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Abstract. Remote attestation allows programs running on trusted hardware to
prove their identity (and that of their environment) to programs on other hosts.
Remote attestation can be used to address security concerns if programs agree on
the meaning of data in attestations. This paper studies the enforcement of code-
identity based access control policies in a hostile distributed environment, using
a combination of remote attestation, dynamic types, and typechecking. This en-
sures that programs agree on the meaning of data and cannot violate the access
control policy, even in the presence of opponent processes. The formal setting
is a π-calculus with secure channels, process identity, and remote attestation.
Our approach allows executables to be typechecked and deployed independently,
without the need for secure initial key and policy distribution beyond the trusted
hardware itself.

Keywords remote attestation, code-identity based access control, policy establish-
ment, key establishment, π-calculus, Next Generation Secure Computing Base.

1 Introduction

Processes in a distributed system often rely upon the trustworthiness of processes run-
ning on other hosts. The remote attestation mechanism in Microsoft’s Next Generation
Secure Computing Base (NGSCB) [39], in conjunction with trusted hardware specified
by the Trusted Computing Group [50, 42], allows processes running on trusted hard-
ware to attach evidence of their identity (and the identity of their environment) to data.
Other processes can examine this evidence to assess the degree of trust to place in the
process that attested to the data.

Enforcement of access control policies in hostile distributed environments has been
a driving concern in the development of trusted hardware and remote attestation. We
formalize these notions in a variant of the π-calculus [40], dubbed π-rat, and develop a
type system that enforces access control policies in the presence of arbitrary opponents.
The type system allows programs to be certified independently and deployed without
shared keys or policies beyond those in the trusted hardware.

Organization. In the remainder of this introduction, we set out our goals and as-
sumptions. Section 2 demonstrates the use of π-rat through an extended example. Sec-
tion 3 presents the dynamics of the language and formally defines runtime errors and
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robust safety. Section 4 develops a type system that ensures safety in the presence of ar-
bitrary attackers, and sketches the proof of robust safety. We conclude with a discussion
of related and future work.

Identity and attestation. We assume that processes can be given identities in a uni-
form manner. We write h[P] for a process running with identity h. Initial processes have
the form #P[P], where # is a globally agreed hashing function on process terms. While
a process may evolve, its identity cannot. Further, identities cannot be forged. Thus a
process Q running with identity #P, must be a residual of P. Our treatment of identities
is deliberately abstract; our formal results do not use hash functions. Nonetheless, we
write #P in examples to indicate the identity of a named process. We leave higher-order
extensions to our language, internalizing # as an operator, to future work.

In this paper, we do not deal with other forms of identity. For example, there is no
notion of code running on behalf of a principal [8], nor is there a notion of explicit
distribution [28]. We assume that all resources are globally accessible, for example in a
shared heap. Opponents are modeled as processes with access to these globally known
resources. As a result, we make no distinction between the many instances of a program;
thus h[P] | h[Q] is indistinguishable from h[P | Q].

At first approximation, an attestation to data M is a signature (with message re-
covery) upon the pair (h,M), where h is the hash of the process that requested the
attestation. The signature is created by trusted hardware using its own private key. The
hardware manufacturer issues a certificate for the trusted hardware’s public key at the
time of manufacture and stores it in the trusted hardware. Upon receipt of an attesta-
tion, and the certificate, the relying party verifies the certificate using the manufacturer’s
well-known public key, and then verifies the signature using the trusted hardware’s pub-
lic key. If successful, the relying party concludes that a process with hash h did request
an attestation for M from the trusted hardware. To deduce further properties about M,
the relying party must know more about the conditions under which the process with
hash h is willing to attest to data.

Policies and certification. We are interested in the distinction between processes that
have been certified to obey a certain policy and those that have not been so certified.
Realistically, one would like to model multiple kinds of policies and multiple methods
of certification; however, here we limit attention to a single, extra-lingual certification,
defined as a typing system. We encode policies in types, T , and allow for communica-
tion of policy between processes. The particular policies in this paper are access control
policies based on code identity. For example, our system allows expression of policies
such as “only the ACME media player may display this data”.

