values that have no computational effect are placed in the language
of values rather than the language of terms. The resulting terms may be simplified at any
time without affecting the computation (e.g., [1+2 == 3] may be simplified to [tru]).

Example 18 (Relation to conference version). The language presented here is much simpler
than that of the conference version of this paper [14]. In particular, the conference version
collapsed guards and abstractions into a single form {A}[λx.M] with types of the form
T � {A . B}[S], which translates here as {A}

[
T � 〈B〉[S]

]
: the immediate guard of the

abstraction is A, whereas the effect of applying the abstraction is B.
In addition, the conference version collapsed role modification and application: the

application ↓C V U first checked the guard of V , then performed the application in a
context modified by ↓C. In the current presentation, this translates as “ let x= check V ;
↓C(x U).”

4. Examples

In this section we assume nullary role constructors for user roles, such as Alice, Bob,
Charlie, Admin, and Daemon.

Example 19 (ACLs). Consider a read-only filesystem protected by Access Control Lists
(ACLs). One can model such a system as:

filesystem
M= λname. if name=="file1" then check {Admin}["data1"]

else if name=="file2" then check {Alice u Bob}["data2"]
else ["error: file not found"]

If Admin ≥ Alice u Bob then code running in the Admin role can access both files:
Admin . filesystem "file1"� check {Admin}["data1"]� ["data1"]
Admin . filesystem "file2"� check {Alice u Bob}["data2"]� ["data2"]

If Alice 6≥ Admin then code running as Alice cannot access the first file but can access the
second:

Alice . filesystem "file1"� check {Admin}["data1"]  err
Alice . filesystem "file2"� check {Alice u Bob}["data2"]� ["data2"]



λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 15

Finally, if Charlie 6≥ Alice u Bob then code running as Charlie cannot access either file:
Charlie . filesystem "file1"� check {Admin}["data1"]  err
Charlie . filesystem "file2"� check {Alice u Bob}["data2"]  err

The filesystem code can be assigned the following type, meaning that a caller must
possess a role from each of the ACLs in order to guarantee that access checks will not fail.
If, in addition, Admin ≥ Alice u Bob then the final role is equal to Admin.

1̀ filesystem : String � 〈Admin t (Alice u Bob) t 000〉[String]

In the above type, the final role 000 arises from the “unknown file” branch that does not require
an access check. The lack of an access check explains the weaker 2̀ type:

2̀ filesystem : String � 〈Admin u (Alice u Bob) u 000〉[String]

This type indicates that filesystem has the potential to expose some information to unprivi-
leged callers with role Adminu (AliceuBob)u000 .= 000, perhaps causing the code to be flagged
for security review.

Example 20 (Web server). Consider a web server that provides remote access to the filesys-
tem described above. The web server can use the role assigned to a caller to access the
filesystem (unless the web server’s caller withholds its role). To prevent an attacker deter-
mining the non-existence of files via the web server, the web server fails when an attempt is
made to access an unknown file unless the Debug role is activated.

webserver
M= λname. if name=="file1" then filesystem name

else if name=="file2" then filesystem name
else check {Debug}["error: file not found"]

For example, code running as Alice can access "file2" via the web server:

Alice . webserver "file2"� filesystem "file2"� ["data2"]

The access check in the web server does prevent the “file not found” error message leaking
unless the Debug role is active, but, unfortunately, it is not possible to assign a role strictly
greater than 000 to the web server using the second type system. The filesystem type does not
record the different roles that must be checked depending upon the filename argument.

2̀ webserver : String � 〈Admin u (Alice u Bob) u 000〉[String] (derivable)
6 2̀ webserver : String � 〈Admin u (Alice u Bob) u Debug〉[String] (not derivable) �

Example 21 illustrates how the Domain-Type Enforcement (dte) access control mecha-
nism [6, 31], found in Security-Enhanced Linux (selinux) [17], can be modelled in λ-RBAC.
Further discussion of the relationship between rbac and dte can be found in [11, 13].

