
Between Linearizability and Quiescent Consistency⋆

Quantitative Quiescent Consistency

Radha Jagadeesan and James Riely

DePaul University

Abstract Linearizability is the de facto correctness criterion for concurrent data
structures. Unfortunately, linearizability imposes a performance penalty which
scales linearly in the number of contending threads. Quiescent consistency is an
alternative criterion which guarantees that a concurrent data structure behaves
correctly when accessed sequentially. Yet quiescent consistency says very little
about executions that have any contention.

We define quantitative quiescent consistency (QQC), a relaxation of lineariz-
ability where the degree of relaxation is proportional to the degree of contention.
When quiescent, no relaxation is allowed, and therefore QQC refines quiescent
consistency, unlike other proposed relaxations of linearizability. We show that
high performance counters and stacks designed to satisfy quiescent consistency
continue to satisfy QQC. The precise assumptions under which QQC holds pro-
vides fresh insight on these structures. To demonstrate the robustness of QQC,
we provide three natural characterizations and prove compositionality.

1 Introduction

This paper defines Quantitative Quiescent Consistency (QQC) as a criterion that lies
between linearizability [10] and quiescent consistency [3], [11], [17]. The following
example should give some intuition about these criteria.

Example 1.1. Consider a counter object with a single getAndIncrementmethod. The
counter’s sequential behavior can be defined as a set of strings such as [+]+0 {

+ }+1 (
+)+2

where [+ denotes an invocation (or call) of the method and]+i denotes the response (or
return) with value i. Suppose each invocation is initiated by a different thread.

A concurrent execution may have overlapping method invocations. For example, in
(+ [+]+0 {

+ }+1)
+
2 the execution of (+)+2 overlaps with both [+]+0 and {+ }+1 , whereas

[+]+0 finishes executing before {+ }+1 begins. Consider the following four executions.

(+ [+]+0 {
+ }+1)

+
2 (+ {+ }+1 [

+]+0)
+
2 [+ (+)+2 {

+ }+1]
+
0 [+ (+)+2]

+
0 {

+ }+1

Linearizability states roughly that every response-to-invocation order in a concurrent
execution must be consistent with the sequential specification. Thus, the first execu-
tion is linearizable, since the response of [+]+0 precedes the invocation of {+ }+1 in the
specification. However, none of the other executions is linearizable. For example, the
response of {+ }+1 precedes the invocation of [+]+0 in the second execution.

⋆ Research supported by NSF 0916741.
The full version of this paper is available at http://arxiv.org/abs/1402.4043 .

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 220–231, 2014.
c⃝ Springer-Verlag Berlin Heidelberg 2014

Between Linearizability and Quiescent Consistency 221

Linearizability can also be understood in terms the linearization point of a method
execution, which must occur between the invocation and response. From this perspec-
tive, the first execution above is linearizable because we can find a sequence of
linearization points that agrees with the specification; this requires only that the lin-
earization point of (+)+2 follow that of {+ }+1 . No such sequence of linearization points
exists for the two other executions.

Quiescent consistency is similar to linearizability, except that the response-to-invoca-
tion order must be respected only across a quiescent point, that is, a point with no open
method calls. The first three executions above are quiescently consistent because there
are no non-trivial quiescent points. The last execution fails to be quiescently consistent
since the order from (+)+2 to {+ }+1 is not preserved in the specification.

We define Quantitative Quiescent Consistency (QQC) to require that the number
of response-to-invocation pairs that are out-of-order at any point be bounded by the
number of open calls that might be ordered later in the specification. We also give a
counting characterization of QQC, which requires that if a response matches the ith

method call in the specification, then it must be preceded by at least i invocations.
The first two executions above are QQC; however, the last two are not. In the second

execution, the open call to (+)+2 justifies the return of {+ }+1 before [+]+0 since (+)+2
occurs after {+ }+1 in the specification. However, in the third execution, the return of
(+)+2 before {+ }+1 cannot be justified only by the call to [+]+0 since [+]+0 occurs
earlier in the specification. Following the counting characterization sketched above, the
third execution fails since (+)+2 is the third method call in the specification trace, but
the response of (+)+2 is only preceded by two invocations: [+ and (+ . ✷

Quiescent consistency is too coarse to be of much use in reasoning about concur-
rent executions. For example, a sequence of interlocking calls never reaches a quiescent
point; therefore it is trivially quiescently consistent. This includes obviously correct ex-
ecutions, such as [+ (+]+0 [

+)+1 (
+]+2 [

+)+3 (
+]+4 [

+ · · · , nearly correct executions, such
as [+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , and also ridiculous executions, such as [+ (+

]+1074 [
+)+17 (

+]+2344 [
+)+3 (

+ · · · .
Linearizability has proven quite useful in reasoning about concurrent executions;

however, it fundamentally constrains efficiency in a multicore setting: Dwork, Herlihy,
and Waarts [6] show that if many threads concurrently access a linearizable counter,
there must be either a location with high contention or an execution path that accesses
many shared variables. Shavit [14] argues that the performance penalty of linearizable
data structures is increasingly unacceptable in the multicore age. This observation has
lead to a recent renewal of interest in nonlinearizable data structures. As a simple exam-
ple, consider the following counter implementation: a simplified version of the counting
networks of Aspnes, Herlihy, and Shavit[3].

class Counter<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field c:Int[] = [0, 1, ..., N-1]; // N counters
method getAndIncrement():Int {

val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = c[i]; c[i] += N; return v; } } }

222 R. Jagadeesan and J. Riely

The N-Counter has two fields: a balancer b and an array c of N integer counters. There
are two atomic actions in the code: The first reads and updates the balancer, setting the
local index variable i. The second reads and updates the ith counter. Although the
balancer has high contention in our simplified implementation, the counters do not;
balancers that avoid high contention are described in [3].

Example 1.2. The N-Counter behaves like a sequential counter if calls to getAnd-
Increment are sequentialized. To see this, consider a 2-Counter, with initial state
⟨b= 0, c= [0, 1]⟩. In a series of sequential calls, the state progresses as follows, where
we show the execution of the first atomic with the invocation and the second atomic
with the response. The execution [+]+0 {

+ }+1 (
+)+2 can be elaborated as follows.

⟨b = 0, c= [0, 1]⟩ [+−−→⟨b = 1, c= [0, 1]⟩]+0−→⟨b= 1, c= [2, 1]⟩
{+−−→⟨b = 0, c= [2, 1]⟩ }+1−→⟨b= 0, c= [2, 3]⟩
(+−−→⟨b = 1, c= [2, 3]⟩)+2−→⟨b= 1, c= [4, 3]⟩

When there is concurrent access, the 2-Counter allows nonlinearizable executions,
such as (+ {+ }+1 [

+]+0)
+
2 .