Opponent processes are those which are not certified. Opponents cannot persuade
trusted hardware to create false attestations, but otherwise their behavior is entirely
unconstrained. We assume that a conservative approximation of the set of certified pro-
cesses is available at runtime. That is, a process may inquire, at runtime, whether the
process corresponding to a certain identity has been certified. To keep the language sim-
ple, we do not deal explicitly with distribution of certifications. In addition, our policies
are stated directly in terms of program identities, rather than allowing additional levels
of indirection. Both limitations may be alleviated by incorporating a trust management
framework, the investigation of which we leave to future work.



Dynamic Policy Discovery with Remote Attestation 3

Unlike previous analyses of cryptographic protocols [9, 3, 22, 23, 25] remote attes-
tation is intended to be used to establish secure channels starting from insecure channels
that are accessible to opponents. In order to allow the communication of policy infor-
mation during secure-channel establishment, we employ a form of dynamic typing [4,
33]. Our interpretation of at(h,M) is that h vouches for the policy encoded in M. In
particular, if M is {N:T} with asserted type T , then h vouches that N can safely be
used with policy T .

The policy information in attestations from uncertified processes cannot be trusted.
While the payload of such an attestation may be stored and communicated, it cannot
safely be used in any other way.

Channels and access control. As usual in π, we encode data using channels. Thus
access policies regulate the readers and writers of channels. Our policies do not limit
possession of channels, only their use; although in the case of an opponent, possession
and use are indistinguishable since opponents are not constrained to obey any policy.
The policy for a channel is defined when the channel is created and may be communi-
cated over insecure channels via attestations.

In keeping with our high-level interpretation of attestations, we avoid explicit cryp-
tographic primitives [9]. In their place we adopt a polarized variant of the π-calculus [41]
which allows transmission of read and write capabilities individually. This simplifica-
tion is justified by Abadi, Fournet and Gonthier’s work on implementing secure channel
abstractions [8, 7].

Contributions. In terms of security policies, our aims are modest relative to other
recent work on types in process languages. For example, we do not attempt to establish
freshness [23, 25] or information flow [30] properties. Nonetheless, we achieve a con-
cise statement of secrecy properties (cf. [1, 3, 17]). For example, if a value is created
with type Data(h), then our typing system ensures that only the program with identity
h can display it. Unusually for systems allowing arbitrary opponents [1, 3, 17, 23, 25],
our typing system also ensures memory safety for certified processes; our approach to
opponent typability is reminiscent of [43].

A distinctive aspect of our approach, in keeping with proposed applications of re-
mote attestation, is to minimize reliance upon an authority to distribute keys and poli-
cies. For example, in media distribution systems, the executables share nothing but data
that is both public (can be intercepted by the opponent) and tainted (may have come
from the opponent). In contrast, spi processes typically require further agreement. Con-
sider trustworthy spi processes P and Q deployed by a mutually-trusted authority that
initializes the system “new kp;(P | Q).” The authority may, for example, create the
keypair kp and distribute the public key to P and the private key to Q. A common type
environment ensures that P and Q agree on the meaning of data encrypted by kp.

2 Example

A prototypical use of remote attestation is to establish a channel for sending secrets to
an instance of a trusted executable, such as a media player that enforces a favored ac-
cess control policy. A process player on trusted hardware creates a fresh keypair, attests
to the public key, then transmits the result to a server. The server verifies the attestation,
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MEDIA PLAYER EXAMPLE

PWr
M= Wr 〈any,#player〉(Tnt)

player
M=

(1) new pch:Ch〈any,#player〉(Tnt);
(2) wr(sch)!at(#player,{wr(pch):PWr});
(3) rd(pch)?smsg;
(4) let at(s,mdyn)=smsg;
(5) iscert s;
(6) typecase {m:PData}=mdyn;
(7) display m

PData
M= Data(#player)

server
M=

(8) repeat rd(sch)?pmsg;
(9) let at(p,chdyn)=pmsg;

(10) iscert p;
(11) typecase {wr:PWr}=chdyn;
(12) new n:PData;
(13) wr!at(#server,{n:PData})

concluding that the public key belongs to an instance of the player executable running
on trusted hardware. Since the server trusts the player, it encrypts the data, perhaps a
movie, and sends the ciphertext back to player. The player is relied upon to enforce a
policy, such as not making the data available to other processes, or limiting the num-
ber of viewings. The trusted hardware hosting player is relied upon to prevent anyone,
including the host’s administrator, from violating the player’s environment.