Example 21 (Domain-Type Enforcement). The dte access control mechanism grants or
denies access requests according to the current domain of running code. The current domain
changes as new programs are executed, and transitions between domains are restricted in
order to allow, and also force, code to run with an appropriate domain. The restrictions upon
domain transitions are based upon a dte type associated with each program to execute. For
example, the dte policy in [31] only permits transitions from a domain for daemon processes
to a domain for login processes when executing the login program, because code running in
the login domain is highly privileged. This effect is achieved by allowing transitions from
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the daemon domain to the login domain only upon execution of programs associated with
a particular dte type, and that dte type is assigned only to the login program.

The essence of dte can be captured in λ-RBAC, using roles to model both domains and
dte types, and the context role to model the current domain of a system. We start by
building upon the code fragment λg.λy.B(g y), discussed in Example 7, that allows a
function checking role B to be executed in the context of code running at a different role.
We have the typing (for emphasis we use extra parentheses that are not strictly necessary
given the usual right associativity for the function type constructor):

ὰ λg.λy.B(g y) : (T� 〈B〉[S])� (T� 〈000〉[S])

To aid readability, and fixing types T and S for the remainder of this example, define:

R M= R� (T� 〈000〉[S])

So that the previous typing becomes:

ὰ λg.λy.B(g y) : T� 〈B〉[S]

To restrict the use of the privileged function λg.λy.B(g y), it can be guarded by a role E
acting as a dte type, where the association of the dte type E with a function is modelled
in the sequel by code that can activate role E. The guarded function can be typed as:

ὰ {E}[λg.λy.B(g y)] : {E}[T� 〈B〉[S]]

We now define a function domtrans<A, E, B> for a domain transition from domain (role)
A to domain (role) B upon execution of a function associated with dte type (also a role)
E. The function first verifies that the context role dominates A, and then permits use
of the privileged function λg.λy.B(g y) by code that can activate role E. The function
domtrans<A, E, B> is defined by:

domtrans<A, E, B> M= λf.λx.check {A}[unit]; f {E}[λg.λy.B(g y)] x

We have the typing:

ὰ domtrans<A, E, B> : {E}[T� 〈B〉[S]]� (T� 〈A〉[S])

The above type shows that domtrans<A, E, B> can be used to turn a function checking role
B into a function checking role A, but only when the role E is available—in contrast to the
type (T� 〈B〉[S])� (T� 〈A〉[S]) that does not require E.

In order to make use of domtrans<A, E, B>, we must also consider code that can activate
E. We define a function assign<E> that takes a function f and activates E in order to access
the privileged code λg.λy.B(g y) from domtrans<A, E, B>. The function assign<E> is
defined by:

assign<E> M= λf.λx.λy. let g= E(check x);g f y
And we have the typing:

ὰ assign<E> : (T� 〈B〉[S])� {E}[T� 〈B〉[S]]

Therefore the functional composition of assign<E> and domtrans<A, E, B> has type:

(T� 〈B〉[S])� (T� 〈A〉[S])

To show that in the presence of both assign<E> and domtrans<A, E, B>, code running with
context A can execute code checking for role context B, we consider the following reductions
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in role context A, where we take F M= λz.check {B}[unit] and underline terms to indicate
the redex:

domtrans<A, E, B> (assign<E> F) unit

= (λf.λx.check {A}[unit]; f ({E}[λg.λy.B(g y)]) x) (assign<E> F) unit

→ (λx.check {A}[unit]; (assign<E> F) ({E}[λg.λy.B(g y)]) x) unit

→ check {A}[unit]; (assign<E> F) ({E}[λg.λy.B(g y)]) unit

→ (assign<E> F) ({E}[λg.λy.B(g y)]) unit

=
(
(λf.λx.λy. let g= E(check x);g f y) F

)
({E}[λg.λy.B(g y)]) unit

→ (λx.λy. let g= E(check x);g F y) ({E}[λg.λy.B(g y)]) unit

→ (λy. let g= E(check {E}[λg.λy.B(g y)]); g F y) unit

→ let g= E(check {E}[λg.λy.B(g y)]);g F unit

→ let g= E([λg.λy.B(g y)]);g F unit

� let g= [λg.λy.B(g y)]; g F unit

→ (λg.λy.B(g y)) F unit

→ (λy.B(F y)) unit

→ B(F unit)