⟨b = 0, c= [0, 1]⟩ (+−−→⟨b = 1, c= [0, 1]⟩
{+−−→⟨b = 0, c= [0, 1]⟩ }+1−→⟨b= 0, c= [0, 3]⟩
[+−−→⟨b = 1, c= [0, 3]⟩]+0−→⟨b= 1, c= [2, 3]⟩

)+2−→⟨b= 1, c= [4, 3]⟩

With a sequence of interlocking calls, it is also possible for the N-Counter to execute
as [+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , producing an infinite sequence of values that
are just slightly out of order. Using the results of this paper, one can conclude that with
a maximum of two open calls, the value returned by getAndIncrement will be “off”
by no more than 2, but this does not follow from quiescent consistency. ✷

Our results are related to those of [2], [3], [5], [16]. In particular, Aspnes, Herlihy,
and Shavit[3] prove that in any quiescent state (with no call that has not returned), such
a counter has a “step-property”, indicating the shape of c. Between }+1 and]+0 in the
second displayed execution of Example 1.2, the states with c = [0, 3] do not have the
step property, since the two adjacent counters differ by more than 1.

Aspnes, Herlihy, and Shavit[3] imply that the step property is related to quiescent
consistency, but they do not provide a formal definition. It appears that they have in
mind is something like the following: An execution is weakly quiescent consistent if
any uninterrupted subsequence of sequential calls (single calls separated by quiescent
points) is a subtrace of a specification trace.

The situation is delicate: Although the increment-only counters of [3] are quies-
cently consistent in the sense we defined in Example 1.1 (indeed, they are QQC), the
increment-decrement counters of [2], [5], [16] are only weakly quiescent consistent. In-
deed, the theorems proven in [16] state only that, at a quiescent point, a variant of the
step property holds. They state nothing about the actual values read from the individual
counters. Instead, our definition requires that a quiescently consistent execution be a
permutation of some specification trace, even if it has no nontrivial quiescent points.

Between Linearizability and Quiescent Consistency 223

Example 1.3. Consider an extension of the 2-Counter with decrementAndGet.

method decrementAndGet():Int {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { c[i] -= N; return c[i]; } }

The execution [+ {+ (- <- >-−2]
+
−2 }

+
1)

-
1 is possible, although this is not a permutation

of any specification trace. The execution proceeds as follows.

⟨b= 0, c= [0, 1]⟩ [+−−→ ⟨b= 1, c= [0, 1] ⟩ {+−−→ ⟨b= 0, c= [0, 1]⟩
(-−−→ ⟨b= 1, c= [0, 1] ⟩ <-−−→ ⟨b= 0, c= [0, 1]⟩
>-−2−−→⟨b= 0, c= [−2, 1]⟩]+−2−−→⟨b= 0, c= [0, 1]⟩
}+1−→ ⟨b= 0, c= [0, 3] ⟩)-1−→ ⟨b= 0, c= [0, 1]⟩ ✷

It is important to emphasize that this increment-decrement counter is not even quies-
cently consistent according to our definition. There is no hope that it could satisfy any
stronger criterion.

Of course counters are not the only data structures of interest. In the full paper, we
treat concurrent stacks in detail. We define a simplified N-Stack below; the full, tree-
based data structure is defined in Shavit and Touitou[16].

class Stack<N:Int> {
field b:[0..N-1] = 0; // 1 balancer
field s:Stack[] = [[], [], ..., []]; // N stacks of values
method push(x:Object):Unit {

val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = s[i].push(x); return v; } }

method pop():Object {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { val v = s[i].pop(); return v; } } }

The trace given in Example 1.3 for the increment-decrement counter is also a trace
of the stack, where we interpret + as push and - as pop. Whereas this is a nonsense
execution for a counter, it is a linearizable execution of a stack: simply choose the
linearization points so that each push occurs immediately before the corresponding pop.
Nonetheless, the N-Stack is only weakly quiescent consistent in general.

Example 1.4. The N-Stack generates the execution [+a]+ (
+
b)+ {

+
c <- >-a }+ as follows.

⟨b= 0, s= [[], []] ⟩ [+a−−→⟨b= 1, s= [[], []] ⟩]+−→⟨b= 1, s= [[a], []] ⟩
(+b−−→⟨b= 0, s= [[a], []] ⟩)+−→⟨b= 0, s= [[a], [b]]⟩
{+c−−→⟨b= 1, s= [[a], [b]]⟩
<-−−→⟨b= 0, s= [[a], [b]]⟩ >-a−→⟨b= 0, s= [[], [b]] ⟩

}+−→⟨b= 0, s= [[c], [b]]⟩

However, this specification is not quiescently consistent with any stack execution: There
is a quiescent point after each of the first two pushes; therefore it is impossible to pop a
before b. This execution is possible even when there are several pushes beforehand. ✷

224 R. Jagadeesan and J. Riely

In the case of the N-Stack, a simple local constraint can be imposed in order to es-
tablish quiescent consistency: intuitively, we require that no pop overtakes a push on
the same stack s[i]. In the full paper, we show that the stack is actually QQC under
this constraint, and therefore quiescently consistent. We also prove that the elimination-
tree stacks of Shavit and Touitou [16] are QQC. The increment-only counters of [3] are
also QQC; the proofs for the tree-based increment-only counter follow the structure of
the proofs for the elimination-tree stacks. (We have not found a local constraint under
which the increment-decrement counter is quiescently consistent.) Our correctness re-
sult is much stronger than that of [16], which only proves weak quiescent consistency.

The preliminary version of Shavit and Touitou’s paper [15] suggests an upcoming
definition ε-linearizability, “a variant of linearizability that captures the notion of ‘al-
mostness’ by allowing a certain fraction of concurrent operations to be out-of-order.”
This thread was picked up by Afek, Korland, and Yanovsky[1] and improved by Hen-
zinger, Kirsch, Payer, Sezgin, and Sokolova[9]. As defined in [9], the idea is to define
a cost metric on relaxations of strings and to bound the relaxation cost for the specifi-
cation trace that matches an execution. This relaxation-based approach has been used
to validate several novel concurrent data structures [1], [7]. With the exception of the
increment-only counter validated in [1], all of these data structures intentionally vio-
late quiescent consistency. In Section 4, we show that this approach in incomparable to
QQC.

With QQC, the maximal degradation depends upon the amount of concurrent access,
whereas in the relaxation-based approach it does not. Thus, QQC “degrades gracefully”
as concurrency increases. In particular, a QQC data structure that is accessed sequen-
tially will exactly obey the sequential specification, whereas a data structure validated
against the relaxation-based approach may not.