We formalize this example at the top of the page. Initially, the player and server
agree only on the name of an untrusted (available to the opponent) channel sch, which
has type Ch〈any,any〉(Un); the angled brackets contain the channel’s policy, the paren-
theses contain the type of values communicated. The type of sch indicates that anyone
(including opponents) may send or receive messages on the channel and that the values
communicated are untrusted. The player and server must also have compatible policies
for the write capability (representing one key from a keypair) and data, with names PWr
and PData respectively. The policies mention the hash of the player program, and thus
the two

The player (1) creates a channel of type Ch〈any,#player〉(Tnt) (representing a
keypair), and (2) communicates the write capability (one of the keys) of type PWr to the
server by writing on sch. The access control policy associated with the channel pch is
〈any,#player〉. The first component any indicates that any executable, certified (typed)
or not, may write to the channel; thus the received value is tainted. Using the more
restrictive #server as the first component of the policy, meaning that only the server
may write to the channel, could be violated after the write capability is communicated
on the insecure channel sch. The second component of the policy #player means that
only an instance of the player executable can read from the channel.

A more lenient access control policy 〈any,cert〉 for pch would allow any well-
typed executable, denoted cert, to read from the channel. These two policies illustrate
the difference between possession and use in π-rat, because any well-typed executable
can possess the read capability for pch—regardless of whether the access control policy
is 〈any,#player〉 or 〈any,cert〉. Both cases are safe because well-typed executables will
only use the read capability when they are certain that it is permitted by the access
control policy specified by the channel’s creator.

The media server (8) repeatedly reads sch. Upon receipt of a message, the server
(9) unpacks the attestation in the message, discovering the hash of the attesting process,
(10) checks that the hash is certified (the hash of a well-typed executable), then (11)
unpacks the payload of the message (the write capability) which involves checking that
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the stated policy complies with the expected policy. The server then (12) creates a data
object and (13) sends it to the player via the write capability. In a similar fashion, (3)-
(6) the player receives the data and verifies its origin and policy, then (7) displays the
data.

Lines (2) and (13) include attestations. Remote attestation does not allow a re-
mote process to force trusted hardware to identify an uncooperative process. However,
processes that are unwilling to identify themselves using attestation may find other pro-
cesses unwilling to interact with them.

From an implementation perspective, using a hash other than the hash of the en-
closing process as the first component of the attestation primitive is unimplementable
because trusted hardware will only create attestations with the hash of the requesting
process. Due to inherent circularity, it is impossible for an executable to contain its own
hash, so we assume that a process is able to query the trusted hardware to find its own
hash at runtime: in which case a typechecker implementation would need to verify that
the code to perform the query is correct. A more interesting challenge for distributed
systems using remote attestation is that two executables cannot contain each other’s
hashes—one executable may contain the hash of the other executable, as illustrated by
the media server code which can only be written after the hash of the player executable
is known. Of course, two processes may learn one another’s hashes, and incorporate
those hashes into policies, during the course of execution.

The media server generates the data with a policy stating that it is only usable by
the player. The data stored in n is sent to the player using the write capability wr(pch),
so no-one but the player can receive the message. The data is sent inside an attestation,
because the player has no reason to trust data that it receives on pch. The type inside the
attestation is checked by the player to ensure that it treats the data in accordance with the
system’s access control policy. When the player receives the hash, it must dynamically
check that the hash is that of a well-typed executable. This is necessary to ensure that
the type in the attestation is reliable.

The threat considered here is that a process will read or write to a channel in viola-
tion of the policy of a well-typed executable that created the channel. For example, we
would like to prevent an executable other than player from displaying data n. Our main
theorem states that access control violations cannot occur in well-typed configurations,
even if the well-typed configuration is placed in parallel with an untyped opponent.

3 Dynamics

We give the syntax and dynamic semantics of π-rat. We describe runtime errors and
define safety. We describe types, T , in the next section.

Syntax and Evaluation. The language has syntactic categories for names, terms, pro-
cesses and configurations. Evaluation is defined in terms of configurations. Assuming
a non-colliding hash function (#) on programs — such that if #P = #Q then P = Q —
initial configurations have the following form.