= B((λz.check {B}[unit]) unit)

→ B(check {B}[unit])

→ B([unit])

� [unit]

The strength of dte lies in the ability to factor access control policies into two compo-
nents: the set of permitted domain transitions and the assignment of dte types to code.
We illustrate this by adapting the aforementioned login example from [31] to λ − RBAC. In
this example, the dte mechanism is used to force every invocation of user code (running
at role User) from daemon code (running at role Daemon) to occur via trusted login code
(running at role Login). This is achieved by providing domain transitions from Login to
User, and Daemon to Login, but no others. Moreover, code permitted to run at Login must
be assigned dte type LoginEXE, and similarly for User and UserEXE. Thus a full program
running daemon code M has the following form, where neither M nor N contain direct rights
amplification.
let dtLoginToUser= domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= domtrans<Daemon, LoginEXE, Login>;
let shell= assign<UserEXE> (λ.M);
let login= assign<LoginEXE> (λpwd. if pwd=="secret" then dtLoginToUser shell unit else . . .);
Daemon(N)

Because login provides the sole gateway to the role User, the daemon code N must provide
the correct password in order to execute the shell at User (in order to access resources that
are available at role User but not at role Daemon). In addition, removal of the domain
transition dtDaemonToLogin makes it impossible for the daemon code to execute any code
at User.
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5. Controlling rights amplification

Example 22. Suppose that M contains no direct rights amplification, that is, no subterms
of the form ↑A( · ). Then, in

let priv= [λx.↑A(V x)]; ↓User(M)

we may view V as a Trusted Computing Base (tcb) — a privileged function which may
escalate rights — and view M as restricted user code. The function priv is an entry point to
the tcb which is accessible to user code; that is, user code is executed at the restricted role
User, and rights amplification may only occur through invocation of priv.

Non-trivial programs have larger tcbs with more entry points. As the size of the tcb
grows, it becomes difficult to understand the security guarantees offered by a system when
rights amplification is unconstrained, even if only in the tcb. To manage this complexity,
one may enforce a coding convention that requires rights increases be justified by earlier
checks. As an example, consider the following, where amplify is a unary role constructor.

let at<A>= [λf.check {amplify(A)}[λx.↑A(f x)]];
let priv= at<A> V;
↓User(M)

In a context with role amplify(A), this reduces (using r-bind, r-app and r-chk) to

let priv= [λx.↑A(V x)]; ↓User(M)

In a context without role amplify(A), evaluation becomes stuck when attempting to execute
r-chk. The privileged function returned by at<A> (which performs rights amplification for
A) is justified by the check for amplify(A) on any caller of at<A>.

One may also wish to explicitly prohibit a term from direct amplification of some right
B; with such a convention in place, this can be achieved using the role modifier ↓amplify(B).

One may formalize the preceding example by introducing the unary role constructor
amplify , where amplify(A) stands for the right to provide the role A by storing ↑A in code.

We require that amplify distribute over t and u and obey the following absorption laws:

A t amplify(A) .= amplify(A) A u amplify(A) .= A

Thus amplify(A) > A for any role A.
To distinguish justified use of role modifiers from unjustified use, we augment the syntax

with checked role modifiers.
M,N ::= · · · | ρA(M)

Whenever a check is performed on role M we mark role modifiers in the consequent to
indicate that these modifiers have been justified by a check. Define the function markA
homomorphically over all terms but for role modifiers:

markA(ρ(M)) = ρA(markA(M))

markA(ρB(M)) = ρAtB(markA(M))

Modify the reduction rule for check as follows.