In the rest of the paper, we formalize QQC and study its properties. Our contributions
are as follows.
– We define linearizability (Section 2), quiescent consistency (Section 3) and QQC

(Section 4) in terms of partial orders over events with duration. As in Example 1.1,
the definitions are given in terms of the order from response to invocation.

– For sequential specifications, we provide alternative characterizations of lineariz-
ability, quiescent consistency and QQC in terms of the number of invocations that
precede a response. For linearizability, this approach can be found in [4].

– We provide an alternative characterization of QQC in terms of a proxy that controls
access to the underlying sequential data structure. The proxy adds a form of specu-
lation to the flat combining technique of Hendler, Incze, Shavit, and Tzafrir[8]. This
characterization can be seen as a language generator, rather than an accepter.

– Like linearizability and quiescent consistency [11], QQC is non-blocking and com-
positional. Like quiescent consistency and unlike linearizability, a QQC execution
may not respect program order, and therefore QQC is incomparable to sequential
consistency [12]. We prove that QQC is compositional for sequential specifications,
in the sense of Herlihy and Wing[10].

– We show that QQC is useful for reasoning about data structures in the literature. In
the full paper, we prove that the elimination tree stacks of Shavit and Touitou[16] are
QQC, as long as no pop overtakes a push on the same stack.

Between Linearizability and Quiescent Consistency 225

2 Linearizability

A trace is a labelled partial order with polarity and bracketing. We use ? and ! to denote
polarities. The polarity indicates whether an event in the partial order is a call/input
(?) or a return/output (!). Bracketing matches each return with the particular call that
precedes it. Let p–t range over traces and let a, b range over names, which form the
carrier set of the partial order. We introduce notation over traces as needed.

Intuitively, linearizability requires that the response-to-invocation order in an execu-
tion be respected by a specification trace. To show that s′′ is linearizable, it suffices to
do the following

– Choose a specification trace t.
– Choose an extension s′ of s′′ that closes the open calls in s′′. We say that s′ extends

s′′ if (1) if s′′ is a prefix of s′, and (2) all of the new events in s′ − s′′ are ordered after
all events of opposite polarity in s′′ (that is, calls after returns and returns after calls).
Let extensions(s′′) be the set of extensions of s′′.

– Choose a renaming s =α s′ such that s =π t. Here =α denotes equivalence up to
renaming and =π denotes equivalence up to permutation. This establishes that s′ is a
permutation of t. The names are witness to the permutation.

– Show that for every response a! and invocation b?, if a! precedes b? in s (a!⇒s b?),
then the same must be true in t (a!⇒t b?).

This definition differs from the traditional one in several small details, enumerated in
the full paper. In particular, we allow s′ ∈ extensions(s′′) to include calls that are not in
s′′, in addition to returns. We can refactor the definition slightly to pull it into the shape
used to define quiescent consistency and QQC.

Definition 2.1. For traces s, t, we write s ⊑lin t if s =π t and for every prefix p ≤pre s
∀a!∈ p. ∀b?∈ s− p. (a!⇒s b?) implies (a!⇒t b?).

Then (s′′ ∼❁lin t) △
= (∃s′ ∈ extensions(s′′). ∃s =α s′. s ⊑lin t),

and (S ∼❁lin T) △
= (∀s′′ ∈ S. ∃t ∈ T. s′′ ∼❁lin t). ✷

This characterization of linearizability requires that we look at every way to cut the
trace s into a prefix p and suffix s− p. We then look at the return events in p and the
call events in s− p and ensure that the order of events crossing the cut is respected in t.
The definitions are equivalent since we quantify over all possible cuts.

Consider the counter specification from Example 1.1: [+]+0 {
+ }+1 (

+)+2 . The trace
{+ [+ }+1 (

+]+0)
+
2 is linearizable. The interesting cut is {+ [+ }+1 which requires only

that {+ }+1 precede (+)+2 in the specification. By the same reasoning, {+ (+ }+1 [
+)+2]

+
0 ,

is not linearizable, since it requires that {+ }+1 precede [+]+0 .
Given a sequential specification, a trace is linearizable if every return is preceded by

the calls that come before it in specification order. This holds for operational traces,
in which all events of opposite polarity are ordered. Operational traces correspond to
those generated by a standard interleaving semantics. Define s ≤π t to mean that s is a
subtrace of a permutation of t: (s ≤π t) △

= (∃s′. s ⊆ s′ =π t).
Theorem 2.2. Let t be a sequential trace with name order (a?

1, a!
1, a?

2, a!
2, . . . , a?

n, a!
n).

Let s be an operational trace such that s ≤π t. Then

s ∼❁lin t iff ∀a!
j ∈ s. {a?

1, . . . , a?
j}⊆ {a?

i | a?
i ⇒s a!

j} ✷

226 R. Jagadeesan and J. Riely

3 Quiescent Consistency

Let open(s) be the set of calls in s that have no matching return. We say that trace s is
quiescent if open(s) = /0. This notion of quiescence does not require that there be no
active thread, but only that there be no open calls. Thus, this notion of quiescence is
compatible with libraries that maintain their own thread pools.

The definition of quiescent consistency is similar to Definition 2.1 of linearizability.
The difference lies in the quantifier for the prefix p: Whereas linearizability quantifies
over every prefix, quiescent consistency only quantifies over quiescent prefixes.

Definition 3.1. We write s ⊑qc t if s =π t and for any quiescent prefix p ≤pre s

∀a!∈ p. ∀b?∈ s− p. (a!⇒s b?) implies (a!⇒t b?). ✷

(∼❁qc) is defined similarly to (∼❁lin). Again let us revisit the counter specification
from Example 1.1: [+]+0 {

+ }+1 (
+)+2 . This notion of quiescent consistency places some

constraints on the system even when it has no nontrivial quiescent points. For example,
the execution [+ {+ (+)+3 }

+
1]

+
0 is not quiescently consistent with the given specification,

since it is not a permutation. If one extends the execution to [+ {+ (+)+3 }
+
1]

+
0 <

+ >+2
and attempts to matches it against the specification [+]+0 {

+ }+1 <
+ >+2 (

+)+3 , quiescent
consistency continues to fail: In the quiescent prefix [+ {+ (+)+3 }

+
1]

+
0 , the order across

the cut from)+3 to <+ is not preserved in the specification.
For linearizability, only responses need be included in the extensions of a trace. The

same does not hold for quiescent consistency. For example, since (+ {+ }+1 [
+]+0)

+
2 is

quiescently consistent, its prefix (+ {+ }+1 should also be quiescently consistent. How-
ever, there is no specification trace that can be matched that does not include [+]+0 .
Therefore, it does not suffice merely to close the open call by adding)+2 ; we must also
include [+ and]+0 .

