
ar
X

iv
:1

40
2.

40
43

v1
 [

cs
.P

L]
 1

7
F

eb
 2

01
4

Between Linearizability and Quiescent Consistency⋆

Quantitative Quiescent Consistency

Radha Jagadeesan and James Riely

DePaul University

Abstract Linearizability is the de facto correctness criterion for concurrent data
structures. Unfortunately, linearizability imposes a performance penalty which
scales linearly in the number of contending threads. Quiescent consistency is an
alternative criterion which guarantees that a concurrent data structure behaves
correctly when accessed sequentially. Yet quiescent consistency says very little
about executions that have any contention.

We define quantitative quiescent consistency (QQC), a relaxation of lineariz-
ability where the degree of relaxation is proportional to degree of contention.
When quiescent, no relaxation is allowed, and therefore QQCrefines quiescent
consistency, unlike other proposed relaxations of linearizability. We show that
high performance counters and stacks designed to satisfy quiescent consistency
continue to satisfy QQC. The precise assumptions under which QQC holds pro-
vides fresh insight on these structures. To demonstrate therobustness of QQC,
we provide three natural characterizations and prove compositionality.

1 Introduction

This paper definesQuantitative Quiescent Consistency (QQC)as a criterion that lies
between linearizability [9] and quiescent consistency [3,10]. The following example
should give some intuition about these criteria.

Example 1.1.Consider a counter object with a singlegetAndIncrementmethod. The
counter’s sequential behavior can be defined as a set of strings such as[+]+0 {

+ }+1 (
+)+2

where[+ denotes an invocation (or call) of the method and]+i denotes the response (or
return) with valuei. Suppose each invocation is initiated by a different thread.

A concurrent execution may have overlapping method invocations. For example, in
(+ [+]+0 {

+ }+1)
+
2 the execution of(+)+2 overlaps with both[+]+0 and{+ }+1 , whereas

[+]+0 finishes executing before{+ }+1 begins. Consider the following four executions.

(+ [+]+0 {
+ }+1)

+
2 (+ {+ }+1 [

+]+0)
+
2 [+ (+)+2 {

+ }+1]
+
0 [+ (+)+2]

+
0 {

+ }+1

Linearizabilitystates roughly thateveryresponse-to-invocation order in a concur-
rent execution must be consistent with the sequential specification. Thus, the first exe-
cution is linearizable, since the response]+0 precedes the invocation{+ in the specifi-
cation. However, none of the other executions is linearizable. For example,}+1 precedes
[+ in the second execution, but}+1 does not precedes[+ in the specification.

⋆ Research supported by NSF 0916741.

http://arxiv.org/abs/1402.4043v1

2 Radha Jagadeesan and James Riely

Linearizability can also be understood in terms thelinearization pointof a method
execution, which must occur between the invocation and response. From this perspec-
tive, the first execution above is linearizable because we can find a sequence of lin-
earization points that agrees with the specification; this requires only that the lineariza-
tion point of(+)+2 follow that of{+ }+1 . No such sequence of linearization points exists
for the two other executions.

Quiescent consistencyis similar to linearizability, except that the response-to-invo-
cation order must be respected only across a quiescent point, that is, a point with no
open method calls. The first three executions above are quiescently consistent simply
because there are no non-trivial quiescent points. The lastexecution fails to be quies-
cently consistent since the order from)+2 to {+ is not preserved in the specification.

We defineQuantitative Quiescent Consistency (QQC)to require that the number
of response-to-invocation pairs that are out-of-order at any point be bounded by the
number of open calls at that point. We also give acounting characterizationof QQC,
which requires that if a response matches theith method call in the specification, then it
must be preceded by at leasti invocations.

The first two executions above are QQC; however, the last two are not. In the second
execution, the open call to(+ is “enough” to justify the return of{+ }+1 before[+]+0 .
However, in the third execution, the return of(+)+2 before{+ }+1 cannot be justified only
by the call to[+ ; it is “too far off.” Following the counting characterization sketched
above, the third execution fails since(+)+2 is the third method call in the specification
trace, but)+2 is only preceded by two invocations:[+ and(+ . ✷

Quiescent consistency is too coarse to be of much use in reasoning about concur-
rent executions. For example, a sequence of interlocking calls never reaches a quiescent
point; therefore it is trivially quiescently consistent. This includes obviously correct ex-
ecutions, such as[+ (+]+0 [

+)+1 (
+]+2 [

+)+3 (
+]+4 [

+ · · · , nearly correct executions, such
as[+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , and also ridiculous executions, such as[+ (+

]+1074[
+)+17 (

+]+2344[
+)+3 (

+ · · · .
Linearizability has proven quite useful in reasoning aboutconcurrent executions;

however, it fundamentally constrains efficiency in a multicore setting: Dwork, Herlihy,
and Waarts [5] show that if many threads concurrently accessa linearizable counter,
there must be either a location with high contention or an execution path that accesses
many shared variables.