(#P1)[P1] | · · · | (#Pm)[Pm]
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The configuration represents m concurrent processes, each identified by its hash. This
form is not preserved by reduction, since a process may evolve, but its hash does not.
(In practice, remote attestation uses the hash of the executable, and the remaining state
of the process is ignored.) We thus choose to treat hashes abstractly as names.

Names (a-z) serve several purposes. To aid the reader, we use x,y,z to stand for vari-
ables, h,g, f to stand for hashes or hash-typed variables, and a,b,c to stand for channels.

TERMS AND PATTERNS

M,N,L ::= n | rd(M) | wr(M) | (M,N) | at(M,N) | {M:T}
X ::= (x,y) | at(x,y)

Terms include names as well as read and write capabilities, rd(M) and wr(M), which
may be passed individually as in Odersky’s polarized π [41]. The term at(M,N) is
an attested message originating from hash M with payload N. The constructors for
pairs and attestations each have a corresponding nonblocking destructor in the pattern
language. The term {M:T} carries a term M with asserted type T (cf. the dynamic types
of [4]). As illustrated in section 2, terms of the form {M:T} are used to convey type, and
hence policy, information between processes that have no pre-established knowledge of
one another’s behavior or requirements, but the information can only be trusted when
{M:T} originates from a certified process. Attestation is used to ensure that such terms
do originate from a certified process before secure channels are established.

PROCESSES AND CONFIGURATIONS

P,Q,R ::= iscert M; P | typecase {x:T}=M; P | let X=M; P | scope M is σ

| M?x; P | M!N | new a:T; P | P | Q | repeat P | stop
C,D,A,B ::= h[P] | newh a:T; C | C | D | stop

The test iscert M succeeds if M is a certified hash, otherwise it blocks. The typecase
typecase {x:T}=M succeeds if M is a term with an asserted type that is a subtype
of T , otherwise it blocks. The expectation scope M is σ asserts that the scope of M is
limited by the hash formula σ; we discuss hash formulas with runtime errors below. The
primitives for reading, writing, new names, concurrency, repetition and inactivity have
the standard meanings from the asynchronous π calculus [11, 29]. The constructs for
configurations are standard for located π-calculi [28]; note that the construct for new
names records the identity of the process that created the name.

NOTATION. We identify syntax up to renaming of bound names. For any syntactic
category with typical element e, we write fn(e) for the set of free names occurring
in e. We write M{N/x} for the capture-avoiding substitution of N for x in M. For any
syntactic category with typical element e, we write sequences as~e and sets as ē. We
occasionally extend this convention across binary constructs, for example writing~n:~T
for the sequence of bindings n1:T1, . . . ,nm:Tm. We sometimes write “_” for a syntactic
element that is not of interest. �
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The evaluation semantics is given in the chemical style [16] using a structural equiv-
alence and small-step evaluation relation. (We write multistep evaluation as ḡ.C→∗D.)
We elide the definition of the structural equivalence, which is standard for located
π-calculi [28]; for example, the rule for allowing new to escape from a process is
“h[new a:T; P]≡ newh a:T; h[P]”.

EVALUATION (ḡ.C → D)

ḡ. f[wr(a)!M] | h[rd(a)?x; P]→ h[P{M/x}] ḡ.h[iscert f; P]→ h[P]
f ∈ ḡ

if h ∈ ḡ then ḡ:Cert ` T <: S
ḡ.h[typecase {x:S}={M:T}; P]→ h[P{M/x}]

X{~N/~y}= M

ḡ.h[let X=M; P]→ h[P{~N/~y}]
ḡ.C → D
ḡ.C | B → D | B

ḡ.C → D
ḡ.newh a; C → newh a; D

ḡ.C → D
ḡ.C ′ → D′

C ≡ C ′

D ≡ D′

The first rule allows communication between processes, in the standard way. The rule
for iscert allows a process to verify that a hash is certified; in the residual, f is known
to be a certified hash. The rule for typecase allows retrieval of data from a term with
an asserted type. A dynamic subtype check enforces agreement between the asserted
type T and the expected type S; subtyping is defined in section 4. The let rule is used to
decompose attestations and pairs. The structural rules are standard.