We now give a counting characterization of quiescent consistency. Define u !⇒s v to
mean that u ⇒s v and there is no quiescent cut that separates u and v.
Theorem 3.2. Let t be a sequential trace with name order (a?

1, a!
1, a?

2, a!
2, . . . , a?

n, a!
n).

Let s be an operational trace such that s ≤π t. Then

s ∼❁qc t iff ∀a!
j ∈ s.

∣∣{a?
1, . . . , a?

j}
∣∣≤

∣∣{a?
i | a?

i ⇒s a!
j}∪{a?

i | a!
j !⇒s a?

i }
∣∣ ✷

If a!
j , the jth return in t, occurs in s, then there must be at least j calls contained in

two sets: (1) the calls that precede a!
j in s, and (2) the calls that follow a!

j in s but are
“quiescently concurrent” — that is, not separated by a quiescent point.

4 Quantitative Quiescent Consistency

We provide three characterizations of QQC and prove their equivalence.
(1) Definition 4.1 defines QQC in the style that we have defined linearizability and qui-
escent consistency, from response to invocation. (2) Theorem 4.3 provides a counting
characterization of QQC, which requires that if a response matches the ith method call
in the specification, then it must be preceded by at least i invocations. (3) Theorem 4.4
provides an operational characterization of QQC as a proxy between the concurrent
world and an underlying sequential data structure.

Between Linearizability and Quiescent Consistency 227

To develop some intuition for the what is allowed by QQC, we give some examples
using the 2-Counter from the introduction. First we note that the capability given by
an open call can be used repeatedly, as in (+ [+]+1 {

+ }+0 [
+]+3 {

+ }+2 [
+]+5 {

+ }+4)
+
6 . The

open call (+ enables the inversion of {+ }+0 with [+]+1 and also of {+ }+2 with [+]+3 .
Alternatively, multiple open calls may be accumulated to create an trace with events

that are arbitrarily far off, as in (+ [+]+1 (
+ [+]+3 (

+ [+]+5 (
+ [+]+7 [

+]+0)
+
2)

+
4)

+
6)

+
8 . Note

that [+]+0 follows [+]+7 in this execution! It is worth emphasizing that the order be-
tween these actions is observable to the outside: a single thread can call getAndInc-
rement and get 7, then subsequently call getAndIncrement and get 0. Such behaviors
are a hallmark of nonlinearizable data structures. In general, an N-Counter can give
results that are k×N off of the expected value, where k is the maximum number of open
calls and N is the width of the counter. There is no way to bound the behavior of this
counter, as in [9], without also bounding the amount of concurrency, as in [1].

It is also possible for open calls to overlap in nontrivial ways. The trace (+ [+]+1 {
+

[+]+0)
+
3 (

+)+2 }
+
4 is QQC. Here, the first (+ justifies the out-of-order execution of [+]+1

and [+]+0 . The subsequent {+ justifies an inversion of the previous justifier, namely
(+)+3 and (+)+2 . A similar example is {+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 .

Finally, we note that the stack execution {+c [
-]-a (

+
a)+ }+ is QQC with respect to

the specification (+a)+ [
-]-a {

+
c }+ . This follows from exactly the kind of reasoning that

we have done for the counter. For the counter this simply means that we are seeing an
integer value early, but for a stack holding pointers, it means that we can potentially
see a pointer before it has been allocated! To prevent such executions, causality can be
specified as a relation from calls to returns, consistent with specification order: A trace
is causal if it respects the specified causality relation. We have elided causality from the
definition of QQC because it is orthogonal and can be enforced independently.

Linearizability requires that for every cut, all response-to-invocation order crossing
the cut must be respected in the specification. Quiescent consistency limits attention
to quiescent cuts. QQC restores the quantification over every cut, but relaxes the re-
quirement to match all response-to-invocation order crossing the cut. When checking
response-to-invocation pairs across the cut, QQC allows some invocations to be ig-
nored. How many?

One constraint comes from our desire to refine quiescent consistency. For quiescent
cuts, we cannot drop any invocations, since quiescent consistency does not. As a first
attempt at a definition, we may take the number of dropped invocations at any cut to be
bounded by

∣∣open(p)
∣∣. This criterion would allow both of the traces (+ {+ }+1 [

+]+0)
+
2

and [+ (+)+2 {
+ }+1]

+
0 in Example 1.1. In each case, the interesting cut splits the trace in

half, with one open call and one completed. In the first trace, we can ignore [+ in the
suffix, and in the second trace, we can ignore {+ in the suffix; thus, both are allowed.
However, in the second trace, the first call completed is two steps in the future, even
though there is only one concurrent action. In the first trace this does not happen. The
difference can be seen by looking not only at the number of open calls, but also at
which calls are open. In the first trace we have (+ before }+1 , and in the second, we
have [+ before)+2 . We say that (+ is early for }+1 , since it does not precede }+1 in the
specification, whereas [+ is not early for)+2 , since it does precede)+2 . We restrict our
attention to calls that are both open and early with respect to the response of interest.

228 R. Jagadeesan and J. Riely

Given a specification t and a response a! ∈ t, none of the actions in the t-down-
closure of a! could possibly be early for a!; any other action could be. Thus, the actions
in open(p)− (↓t a!) are both open and early for a!. This leads us to the following def-
inition. (In the full paper, we show that for sequential specifications, we can swap the
quantifiers (∃r) and (∀a!), pulling out the existential.)

Definition 4.1. We write s ⊑qqc t if s =π t and for any prefix p ≤pre s

∀a!∈ p. ∃r ⊆ s.
∣∣r
∣∣≤

∣∣open(p)− (↓t a!)
∣∣.

∀b?∈ ((s− p)− r). (a!⇒s b?) implies (a!⇒t b?). ✷

As before, (∼❁qqc) is defined by analogy to (∼❁lin).
Theorem 4.2. (∼❁lin)⊂ (∼❁qqc)⊂ (∼❁qc) ✷

Given the subtlety of Definition 4.1, it may be surprising that QQC has the following
simple characterization for sequential specifications.
Theorem 4.3. Let t be a sequential trace with name order (a?

1, a!
1, a?

2, a!
2, . . . , a?

n, a!
n).

Let s be an operational trace such that s ≤π t. Then

s ∼❁qqc t iff ∀a!
j ∈ s.