Shavit [11] argues that the performance penalty of linearizable data structures is
increasingly unacceptable in the multi-core age. This observation has lead to a recent
renewal of interest in nonlinearizable data structures. Asa simple example, consider
the following counter implementation: a simplified versionof the counting networks of
Aspnes, Herlihy, and Shavit [3].

1 class Counter<N:Int> {

2 field b:[0..N-1] = 0; // 1 balancer
3 field c:Int[] = [0, 1, ..., N-1]; // N counters
4 method getAndIncrement():Int {

5 val i:[0..N-1];

6 atomic { i = b; b++; }

7 atomic { val v = c[i]; c[i] += N; return v; } } }

Between Linearizability and Quiescent Consistency 3

TheN-Counterhas two fields: abalancerb and an arrayc of N integer counters. There
are two atomic actions in the code: The first reads and updatesthe balancer, setting the
local index variablei. The second reads and updates theith counter. Although the
balancer has high contention in our simplified implementation, the counters do not;
balancers that avoid high contention are described in [3].

Example 1.2.The N-Counter behaves like a sequential counter if calls togetAnd-

Increment are sequentialized. To see this, consider a 2-Counter, with initial state
〈b = 0, c = [[0], [1]]〉. In a series of sequential calls, the state progresses as follows,
where we show the execution of the first atomic with the invocation and the second
atomic with the response. The execution[+]+0 {

+ }+1 (
+)+2 can be elaborated as follows.

〈b= 0, c= [[0], [1]]〉 [+−−→〈b= 1, c= [[0], [1]]〉]+0−→〈b= 1, c= [[2], [1]]〉
{+−−→〈b= 0, c= [[2], [1]]〉 }+1−→〈b= 0, c= [[2], [3]]〉
(+−−→〈b= 1, c= [[2], [3]]〉)+2−→〈b= 1, c= [[4], [3]]〉

When there is concurrent access, the 2-Counter allows nonlinearizable executions,
such as(+ {+ }+1 [

+]+0)
+
2 .

〈b= 0, c= [[0], [1]]〉 (+−−→〈b= 1, c= [[0], [1]]〉
{
+

−−→〈b= 0, c= [[0], [1]]〉 }
+
1−→〈b= 0, c= [[0], [3]]〉

[+−−→〈b= 1, c= [[0], [3]]〉]+0−→〈b= 1, c= [[2], [3]]〉
)+2−→〈b= 1, c= [[4], [3]]〉

With a sequence of interlocking calls, it is also possible for theN-Counter to execute
as[+ (+]+1 [

+)+0 (
+]+3 [

+)+2 (
+]+5 [

+ · · · , producing an infinite sequence of values that
are just slightly out of order. Using the results of this paper, one can conclude that with
a maximum of two open calls, the value returned bygetAndIncrement will be “off”
by no more than 2, but this does not follow from quiescent consistency. ✷

Our results are related to those of [2–4, 13]. In particular,Aspnes, Herlihy, and
Shavit [3] prove that in anyquiescentstate (with no call that has not returned), such
a counter has a “step-property”, indicating the shape ofc. Between}+1 and]+0 in the
second displayed execution of Example 1.2, the states withc= [[0], [3]] donothave the
step property, since the two adjacent counters differ by more than 1.

Aspnes, Herlihy, and Shavit imply that the step property is related to quiescent con-
sistency, but they do not formally state this. Indeed, they do not provide a formal defi-
nition of quiescent consistency. It appears that they have in mind is something like the
following: An execution isweakly quiescent consistentif any subsequence ofsequential
calls (single calls separated by quiescent points) is a subtrace of a specification trace.