Note that ḡ is only required by typecase to allow opponents processes to avoid
dynamic checks. The other uses of ḡ (in iscert and typecase) can be removed, as is
shown in the full version of the paper.

Runtime Error and Robust Safety. Our primary interest in typing is to enforce access
control policies. Policies are specified in terms of hash formulas.

LATTICE OF HASH FORMULAS (ρ ≤ σ)

ρ,σ ::= any | cert | h1, . . . ,hn
ρ ≤ any h̄ ≤ cert cert≤ cert

h̄ ⊆ ḡ

h̄ ≤ ḡ

Hash formulas are interpreted using an open world assumption; we allow that not all
programs nor typed programs are known. The special symbol cert is interpreted as a
conservative approximation of the set of well-typed programs.

Access control policies are specified in scope expectations [21, 24]. We develop a
notion of runtime error to capture access control and memory safety violations.

RUNTIME ERROR (ḡ.C error−→)

h ∈ ḡ f 6≤ σ{ḡ/cert}
ḡ.h[scope M is σ] | f[M?x; P] error−→

h ∈ ḡ M 6= rd(_)

ḡ.h[M?x; P] error−→
ḡ.C error−→
ḡ.C | D error−→

h ∈ ḡ f 6≤ σ{ḡ/cert}
ḡ.h[scope M is σ] | f[M!N]

error−→
h ∈ ḡ M 6= wr(_)

ḡ.h[M!N]
error−→

ḡ.C error−→
ḡ.newh a; C error−→

h ∈ ḡ M 6= {_:_}

ḡ.h[typecase {_:_}=M; P] error−→
h ∈ ḡ M 6= (_,_)

ḡ.h[let (_,_)=M; P] error−→
ḡ.C error−→
ḡ.C ′ error−→

C ≡ C ′
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A runtime error occurs on certain shape errors and whenever a term is used outside of
its allowed scope. For example, the following term is in error, since the certified process
h is writing on a term of the wrong shape.

{h,g}.h[rd(a)!n] error−→

The following term is also in error, since the certified process h expects the scope of
wr(a) to include only certified processes, yet the uncertified process f is attempting to
write on a.

{h,g}.h[scope wr(a) is cert] | f[wr(a)!n] error−→

ROBUST SAFETY

A process is h-initial if every attested term has the form “at(h,M).”
A configuration h1[P1] | · · · | h`[P`] is an initial ḡ-attacker if {h1, . . . ,h`} is disjoint

from ḡ and every Pi is hi-initial.
A configuration C is ḡ-safe if ḡ.C→∗D implies ¬(ḡ.D error−→).
A configuration C is robustly ḡ-safe if C | A is ḡ-safe for every initial ḡ-attacker A.

The statement of robust safety ensures that certified processes are error-free, even when
combined with arbitrary attackers. The restriction that initial attacker h[P] be h-initial
requires only that attackers not forge attestations.

4 Statics

We describe a type system that ensures robust safety, i.e., runtime errors cannot occur
even in the presence of attackers. Types also convey policy information—access-control
policies specified in terms of hash formulas in this paper—that can be transmitted and
tested at runtime. Kinds are assigned to types to restrict the use of unsafe types. In this
section, we present parts of the type system and state the robust-safety theorem. The de-
velopment is heavily influenced by Gordon and Jeffrey [23] and Haack and Jeffrey [25].

Policies, Types and Kinds. We assign to every channel type a policy regulating ac-
cess to the channel. For channel types with policy 〈ρ,σ〉, ρ (respectively σ) controls
the source (respectively destination) of the data communicated by the channel: thus ρ

indicates the set of writers; σ indicates the set of readers. A kind is a policy 〈ρ,σ〉 in
which ρ and σ are either cert or any.