∣∣{a?
1, . . . , a?

j}
∣∣≤

∣∣{a?
i | a?

i ⇒s a!
j}
∣∣ ✷

This characterization provides a simple method for calculating whether a trace is QQC.
For example, the trace {+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 is QQC since)+1 is preceded by two

calls,]+0 ,)+3 by four, and]+2 , }+4 by five. The trace {+ (+)+1 (
+)+3 [

+]+0 [
+]+2 }

+
4 is not

QQC since)+3 is only preceded by three calls, yet it is the fourth call in the specification.
Our third characterization of QQC describes how QQC affects an arbitrary sequential

data structure, using a proxy that generates QQC traces from an underlying sequential
implementation. This characterization of QQC incorporates speculation into flat com-
bining [8]. We push the obligation to predict the future into the underlying sequential
object, with must conform to the following interface.

interface Object {
method run(i:Invocation):Response;
method predict():Invocation; }

The run method passes invocations to the underlying sequential structure and returns
the appropriate response. The predictmethod is an oracle that guesses the invocations
that are to come in the future. It is the use of predict that makes our code speculative.

The code for the proxy is given in Figure 1. Communication between the implemen-
tation threads and the underlying Object is mediated by two maps. When a thread
would like to interact with the Object, it creates a semaphore, registers it in called
and waits. Upon awakening, the thread removes the result from returned and returns.

The Object is serviced by a single proxy thread which loops forever making one
of two nondeterministic choices. The proxy keeps two private maps. Upon receiving
an invocation in called, the proxy moves the invocation from called to received.
Rather than executing the received invocation, the proxy asks the oracle to predict an
arbitrary invocation i and executes that instead, placing the result in executed. Once
a invocation is both received and executed, it may become returned.

At the beginning of this section, we noted that the stack execution {+c [
-]-a (

+
a)+ }+ is

QQC with respect to the specification (+a)+ [
-]-a {

+
c }+ . How can such a trace possibly

Between Linearizability and Quiescent Consistency 229

class QQCProxy<o:Object> {
field called:ThreadSafeMultiMap<Invocation,Semaphore> = [];
field returned:ThreadSafeMap <Semaphore, Response> = [];
method run(i:Invocation):Response { // proxy for external access to o

val m:Semaphore = [];
called.add(i, m);
m.wait();
return returned.remove(m); }

thread { // single thread to interact with o
val received:MultiMap<Invocation,Semaphore> = [];
val executed:MultiMap<Invocation,Response> = [];
repeatedly choose {

choice if called.notEmpty() {
received.add(called.removeAny());
val i:Invocation = o.predict();
val r:Response = o.run(i);
executed.add(i, r); }

choice if exists i in received.keys() intersect executed.keys() {
val m:Semaphore = received.remove(i);
val r:Response = executed.remove(i);
returned.add(m, r);
m.signal(); } } } }

Fig. 1. QQC Proxy

be generated? The execution of the proxy proceeds as follows. Upon receipt of {+c , the
proxy executes (+a , storing response)+. Upon receipt of [-, the proxy executes [-, storing
response]-a . At this point [-]-a can return. Upon receipt of (+a , the proxy executes {+c ,
storing response }+. At this point both (+a)+ and {+c }+ can return.

Such noncausal behaviors can be eliminated by requiring when a pop is executed, a
corresponding push must have been received. The prior execution is invalidated since
(+a)+ is not received when [-]-a returns. However, nonlinearizable behaviors are still
allowed. For example {+c [

+
a]+ (

+
b)+ }+ [

-]-a (
-)-b is generating by predicting (+b)+.

Theorem 4.4. The concurrent proxy is sound for QQC with respect to the underlying
Object. It is also complete for operational traces. ✷

In the full paper, we show that the elimination-tree stack of [16] and increment-only
counter of [3] are QQC. The characterizations of QQC also allow us to predict the QQC
behavior of other data structures, such as a queues, even if no implementation is known.
The following examples, from Sezgin[13], allow a useful comparison with [9].

To see that QQC makes distinctions not found in [9], consider the two stack traces {+c
[+a]+ (

+
b)+ <- >-a }+ and {+c [

+
a]+ (

+
b)+ }+ <- >-a . In the framework of [9], these are both

1 out-of-order (when a is popped, at least b must be above a on the stack). However,
only the first is QQC.

In the other direction, the queue execution {+a [
+
b1
]+ [+b1

]+ · · ·[+bn
]+ (+c)+ <- >-c }+ is

QQC with respect to the queue specification (+c)+ [
+
b1
]+ [+b1

]+ · · ·[+bn
]+ <- >-c {

+
a }+. In

the framework of [9], this would be n out-of-order because at least all bi’s should be
in the queue before c is inserted into the queue; the removal of c from the queue must
happen when there are n elements ahead of c in the queue.

230 R. Jagadeesan and J. Riely

Finally, we prove compositionality for QQC. Let ÷ denote partial order difference.
Theorem 4.5. Let t1 and t2 be sequential traces.

Let s, s1 and s2 be operational traces such that s1 = s÷ s2 and s2 = s÷ s1.
For i ∈ {1, 2}, suppose that each si ⊑qqc ti.
Then there exists a sequential trace t ∈ (t1 " t2) such that s ⊑qqc t.

PROOF SKETCH. Assume that the names in t1 and t2 are disjoint. Let the sequence of
names in t1 be (a?

1, a!
1, . . . , a?

m, a!
m) and sequence of names in t2 be (b?

1, b!
1, . . . , b?

n, b!
n).

Applying Theorem 4.3 to the supposition s1 ⊑lin t1, we have that j ≤
∣∣{a?

i | a?
i ⇒s a!

j}
∣∣,

and similarly ℓ ≤
∣∣{b?

k | b?
k ⇒s b!

ℓ}
∣∣. It suffices to construct an interleaving t ∈ (t1 " t2)

such that whenever t contains a subsequence with names

a?
j , a!

j , b?
k , b!

k, b?
k+1, b!

k+1, . . . , b?
k+x, b!

k+x

then for every k ≤ ℓ≤ k+ x, we have

{a?
i | a?

i ⇒s a!
j}⊆ {a?

i | a?
i ⇒s b!

ℓ}

and symmetrically for subsequences b?
k , b!

k , a?
j , a!

j , a?
j+1, a!

j+1, . . . , a?
j+y, a!

j+y. To dem-
onstrate the existence of an appropriate t, it suffices to show that merge(a?

1 a!
1 . . . a?

m a!
m,

b?
1 b!

1 . . . b?
n b!

n) is nonempty. By operationality, it must be the case that either (1) a!
j ⇒s

b!
ℓ , in which case {a?

i | a?
i ⇒s a!

j} ⊆ {a?
i | a?

i ⇒s b!
ℓ}, (2) b!

ℓ ⇒s a!
j , in which case

{b?
k | b?

k ⇒s b!
ℓ} ⊆ {b?

k | b?
k ⇒s a!

j}, or (3) a!
j and b!