A . check {B}[M]→ [markB(M)]
A > B
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Thus, the check in the example above will execute as follows.

amplify(A) . check {amplify(A)}[λx.↑A(f x)]→ λx.↑Aamplify(A)(f x)

In the residual, the abstraction contains a checked role modifier, indicating that the role
amplification has been provided by code that had the right to do so.

We now define role modification errors so that ↑AB(M) produces an error if B does
not dominate amplify(A).

↑B(M)  moderr ↑BC(M)  moderr
C 6> amplify(B)

M  moderr

M N  moderr

M  moderr

let x=M;N  moderr

M  moderr

check M  moderr

M  moderr

ρ(M)  moderr

Using this augmented language, unjustified rights amplification is noted as an error. To
prevent such errors, we modify the typing system to have judgments of the form Γ;C ὰ M :
T , where C indicates the accumulated guards on a term which must be discharged before
the term may be executed; since M is guarded by C, it may include subterms of the form
↑A( · ) when C > amplify(A). In addition to adding rules for checked role modifiers, we
also modify t-grd and t-mod-up. The rule t-mod-up ensures that any amplification is
justified by C. The rule t-grd allows guards to be used in checking guarded terms; the rule
is sound since guarded terms must be checked before they are executed.

(t-grd′)

Γ;C tA ὰ M : T
Γ;C ὰ {A}[M] : {A}[T ]

(t-mod-up′)

Γ;C ὰ M : 〈B〉[T ]
Γ;C ὰ ↑A(M) : 〈B uA?〉[T ]

C > amplify(A)

(t-mod-dn-checked)

Γ;C ὰ M : 〈B〉[T ]
Γ;C ὰ ↓AD(M) : 〈B〉[T ]

if α = 1
then A > B

(t-mod-up-checked)

Γ;C ὰ M : 〈B〉[T ]
Γ;C ὰ ↑AD(M) : 〈B uA?〉[T ]

C tD > amplify(A)

One may not assume that top level terms have been guarded; therefore, let Γ ὰ M : T be
shorthand for Γ;000 ὰ M : T .

Example 23. The functions domtrans and assign from Example 21 are not typable using
this more restrictive system. Recall the definitions:

domtrans<A, E, B> M= λf.λx.check {A}[unit]; f {E}[λg.λy.B(g y)] x
assign<E> M= λf.λx.λy. let g= E(check x);g f y

The amplification of B in domtrans is not justified; neither is the amplification of E in assign.
The required form is:

domtrans<A, E, B> M= {amplify(B)}[λf.λx.check {A}[unit]; f {E}[λg.λy.B(g y)] x]
assign<E> M= {amplify(E)}[λf.λx.λy. let g= E(check x);g f y]
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The login example must now be modified in order to discharge the guards. Again the
modifications are straightforward:

let dtLoginToUser= check domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= check domtrans<Daemon, LoginEXE, Login>;
let assignXUser= check assign<UserEXE>;
let assignXLogin= check assign<LoginEXE>;
let shell= assignXUser (λ.M);
let login= assignXLogin (λpwd. if pwd=="secret" then dtLoginToUser shell unit else . . .);
Daemon(N)

Thus modified, the program types correctly, but will only execute in a context that dominates
the four roles amplify(User), amplify(UserEXE), amplify(Login), and amplify(LoginEXE).
This ensures that domain transitions and assignments are created by authorized code.

Proposition 25 establishes that the typing system is sufficient to prevent role modifica-
tion errors. The proof of Proposition 25 relies on the following lemma, which establishes the
relation between typing and mark .

Lemma 24. If Γ;C tA ὰ M : T then Γ;C ὰ markA(M) : T .

Proof. By induction on the derivation of the typing judgment, appealing to the definition
of mark .