POLICIES AND KINDS

ρ, σ ::= cert | any | h̄ Hash Formulas (Repeated)
α, β ::= cert | any Kind Formulas
Φ,Ψ ::= 〈ρ,σ〉 Policies
K ,J ::= 〈α,β〉 Kinds

TNT
M= 〈any,cert〉 Tainted Secret Kind

PRV
M= 〈cert,cert〉 Untainted Secret Kind

UN
M= 〈any,any〉 Tainted Publishable Kind
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PUB
M= 〈cert,any〉 Untainted Publishable Kind

ρ ≤ ρ′ and σ′ ≤ σ

〈ρ,σ〉 ≤ 〈ρ′,σ′〉 Subpolicy Relation

The subpolicy relation, Φ ≤ Ψ, indicates that Ψ is more restrictive than Φ. In more
restrictive policies, it is always safe to overestimate the origin of a value and to un-
derestimate its scope. That is, in 〈ρ,σ〉, ρ is an upper bound on origin, and σ is an
lower bound on scope. When specialized to kinds, the subpolicy relation reduces to the
subkinding relation from [25].

〈any,cert〉= TNT

〈cert,cert〉= PRVUN =〈any,any〉

〈cert,any〉= PUB

ddJJJJJ
::ttttt

::ttttt
ddJJJJJ

We write K t J for the join operator over this lattice. For example UNtPRV = TNT.

TYPES AND TYPING ENVIRONMENTS

T,S,U,R ::= Hash | Cert | TopK | Dyn(h)K | (x:T,S)
| ChΦ(T) | RdΦ(T) |WrΦ(T)

Un
M= TopUN Top of Kind UN

Tnt
M= TopTNT Top of Kind TNT

E ::= n1:T1, . . . ,nm:Tm Typing Environments
dom(~n:~T) M=~n Domain of an Environment

Type Hash can be given to any hash, whereas Cert can be given only to certified hashes.
TopK is the type given to attestations containing data of kind K . Dyn(h)K is the type
of dynamically-typed data that was attested by h. In the dependent pair type “(x:T,S)”
x is bound with scope S; if x 6∈ fn(S) we write simply (T,S). The channel types indicate
the policy Φ associated with the channel.

EXAMPLE. Although we allow creation of names at top types, these do not allow a full
expression of access control policies. We provide an encoding of data, where Data(σ)

is the type of data visible to σ.

Data(σ)
M= Wr 〈σ,any〉(Un) display M M= new n:Un; M!n

A simple use of data is: new n:Data(cert); display n. �

Judgments. The following judgments are used in the typing system. Due to space
limitations, we discuss only the most important rules.
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JUDGMENTS

E ` � Well-Formed Typing Environments
E ` Φ :: K Well-Formed Policies
E ` T :: K Well-Formed Types of Kind K
E ` T <: S Subtyping
E ` M : T Well-Formed Terms of Type T
E h̀ P Well-Formed Process at h

The rules for environments require that every type in the environment be well-
formed. A policy is well-formed with respect to a typing environment if every hash
in the policy has type Cert in the environment.

E ` Φ :: 〈cert,α〉
E ` T :: 〈_,β〉 α ≤ β

E ` RdΦ(T) :: 〈cert,α〉

E ` Φ :: 〈any,α〉
T = Top〈any,β〉 α ≤ β

E ` RdΦ(T) :: 〈any,α〉

The rules for well-formed types require that read capabilities of kind UN receive values
(at a type of) of kind UN; those of kind PUB receive values of kind UN or PUB; those of
kind TNT receive values of kind UN or TNT; and those of kind PRV receive values of
any kind. Write capabilities are similar for UN and PRV, but differ at the other kinds.
Write capabilities of kind PUB send values of kind UN or TNT; those of kind TNT
send values of kind UN or PUB. In the analogous rules for write capabilities, the kind
is inverted with respect to the policy. As a consequence, if a channel communicates un-
tainted data then the write capability is given at most trusted scope; if a write capability
is publishable, then the data it communicates is tainted.

Subtyping. Subtyping is reflexive and transitive, with top types at each kind. Read
and write capability types must have related policies in order to be related by subtyping.

Φ ≤ Ψ E ` T <: S E ` S :: kind(Ψ)
E ` RdΦ(T) <: RdΨ(S)

Ψ ≤ Φ E ` S <: T E ` S :: kind(Ψ)
E `WrΦ(T) <:WrΨ(S)

In the read rule, the requirement that S be well-formed is necessary since Ψ may be
tainted even if Φ is not. Likewise in the write rule, Ψ may be publishable even if Φ is
not.