ℓ are unordered, in which case both
conclusions hold. Therefore an appropriate t exists. ✷

5 Conclusions

Quantitative quiescent consistency (QQC) is a correctness criterion for concurrent data
structures that relaxes linearizability and refines quiescent consistency. To the best of
our knowledge, it is the first such criterion to be proposed.

To show that QQC is a robust concept, we have provided three alternate characteriza-
tions: (1) in the style of linearizability, (2) counting the number of calls before a return,
and (3) using speculative flat combining. We have also proven compositionality (in the
style of Herlihy and Wing [10]) and, in the full paper, the correctness of data structures
defined by Aspnes, Herlihy, and Shavit [3] and Shavit and Touitou [16].

In order to establish the correctness of the elimination-tree stack of [16], we had to
restrict attention to traces in which no pop overtakes a push on the same stack. (The for-
malities are given in the full paper.) A related constraint appears in a footnote of [14]:
“To keep things simple, pop operations should block until a matching push appears.”
This, however, is not strong enough to guarantee quiescent consistency as we have de-
fined it. Our analysis provides a full account: The stack is QQC with the no-overtaking
requirement and only weakly quiescently consistent without it.

There are many unanswered questions, chief among them: Is QQC useful in rea-
soning about client programs? Is there a verification methodology for QQC analogous
to that developed for linearizability? Are there other useful data structures that can be
shown to satisfy QQC?

Between Linearizability and Quiescent Consistency 231

Linearizability is, at its core, linear. We have defined QQC in terms of general partial
orders, and yet the results reported here are stated in terms of sequential specifications.
Partly we have done this so that we can relate the definition of QQC to the vast amount
of existing work on linearizability. However, the general case is interesting.

Acknowledgements. Gustavo Petri participated in the early discussions motivating this
work. Alexey Gotsman suggested the connection to flat combining. Ali Sezgin provided
a comparison with [9]. We also thank Alan Jeffrey, Corin Pitcher and Hongseok Yang
for useful discussion.

References

[1] Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS,
vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

[2] Aiello, W., Busch, C., Herlihy, M., et al.: Supporting increment and decrementoperations
in balancing networks. Chicago J. Theor. Comput. Sci. (2000)

[3] Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020–1048 (1994)
[4] Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: POPL

(2013)
[5] Busch, C., Mavronicolas, M.: The strength of counting networks (abstract). In: Burns, J.E.,

Moses, Y. (eds.) PODC, p. 311. ACM (1996)
[6] Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. J.

ACM 44(6), 779–805 (1997)
[7] Haas, A., Lippautz, M., Henzinger, T.A., et al.: Distributed queues in shared memory. In:

Conf. Computing Frontiers, p. 17. ACM (2013)
[8] Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-

parallelism tradeoff. In: SPAA, pp. 355–364 (2010)
[9] Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation

of concurrent data structures. In: POPL, pp. 317–328 (2013)
[10] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann

(2008)
[11] Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM TOPLAS 12(3), 463–492 (1990)
[12] Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comput. 28(9), 690–691 (1979)
[13] Sezgin, A.: Private correspondence (March 18, 2014)
[14] Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)
[15] Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks (prelim-

inary version). In: SPAA, pp. 54–63 (1995)
[16] Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks. Theory

Comput. Syst. 30(6), 645–670 (1997)
[17] Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14(4), 385–428

(1996)

	Preface
	Organization
	Table of Contents – Part II
	Table of Contents – Part I
	Symmetric Groups and Quotient Complexity
of Boolean Operations

	1 Motivation
	2 Preliminaries
	3 Connectedness
	4 Uniformly Minimal Semiautomata
	5 Symmetric Groups and Boolean Operations
	6 Conclusions
	References

	Handling Infinitely Branching WSTS
	1 Introduction
	2 WSTS
	3 Decidability for WSTS
	4 Handling Infinite Branching Finitely
	4.1 Downward Closed Sets and Ideals
	4.2 Completion of WSTS
	4.3 Post-effectiveness of Completions in Concrete Examples

	5 Decidability in Infinitely Branching Post-effective WSTS
	5.1 (Strong) Termination
	5.2 Boundedness
	5.3 (Strong) Control-State Maintainability
	5.4 Coverability

	6 Conclusion and Further Work
	References

	Transducers with Origin Information
	1 Regular String to String Transducers
	2 A Machine Independent Characterisation
	3 Learning
	4 Order-Preserving Transducers
	5 First-Order Definable Transducers
	6 Further Work

	References

	Weak MSO+U with Path Quantifiers
over Infinite Trees

	1 Notation and Some Applications
	2 Automata
	3 Profinite Trees and Automata on them
	3.1 Automaton Chains

	4 Emptinessof wmso+up Automata

	5 Conclusions
	References

	On the Decidability of MSO+U on Infinite Trees
	1 Introduction
	2 mso+u on 2

	2.1 Projective mso on 2≤ω, and its Reduction to mso+u on 2

	3 Undecidability of Projective mso on 2ω

	3.1 Modal Graphs
	3.2 Coding a Modal Graph in 2ω

	4 Conclusions
	References

	A Coalgebraic Foundation
for Coinductive Union Types

	1 Introduction
	2 Coalgebras
	3 A Semantic Approach to Coinductive Types
	4 Coinductive Union Types
	5 Approximating Coinductive Union Types
	6 Related Work
	7 Future Work
	References

	Turing Degrees of Limit Sets of Cellular Automata
	1 Introduction
	2 Preliminary Definitions
	3 Requirements of the Construction
	4 The Construction
	4.1 A Self-Vanishing Sparse Grid
	4.2 Backward Computation Inside the Grid
	4.3 The Computation Itself
	4.4 Limit Set of the Construction

	References

	On the Complexity of Temporal-Logic
Path Checking

	1 Introduction
	2 Preliminaries
	3 Reduction from Upward Layered CVP to LTL Path
Checking

	4 MTL Path Checking is Efficiently Parallelisable

	5 UTL

	6 Conclusion
	References

	Parameterised Linearisability
	1 Introduction
	2 Parameterised Libraries
	3 Histories and Parameterised Linearisability
	4 Lifting Linearisability to Libraries
	5 Instantiating Library Parameters and Contextuality
	6 Clients and Observational Refinement
	7 Related Work
	References

	Games with a Weak Adversary
	1 Introduction
	2 Definitions
	3 Three-Player Games with Player 1 Less Informed
	4 Three-Player Games with Player 1 Perfect
	5 Four-Player Games
	6 Applications
	References

	The Complexity of Ergodic Mean-payoff Games
	1 Introduction
	2 Definitions
	3 Complexity of Approximation for Almost-Sure Ergodic Games
	3.1 Strategy Complexity
	3.2 Approximation Complexity
	3.3 Strategy-Iteration Algorithm for Almost-Sure Ergodic CMPGs