Proposition 25. If ὰ M : T and A . M � N then ¬(N  moderr)

Proof Sketch. That ¬(M  moderr) follows immediately from the definition of role modifi-
cation error, combined with t-mod-up′ and t-mod-up-checked. It remains only to show
that typing is preserved by reduction. We prove this for the type systems of Section 3 in
the next section. The proof extends easily to the type system considered here. The only
wrinkle is the evaluation rule for check, which is handled using the previous lemma.

6. Proof of Type Safety Theorems

The proofs for the first and second systems are similar, both relying on well-studied
techniques [23]. We present proofs for the second system, which is the more challenging of
the two.

Definition 26 (Compatibility). Types T and S are compatible (notation T ≈ S) if T = S
or T = 〈A〉[R] and S = 〈B〉[R], for some type R.

The following lemmas have straightforward inductive proofs.

Lemma 27 (Compatibility). If ὰ T <: T ′ then T ≈ S iff T ′ ≈ S.

Lemma 28 (Substitution). If Γ ὰ M : T and Γ, x : T ὰ N : S, then Γ ὰ N{x :=M} : S.

Lemma 29 (Bound Weakening). If Γ, x:S ὰ M : T and ὰ S
′ <: S, then Γ, x : S′ ὰ M : T .
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Lemma 30 (Canonical Forms).
(1) If 2̀ V : T � S then V has form (λx.M) where x:T 2̀ M : S.
(2) If 2̀ V : 〈A〉[T ] then V has form [M] where 2̀ M : T and A = 000.
(3) If 2̀ V : {A}[T ] then V has form {B}[M] where 2̀ M : T and B > A.

Proof.
(1) By induction on derivation of 2̀ V : T � S. The only applicable cases are t-sub and

t-abs.
(t-sub) We know 2̀ V : T ′�S′, where 2̀ V : T �S and 2̀ T �S <: T ′�S′, so 2̀ T

′ <: T
and 2̀ S <: S′. By the IH, V has form (λx.M) where x:T 2̀ M : S. By Lemma 29
and subsumption, x:T ′ 2̀ M : S′.

(t-abs) Immediate.
(2) By induction on derivation of 2̀ V : 〈A〉[T ]. The only applicable cases are t-sub and

t-unit.
(t-sub) We know 2̀ V : 〈A′〉[T ′], where 2̀ V : 〈A〉[T ] and 2̀ 〈A〉[T ] <: 〈A′〉[T ′], so

2̀ T <: T ′ and A > A′. By the IH, V has form [M] where 2̀ M : T and A = 000, so
A′ = 000. By subsumption, 2̀ M : T ′.

(t-unit) Immediate.
(3) By induction on derivation of 2̀ V : {A}[T ]. The only applicable cases are t-sub and

t-grd.
(t-sub) We know 2̀ V : {A′}[T ′], where 2̀ V : {A}[T ] and 2̀ {A}[T ] <: {A′}[T ′], so

2̀ T <: T ′ and A > A′. By the IH, V has form {B}[M] where 2̀ M : T and B > A,
so B > A′. By subsumption, 2̀ M : T ′.

(t-grd) Immediate.

Proposition 31 (Preservation). If 2̀ M : T and A . M → N then there exists S such that
S ≈ T and 2̀ N : S and if A ≥ S then A ≥ T .

Proof. By induction on the derivation of 2̀ M : T . The induction hypothesis includes the
quantification over A, N . For values, the result is trivial; thus we consider only the rules for
non-values.
(t-sub) We know 2̀ M : T ′, where 2̀ M : T and 2̀ T <: T ′, and A . M → N . Applying the

IH to 2̀ M : T and A . M → N yields S such that 2̀ N : S and S ≈ T and if A ≥ S
then A ≥ T . By Lemma 10c, this extends to if A ≥ S then A ≥ T ′. In addition, by
Lemma 27, we have S ≈ T ′.