Typing and Robust Safety. The typing rules are designed to ensure robust safety
whilst allowing typechecked processes to have limited interaction with processes that
are not known to be typechecked. The interesting rules for terms are those for dynamic
types and attestations.

E ` M : T E ` h : Cert E ` T :: K
E ` {M:T} : Dyn(h)K

E ` M : Cert E ` N : Dyn(M)K
E ` at(M,N) : TopK

The rule for dynamic types constrains each type assertion to be associated with the hash
of a typechecked process, and that hash is recorded in the (dependent) dynamic type.
The rule for attestations constrains the hash in an attestation to be the same as the one
used in the inner type assertion.
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Turning to processes, consider the following three rules.

E ` M : TopK
E,x:Hash,y:Dyn(x)K h̀ P
E h̀ let at(x,y)=M; P

T ∈ {Hash,Cert}
E,x:Cert,E′

h̀ P
E,x:T,E′

h̀ iscert x; P

E ` M : Dyn(f)K
E ` f : Cert
E,x:S h̀ P
E h̀ typecase {x:S}=M; P

The pattern-matching rule for attestations is used to decompose an attestation into a
hash and a dynamic type associated with that hash. However, the term of dynamic type
cannot be unpacked (using the rule for typecase) until the hash is known to correspond
to a well-typed process. This is established using iscert, leading to the pattern seen in
the example of section 2 of an attestation decomposition, followed by a hash check, and
finally a typecase.

E ` � E ` M : Ch〈ρ,σ〉(T)
E h̀ scope rd(M) is σ

E ` M : Rd〈_,σ〉(T) E,x:T h̀ P h ≤ σ

E h̀ M?x; P

The type rule for read scoping expectations forces the process making the expectation to
know the channel type, and not just the read capability type. This is necessary because
policies are invariant on channel types but covariant on read channel types, so a process
that only knows the read capability type may have a poor approximation of the actual
policy that is used elsewhere in a configuration. To avoid access control violations, the
rule for reading processes requires that the process has authorization to read from a read
capability. Although a static authorization check may initially appear restrictive, note
that the static authorization check may follow a dynamic subtyping check for a read
capability received from another process.

The robust safety theorem states that processes can safely be typechecked and de-
ployed independently without any shared untainted or secret data (such as public or
secret keys), even in the presence of attackers.

THEOREM (ROBUST SAFETY). Let E be an environment in which every type is gener-
ative and can be given kind UN. Let gi and Pi be defined such that (1 ≤ i ≤ n):

Pi is gi-initial and E, h̄:Cert, f̄:Hash g̀i
Pi for some h̄ ⊆ {g1, . . . ,gn} and f̄.

Then g1[P1] | · · · | gn[Pn] is robustly {g1, . . . ,gn}-safe.
Proof sketch. The proof requires an invariant that is implied by initial typing and pre-
served by reduction. We formalize the invariant as a more liberal typing system record-
ing the sets of certified and opponent hashes. The central lemmas are Certified typabil-
ity: All certified processes are well typed. Opponent typability: All opponent processes
are well typed. Preservation: Well typing is preserved by evaluation. Progress: Well
typed terms cannot give rise to runtime errors. �

5 Related Work

Remote Attestation. NGSCB and the TCG have provoked considerable controversy. For
example, see [12, 14].
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Abadi [2] outlines a broad range of trusted hardware applications that use remote
attestation to convey trust assertions from one process to another. Our work can be seen
as a detailed formal study of a specific kind of trust assertion, namely information about
the type and access control policy for communicated data.

The NGSCB [37–39] remote attestation mechanism, and the TCG [50, 42, 15] hard-
ware that underpins it, are more complex than the π-rat remote attestation mechanism.
We have omitted much of the complexity in order to focus on the core policy issues.
For a logical description of NGSCB’s mechanism see [10]. For a concrete account of
implementing NGSCB-like remote attestation on top of TCG hardware see [45].

Haldar, Chandra, and Franz [26, 27] use a virtual machine to build a more flexible
remote attestation mechanism on top of the primitive remote attestation mechanism that
uses hashes of executables. In their system, a process requesting an attestation from a
second process can send test code to execute on the second process’s virtual machine
and ask for the results to be reported in attestations. Sadeghi and Stüble [44] observe
that systems using remote attestation may be fragile, and discuss a range of options for
implementing more flexible remote attestation mechanisms based upon system proper-
ties (left unspecified as the focus is upon implementation strategies). Sandhu and Zhang
[46] consider the use of remote attestation to protect disseminated information.