	4 Analysis of the Value-Iteration Algorithm
	5 Exact Value Problem for Almost-Sure Ergodic Games
	References

	Toward a Structure Theory of Regular Infinitary
Trace Languages

	1 Introduction
	2 Preliminaries
	2.1 Finite and Infinite Traces
	2.2 Asynchronous Transition Systems
	2.3 Regular Infinitary Languages
	2.4 Secondaries and Frontiers

	3 A New Model of Asynchronous Automata
	3.1 Degrees of Synchronization
	3.2 Synchronization-aware Asynchronous B¨uchi Automata
	3.3 Synchronization-aware Asynchronous Muller Automata

	4 Characterization of Deterministic B¨uchi Recognizability
	5 Conclusion
	References

	Unary Pushdown Automata
and Straight-Line Programs

	1 Introduction
	2 Preliminaries
	3 Indicator Pairs and the Translation Theorem
	4 Decision Problems for UDPDA
	4.1 Compressed Membership and Equivalence
	4.2 Inclusion

	5 Universality of UNPDA
	6 Corollaries and Discussion
	References

	Robustness against Power is PSpace-complete
	1 Introduction
	2 Programming Model
	2.1 Power Semantics

	3 Robustness
	4 Normal-Form Computations
	5 From Normal-Form Computations to Emptiness
	5.1 Generating Normal-Form Computations
	5.2 Checking Cyclicity of the Happens-Before Relation

	References

	A Nivat Theorem for Weighted Timed Automata and Weighted Relative Distance
Logic
	1 Introduction
	2 Timed Automata
	3 Weighted Timed Automata
	4 Closure Properties
	5 A Nivat Theorem forWeighted Timed Automata
	6 Weighted Relative Distance Logic
	6.1 Relative Distance Logic
	6.2 Weighted Relative Distance Logic

	7 Conclusion and Future Work
	References

	Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs
	1 Introduction
	1.1 Setting
	1.2 Our Contribution
	1.3 Related Work

	2 Notions of Correctness
	3 Distributed Oracles
	4 Problem Zoo

	5 Proof of Theorem 3
	References

	Coalgebraic Weak Bisimulation from Recursive
Equations over Monads

	1 Introduction
	2 Preliminaries
	3 Examples
	4 Weak Bisimulation, Coalgebraically
	5 Examples, Revisited
	6 Weak Bisimulation as Strong Bisimulation
	7 Conclusions and Related Work
	References

	Piecewise Boolean Algebras and Their Domains
	1 Introduction
	2 Piecewise Boolean Algebras
	3 Piecewise Boolean Domains
	4 Partition Lattices
	5 Piecewise Boolean Diagrams
	6 Orientation
	7 Future Work
	References

	Between Linearizability and Quiescent Consistency
	1 Introduction
	2 Linearizability
	3 Quiescent Consistency
	4 Quantitative Quiescent Consistency
	5 Conclusions
	References

	Bisimulation Equivalence
of First-Order Grammars

	1 Introduction
	2 Preliminaries and Result
	3 Proof of Theorem 1
	References

	Context Unification is in PSPACE
	1 Introduction
	2 Labelled Trees and Their Compression
	3 Context Unification
	4 Compression of Non-crossing Subpatterns
	5 Uncrossing
	6 Main Algorithm
	References

	Monodic Fragments of Probabilistic First-Order Logic
	1 Introduction
	2 Preliminaries
	3 Monodic ProbFO
	4 The Quasi-Model Machinery
	5 Recursive Enumerability and Axiomatization
	6 Decidability and Complexity
	7 Conclusion
	References

	Stability and Complexity of Minimising
Probabilistic Automata

	1 Introduction
	2 Preliminaries
	3 Stable WA Minimisation
	3.1 Brzozowski-like WA Minimisation
	3.2 Numerically Stable WA Minimisation
	3.3 Lossy WA Minimisation

	4 The Complexity of PA Minimisation
	4.1 NP-Hardness
	4.2 Reduction to the Existential Theory of the Reals

	5 Conclusions and Open Questions
	References

	Kleene Algebra with Equations
	1 Introduction
	2 Preliminaries and a Negative Result
	3 String Rewriting Systems
	4 Completeness: (Partial) Monoid Equations
	5 Completeness: Typed Monoid Equations
	6 Conclusion
	References

	All–Instances Termination of Chase
is Undecidable

	1 Introduction
	1.1 Our Contribution

	2 Techniques
	3 Proof of Theorem 1
	3.1 The Well of Positivity
	3.2 The Problem to be Reduced
	3.3 Encoding the Automaton as a Conway Function
	3.4 The Program TM

	3.5 The Case of All-Instances-All-Paths Standard Chase Termination

	4 Proof of Theorem 2
	4.1 Constructing the Arena: Chase of Exponential Depth
	4.2 Constructing the Arena: Chase of Double Exponential Size
	4.3 The Encoding Lemma and How it Implies Theorem 2

	References

	Non-uniform Polytime Computation in the Infinitary Affine Lambda-Calculus
	1 Introduction
	2 The Affine Lambda-Calculus
	3 The Parsimonious Stratified Calculus
	4 A Characterization of P/poly
	5 Affine Lambda-Terms and Boolean Circuits
	References

	On the Positivity Problem
for Simple Linear Recurrence Sequences

	1 Introduction
	2 Linear Recurrence Sequences
	3 Decidability and Complexity
	References

	Ultimate Positivity is Decidable for Simple
Linear Recurrence Sequences

	1 Introduction
	2 Background
	3 Multiplicative Relations
	4 Algorithm for Ultimate Positivity
	5 Complexity Lower Bound
	6 Conclusion
	References

	Going Higher in the First-Order Quantifier Alternation Hierarchy on Words
	1 Words and Algebra

	2 First-Order Logic and Quantifier Alternation Hierarchy
	3 Σi-Chains

	3.1 Definitions
	3.2 Σi-Chains and Separation

	4 Computing Σ2-Chains

	5 Decidable Characterizations of Σ3, Π3, Δ3

	6 Decidable Characterization of BΣ2

	7 Conclusion
	References

	Hardness Results for Intersection
Non-Emptiness

	1 Introduction
	2 Notation and Conventions
	3 Binary Space Complexity
	4 Reductions
	5 Space vs Time
	6 Conclusion
	References

	Branching Bisimilarity Checking for PRS
	1 Introduction
	2 Preliminaries
	3 Defender’s Forcing with Delayed Justification
	4 Undecidability of nPA
	4.1 The nPA Game
	4.2 Defender’s Generator
	4.3 Checking Phase
	4.4 Generating Phase

	5 Conclusion
	References

	Labeling Schemes for Bounded Degree Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Preliminaries