(t-app) We know 2̀ M N : T2, where 2̀ M : T1 � T2 and 2̀ N : T1, and A . M N → L.
There are two subcases depending on the reduction rule used in A . M N → L.
(M is a value) By Lemma 30, M = λx.M ′ and x:T1 2̀ M

′ : T2. The reduction yields
L = M ′{x := N}. By Lemma 28, 2̀ L : T2. The remaining requirements on T2 are
immediate.

(M has a reduction) Therefore A . M → M ′ and L = M ′ N . Applying the IH to
2̀ M : T1�T2 and A . M →M ′ yields S such that 2̀ M

′ : S and S ≈ T1�T2, which
implies that S = T1 � T2. Hence 2̀ L : T2. The remaining requirements on T2 are
immediate.

(t-fix) We know 2̀ fix M : T , where 2̀ M : T � T and A . fix M → L. There are two
subcases depending on the reduction rule used in A . fix M → L.
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(M is a value) By Lemma 30, M = λx.M ′ and x:T 2̀ M
′ : T . The reduction yields

L = M ′{x :=M}. By Lemma 28, 2̀ L : T . The remaining requirements on T are
immediate.

(M has a reduction) Therefore A . M → M ′ and L = fix M ′. Applying the IH to
2̀ M : T � T and A . M → M ′ yields S such that 2̀ M

′ : S and S ≈ T � T , which
implies that S = T � T . Hence 2̀ L : T . The remaining requirements on T are
immediate.

(t-chk) We know 2̀ check M : 〈A1〉[T ], where 2̀ M : {A1}[T ], and A . check M → L.
There are two subcases depending on the reduction rule used in A . check M → L.
(M is a value) By Lemma 30, M = {A2}[M ′] and 2̀ M ′ : T and A2 > A1. The

reduction yields L = [M ′] and from the reduction we deduce A > A2, so A > A1
always holds. We assign type 2̀ L : 〈000〉[T ], where 〈000〉[T ] ≈ 〈A1〉[T ], and we have
already shown that A > 000 implies A > A1.

(M has a reduction) Therefore A . M → M ′ and L = check M ′. Applying the IH to
2̀ M : {A1}[T ] and A . M → M ′ yields S such that 2̀ M

′ : S and S ≈ {A1}[T ],
so S = {A1}[T ]. Hence 2̀ L : 〈A1〉[T ]. The remaining requirements on 〈A1〉[T ] are
immediate.

(t-bind) We know 2̀ let x=M;N : 〈A1 t A2〉[T2], where 2̀ M : 〈A1〉[T1] and x:T1 2̀ N :
〈A2〉[T2], and A . let x=M;N → L. There are two subcases depending on the reduction
rule used in A . let x=M;N → L.
(M is a value) By Lemma 30, M = [M ′] and 2̀ M

′ : T1 and A1 = 000, so A1 tA2 = A2.
The reduction yields L = N{x :=M ′}. By Lemma 28, 2̀ L : 〈A2〉[T2]. The remaining
requirements on T2 are immediate.

(M has a reduction) Therefore A . M → M ′ and L = let x=M ′;N . Applying the IH
to 2̀ M : 〈A1〉[T1] and A . M → M ′ yields S such that 2̀ M

′ : S and S ≈ 〈A1〉[T1]
and if A ≥ S then A ≥ 〈A1〉[T1]. Hence S = 〈A3〉[T1], for some A3, and A > A3
implies A > A1. We deduce 2̀ L : 〈A3tA2〉[T2], where 〈A3tA2〉[T2] ≈ 〈A1tA2〉[T2].
Finally, suppose A ≥ 〈A3 t A2〉[T2], i.e., A > A3 t A2, so A > A3 and A > A2. By
the above, this entails A > A1, so A > A1 t A2. Therefore A ≥ 〈A1 t A2〉[T2], as
required.