Process Calculi. As discussed in the introduction, π-rat builds upon existing work
[9, 3, 22, 23, 25] with symmetric-key and asymmetric-key cryptographic primitives in
pi-calculi. Notably, the kinding system is heavily influenced by the pattern-matching
spi-calculus [25]. Our setting is quite different, however. In particular, processes estab-
lish their own secure channels and corresponding policies, as opposed to relying upon a
mutually-trusted authority to distribute initial keys and policies. In addition, the access
control policies used here are not immediately expressible in spi, since processes do not
have associated identity. The techniques used to verify authenticity and other properties
as in [22, 21] should be applicable to π-rat, though we make no attempt to address au-
thenticity or replay attacks here. Finally, our primitive for checking attestation includes
an implicit notion of authorization which is made explicit in [25]. Scaling up to explicit
authorizations would allow the possibility of enforcing policies that require multiple
authorizations for certain actions.

There is some similarity between our work and that on the distributed π calcu-
lus [28]. In Dπ, locations are primarily collections of resources. Here, instead, we view
“locations” as principals whose identity is determined by the actual code running. This
is a different view of locality, determined less by where the code happens to be running
and more on the identity of the code itself.

Because of the close relation between process terms and their hashes, attestation
does not appear to fit neatly into existing abstract frameworks for π-calculi, such as
applied π [5].

Code Identity. Code identity is also used in stack inspection [51] and other history-
based access control policies [6]. Remote attestation can be used to implement similar
policies in a distributed environment, but we leave this for future work.

Separate Compilation and Typechecking. The π-rat type system allows executables
to be typechecked independently and subsequently linked together. Separate compila-
tion and linkability is not a new idea in programming languages, see, e.g., [20], but
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is uncommon in spi-like calculi because there is usually a need to reliably distribute
some shared secret or untainted data between separate processes in accordance with a
type (policy). Recently Bugliesi, Focardi, and Maffei [18, 19] have considered separate
typechecking in the context of a spi-like calculus.

Trusted Hardware. We have assumed that trusted hardware is trustworthy. Amongst
other things, the trusted hardware must correctly protect the memory of processes from
attackers, attackers must not be able to access the trusted hardware key, and processor
manufacturers must not issue fake certificates and keypairs to anyone (such as law en-
forcement, intelligence agencies, or data recovery firms). For accounts of the difficulties
involved in creating such trusted hardware see [13, 31] for an attacker’s perspective and
[15, 48] for a defender’s perspective. Irvine and Levin [32] provide a warning about
placing too much trust in the integrity of COTS.

Other research efforts on implementations of trusted hardware, such as [35, 36, 47],
are orthogonal to the work presented here.

6 Conclusion

This paper is an early contribution to the study of remote attestation in programming
languages. We have defined an extension of the π-calculus with a remote attestation
primitive and access control assertions for channels. Executables may be typechecked
and deployed individually, which is a significant advantage for the intended applications
of trusted hardware. The resulting typechecked configurations discover and obey access
control policies even with the addition of opponents. To the best of our knowledge, this
is the first paper to provide static analysis principles for building systems that use the
remote attestation mechanism.

By incorporating higher-order communication, one could reason about runtime cer-
tification of executables and the distribution of knowledge of the certification. The pres-
ence of hashes identifying processes also makes it possible to imagine recovering tra-
ditional memory safety without sacrificing opponent typability.

It would be useful to extend π-rat with access control policies using linked names-
paces that denote sets of trusted hashes as opposed to sets of public keys in the RT
framework [34]. With development tools that also run on trusted hardware, there are
some interesting new possibilities. For example, we might use a compiler (not neces-
sarily modeled as a well-typed π-rat executable) that issues an attestation associating
the hash of the source code and the hash of the resulting executable. An access control
policy might state that a well-typed executable must have been derived from source
code signed by a trusted developer’s private key, where that developer is expected to
follow certain procedures to provide a degree of assurance. The use of development
tools that attest to their output would help to mitigate the threat of Trojan horses in
tools, see [49].
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