	2 logn + O(1) Labeling Scheme for Bounded-Degree
Outerplanar Graphs

	2.1 Our Methods
	2.2 A Compact Edge-Universal Graph for Bounded-Degree Outerplanar Graphs
	2.3 Warm-Up: A log n + O(log log n) Labeling Scheme

	2.4 The Encoder
	2.5 Decoding
	2.6 Computing the Embedding φ

	2.7 Improvements and Special Cases

	3 Labeling Schemes for G(n,Δ) and G(n,Δ(n))

	References

	Bounded-Angle Spanning Tree:
Modeling Networks with Angular Constraints

	1 Introduction
	2 α = 2π/3

	2.1 The Basic Gadget
	2.2 The Induced Graph of S1 S2 is
Connected

	3 Approximating the α-MST

	4 Constant Range Hop-Spanner for α = 2π/3

	References

	Distributed Computing on Core-Periphery
Networks: Axiom-Based Design

	1 Introduction
	2 Axiomatic Design for Core-Periphery Networks
	3 MST on a Core-Periphery Network
	4 Additional Algorithms in Core-Periphery Networks
	References

	Fault-Tolerant Rendezvous in Networks
	1 Introduction
	2 Preliminaries
	3 Random Faults
	4 Unbounded Adversarial Faults
	5 Bounded Adversarial Faults
	6 Conclusion
	References

	Data Delivery by Energy-Constrained
Mobile Agents on a Line

	1 Introduction
	2 The Quasi-, Pseudo-Polynomial Time Algorithm
	3 NP-Completeness
	4 Conclusions and Open Problems
	References

	The Power of Two Choices
in Distributed Voting

	1 Introduction
	2 Our Results for Two-Sample Voting
	3 Background Material and Outline of Proof
	4 Phase I of Analysis: cn ≤ B ≤ n(1 − ν0)/2

	5 Phase II of Analysis: ω ≤ B ≤ cn

	6 Phase III of Analysis: 1 ≤ B ≤ ω

	7 Putting the Phases Together
	References

	Jamming-Resistant Learning in Wireless Networks
	1 Introduction
	1.1 Related Work
	1.2 Formal Problem Description

	2 General Approach
	3 Bounded Adversary
	4 Stochastic Adversary
	5 Joining and Leaving Links
	References

	Facility Location in Evolving Metrics
	1 Introduction
	2 Facility Location in Evolving Metrics
	2.1 Definition
	2.2 Facts about Probability
	2.3 Approximation Algorithm
	2.4 Hardness of Approximation

	3 Hourly Opening Cost
	3.1 Dynamic Facility Location with Hourly Opening Cost
	3.2 Approximation Algorithm

	4 Conclusion and Open Questions
	References

	Solving the ANTS Problem with Asynchronous Finite State Machines
	1 Introduction
	2 Parallel Rectangle Search
	2.1 The RS strategy

	2.2 Correctness
	2.3 Runtime Analysis

	3 An Almost Optimal Emission Scheme
	4 Optimal Rectangle Search
	References

	Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set
	1 Introduction and Related Work
	1.1 A Closeup of MCDS, in Contrast with MST

	1.2 Congestion in Distributed Algorithms
	1.3 Result
	1.4 Other Related Work

	2 Preliminaries
	3 The Algorithm for MCDS

	3.1 The Outline
	3.2 A High-Level View of the Algorithm for One Phase
	3.3 The Algorithm For One Phase

	References

	Randomized Rumor Spreading
in Dynamic Graphs

	1 Introduction
	2 Model
	3 Proof of the Bound with Conductance (Theorem 1)
	3.1 Proof of Lemma 1

	4 Proof of the Bound with Vertex Expansion (Theorem 2)
	4.1 Proof of Theorem 3

	5 Counter-Examples
	References

	Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods
	1 Introduction
	1.1 Description of the Models
	1.2 Our Contribution
	1.3 Related Work

	2 Graph Sampling Model
	3 Unweighted Independent Set
	4 Weighted Independent Set
	5 Arrivals and Departures
	6 Edge-Weighted Conflict Graphs
	References

	Optimal Competitiveness for Symmetric
Rectilinear Steiner Arborescence
and Related Problems

	1 Introduction
	2 Preliminaries
	3 Optimal Online Algorithm for MCD
	3.1 Analysis of LINEon

	4 Optimal Online Algorithm for SRSA

	5 Optimizing MCD for a Small Number of Requests

	6 Randomized Lower Bound for Line Networks
	References

	Orienting Fully Dynamic Graphs
with Worst-Case Time Bounds

	1 Introduction
	1.1 Main Result
	1.2 Comparison with Previous Work
	1.3 Our Techniques
	1.4 Selected Applications
	1.5 Preliminaries

	2 Invariants for Bounding the Largest Out-Degree
	3 Worst-Case Algorithm
	3.1 Insertions
	3.2 Deletions

	4 A More Efficient Algorithm
	References

	Does Adding More Agents Make a Difference? A Case Study of Cover Time for the Rotor-Router
	1 Introduction
	2 Preliminaries
	3 The Main Technique
	4 Graphs with Small Mixing Time
	5 The Torus

	6 The Cycle

	7 The Hypercube
	References

	The Melbourne Shuffle: Improving Oblivious Storage in the Cloud
	1 Introduction
	2 Preliminaries
	3 Oblivious Shuffle Model
	4 The Melbourne Shuffle
	4.1 Security Analysis

	5 The Optimized Melbourne Shuffle
	6 The Melbourne Shuffle with Small Messages
	7 Oblivious Storage
	References

	Sending Secrets Swiftly:
Approximation Algorithms
for Generalized Multicast Problems

	1 Introduction and Motivation
	2 Related Work
	3 Our Results

	4 Preliminaries
	4.1 The Multicast Problem
	4.2 Schedules
	4.3 Graphs and Matchings
	4.4 Spiders

	5 The Multicast Problem
	5.1 Outline of the Algorithm
	5.2 The Algorithm: Phase 4
	5.3 The Algorithm

	6 The Multicommodity Multicast Problem
	6.1 Preleminaries: Multicast Schedules
	6.2 Sparsification
	6.3 The Algorithm

	7 Conclusion
	References

	Bypassing Erd˝os’ Girth Conjecture: Hybrid
Stretch and Sourcewise Spanners

	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Contributions
	1.4 Preliminaries
	1.5 Notation

	2 Hybrid Spanners
	3 Sourcewise Spanners
	3.1 Upper Bound for Multiplicative Stretch
	3.2 Lower Bound for Additive Sourcewise Spanners and Emulators
	3.3 Upper Bound for Additive Sourcewise Spanners and Emulators

	References

	Author Index