(t-mod-up) We know 2̀ ↑A1(M) : 〈A2uA?1〉[T ], where 2̀ M : 〈A2〉[T ], and A . ↑A1(M)→
L. There are two subcases depending on the reduction rule used in A . ↑A1(M)→ L.
(M is a value) Therefore L = M and 2̀ L : 〈A2〉[T ], where 〈A2〉[T ] ≈ 〈A2 u A?1〉[T ]. By

Lemma 30, M = [M ′] and 2̀ M
′ : T and A2 = 000, and the remaining requirement on

〈A2〉[T ], that A ≥ 〈A2〉[T ] implies A ≥ 〈A2 uA?1〉[T ], is immediate.
(M has a reduction) Therefore ↑A1LA M . M → M ′ and L = ↑A1(M ′). Applying the

IH to 2̀ M : 〈A2〉[T ] and ↑A1LA M . M → M ′ yields S such that 2̀ M
′ : S and S ≈

〈A2〉[T ], so S = 〈A3〉[T ] for some A3, and if ↑A1LA M ≥ S then ↑A1LA M ≥ 〈A2〉[T ],
i.e., A t A1 > A3 implies A t A1 > A2. We have 2̀ ↑A1(M ′) : 〈A3 u A?1〉[T ] and
〈A3 u A?1〉[T ] ≈ 〈A2 u A?1〉[T ]. Finally, if A ≥ 〈A3 u A?1〉[T ], then A > A3 u A?1, so
A t A1 > (A3 u A?1) t A1 = (A3 t A1) u 111 = A3 t A1. Hence A t A1 > A3, so
A t A1 > A2, and A u A?1 = (A u A?1) t 000 = (A t A1) u A?1 > A2 u A?1. Therefore
A > A2 uA?1 and A ≥ 〈A2 uA?1〉[T ], as required.

(t-mod-dn) We know 2̀ ↓A1(M) : 〈A2〉[T ], where 2̀ M : 〈A2〉[T ], and A . ↓A1(M)→ L.
There are two subcases depending on the reduction rule used in A . ↓A1(M)→ L.
(M is a value) Therefore L = M and 2̀ L : 〈A2〉[T ], and we are done.
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(M has a reduction) Therefore ↓A1LA M . M →M ′ and L = ↓A1(M ′). By A > ↓A1LA M
and Lemma 4, we have A . M → M ′. Applying the IH to 2̀ M : 〈A2〉[T ] and
A . M →M ′ yields S such that 2̀ M

′ : S and S ≈ 〈A2〉[T ], so S = 〈A3〉[T ] for some
A3, and if A ≥ S then A ≥ 〈A2〉[T ]. Hence 2̀ ↓A1(M ′) : 〈A3〉[T ], which completes
the subcase.

Corollary 32. If 2̀ M : T and A . M � V , then A ≥ T .
Proof. By induction on the length of the reduction sequence A . M � V . For the base
case, M = V and Lemma 30 implies that A ≥ T , because every non-computation type
is dominated by any role, and in a computation type T = 〈B〉[S] Lemma 30 tells us that
B = 000. For the inductive step, there exists N such that A . M → N and A . N � V . By
Proposition 31, there exists S such that 2̀ N : S and if A ≥ S then A ≥ T . Applying the
IH to 2̀ N : S and A . N � V yields A ≥ S, hence A ≥ T as required.

Proposition 33 (Progress). For all A, if 2̀ M : T then either M is a value, A . M  err,
or there exists N such that A . M → N .

Proof. By induction on the derivation of 2̀ M : T . We need only consider the cases when
M is not a value.
(t-sub) We know 2̀ M : T ′, where 2̀ M : T and 2̀ T <: T ′. Immediate by the IH.
(t-app) We know 2̀ M N : T2, where 2̀ M : T1 � T2 and 2̀ N : T1. Apply the IH to

2̀ M : T1 � T2 and role A. If M is a value, then, by Lemma 30, M has form (λx.L), so
A . M N → L{x := N}. If A . M  err, then A . M N  err. Finally, if A . M → L,
then A . M N → L N .

(t-fix) We know 2̀ fix M : T , where 2̀ M : T�T . Apply the IH to 2̀ M : T�T and role A.
IfM is a value, then, by Lemma 30,M has form (λx.L), so A . fix M → L{x := (λx.L)}.
If A . M  err, then A . fix M  err. Finally, if A . M → L, then A . fix M → fix L.

(t-chk) We know 2̀ check M : 〈A1〉[T ], where 2̀ M : {A1}[T ]. Apply the IH to 2̀ M :
{A1}[T ] and role A. If M is a value, then, by Lemma 30, there exists B, L such that
M = {B}[L], so either A . check M → [L] or A . check M  err depending on whether
A > B holds or not. If A . M  err, then A . check M  err. Finally, if A . M → L,
then A . check M → check L.

(t-bind) We know 2̀ let x= M;N : 〈A1 t A2〉[T2], where 2̀ M : 〈A1〉[T1] and x:T1 2̀

N : 〈A2〉[T2]. Apply the IH to 2̀ M : 〈A1〉[T1] and role A. If M is a value, then, by
Lemma 30, M has form [L], so A . let x=M;N → N{x := L}. If A . M  err, then
A . let x=M;N  err. Finally, if A . M → L, then A . let x=M;N → let x= L;N .

(t-mod-up) We know 2̀ ↑A1(M) : 〈A2 u A?1〉[T ], where 2̀ M : 〈A2〉[T ]. Apply the IH
to 2̀ M : 〈A2〉[T ] and role ↑A1LA M. If M is a value, then A . ↑A1(M) → M . If
↑A1LA M . M  err, then A . ↑A1(M)  err. Finally, if ↑A1LA M . M → L, then
A . ↑A1(M)→ ↑A1(L).

(t-mod-dn) We know 2̀ ↓A1(M) : 〈A2〉[T ], where 2̀ M : 〈A2〉[T ]. Apply the IH to
2̀ M : 〈A2〉[T ] and role ↓A1LA M. If M is a value, then A . ↓A1(M) → M . If
↓A1LA M . M  err, then A . ↓A1(M)  err. Finally, if ↓A1LA M . M → L, then
A . ↓A1(M)→ ↓A1(L).

Theorem (12). If 2̀ M : T and A 6≥ T , then either A . M →ω or there exists N such that
A . M � N and A . N  err.

Proof. We use a coinductive argument to construct a reduction sequence that is either infinite
or terminates with a role check failure. When 2̀ M : T and A 6≥ T , we know that M is
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not a value by Lemma 30. By Proposition 33, either A . M  err or there exists N such
that A . M → N . In the former case, we are done. In the latter case, using Proposition 31,
there exists S such that 2̀ N : S and if A ≥ S then A ≥ T . However, we know that A 6≥ T ,
so A 6≥ S, as required.

7. Conclusions

The focus of this paper is programmatic approaches, such as jaas/.net, that use rbac.
From a software engineering approach to the design of components, rbac facilitates a sepa-
ration of concerns: the design of the system is carried out in terms of a role hierarchy with
an associated assignment of permissions to roles, whereas the actual assignment of users to
roles takes place at the time of deployment.

We have presented two methods to aid the design and use of components that include
such access control code. The first — admittedly standard — technique enables users of
code to deduce the role at which code must be run. The main use of this analysis is to
optimize code by enabling the removal of some dynamic checks. The second — somewhat
more novel — analysis calculates the role that is verified on all execution paths. This
analysis is potentially useful in validating architectural security requirements by enabling
code designers to deduce the protection guarantees of their code.

We have demonstrated the use of these methods by modeling Domain Type Enforce-
ment, as used in SELinux. As future work, we will explore extensions to role polymorphism
and recursive roles following the techniques of [8, 4].
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