The situation is delicate: Although the increment-only counters of [3] are quies-
cently consistent in the sense we defined in Example 1.1 (indeed, they are QQC), the
increment-decrement counters of [2, 4, 13] are onlyweaklyquiescent consistent. In-
deed, the theorems proven in [13] state only that, at a quiescent point, a variant of the
step property holds. It states nothing about the actual values read from the individual
counters. Instead, we expect that a quiescently consistentexecution should be a permu-
tation ofsomespecification trace, even if it has no nontrivial quiescent points.

4 Radha Jagadeesan and James Riely

Example 1.3.Consider an extension of the 2-Counter with decrementAndGet.

method decrementAndGet():Int {

val i:[0..N-1];

atomic { i = b-1; b--; }

atomic { c[i] -= N; return c[i]; } }

The execution[+ {+ (- <- >-−2]
+
−2 }

+
1)

-
1 is possible, although this is not a permutation

of any specification trace. The execution proceeds as follows.

〈b = 0, c= [[0], [1]]〉 [
+

−−→ 〈b= 1, c= [[0], [1]] 〉 {
+

−−→ 〈b= 0, c= [[0], [1]]〉
(-−−→ 〈b= 1, c= [[0], [1]] 〉 <-−−→ 〈b= 0, c= [[0], [1]]〉
>-−2−−→〈b= 0, c= [[−2], [1]]〉]+−2−−→〈b= 0, c= [[0], [1]]〉
}+1−→ 〈b= 0, c= [[0], [3]] 〉)-1−→ 〈b= 0, c= [[0], [1]]〉 ✷

It is important to emphasize that this increment-decrementcounter is not even quies-
cently consistent. There is no hope that it could satisfy anystronger criterion.

Of course counters are not the only data structures of interest. In this paper we treat
concurrent stacks in detail. We define a simplifiedN-Stack below; the full, tree-based
data structure is defined in Shavit and Touitou [13] and summarized in section 6.

1 class Stack<N:Int> {

2 field b:[0..N-1] = 0; // 1 balancer
3 field s:Stack[] = [[], [], ..., []]; // N stacks of values
4 method push(x:Object):Unit {

5 val i:[0..N-1];

6 atomic { i = b; b++; }

7 atomic { val v = s[i].push(x); return v; } }

8 method pop():Object {

9 val i:[0..N-1];

10 atomic { i = b-1; b--; }

11 atomic { val v = s[i].pop(); return v; } } }

The trace given in Example 1.3 for the increment-decrement counter is also a trace
of the stack, where we interpret+ aspush, - aspop, and a negative return value as
stack underflow. Whereas this is a nonsense execution for a counter, it is a linearizable
execution of a stack: simply choose the linearization pointof the pops before the pushes.
Nonetheless, theN-Stack is onlyweaklyquiescent consistent in general.

Example 1.4.TheN-Stack generates the execution[+a]
+ (+b)

+ {+c <
- >-a }

+ as follows.

〈b= 0, s= [[], []] 〉 [
+
a−−→〈b = 1, s = [[], []] 〉]

+

−→〈b = 1, s= [[a], []] 〉
(+b−−→〈b = 0, s = [[a], []] 〉)+−→〈b = 0, s= [[a], [b]]〉
{+c−−→〈b = 1, s = [[a], [b]]〉
<-−−→〈b = 0, s = [[a], [b]]〉 >-a−→〈b = 0, s= [[], [b]] 〉

}+−→〈b = 0, s= [[c], [b]]〉

However, this specification is not quiescently consistent with any stack execution: There
is a quiescent point after each of the first two pushes; therefore it is impossible to popa
beforeb. This execution is possible even when there are several pushes beforehand.✷

Between Linearizability and Quiescent Consistency 5

In the case of theN-Stack, a simplelocal constraint can be imposed in order to
establish quiescent consistency: intuitively, we requirethat no popovertakesa push on
the same stacks[i]. In section 6 we show that the stack is actuallyQQC under this
constraint, and therefore quiescently consistent. (We have not found a local constraint
under which the increment-decrement counter is quiescently consistent; we believe that
it may be achievable with a global toggle that determines howto resolve the races at
each point, but this, of course, defeats the point.)

The correctness result that we prove for elimination-tree stacks in section 6 is much
stronger than that of Shavit and Touitou [13], who only proveweakquiescent consis-
tency. The same is holds for increment-only counters [3], although in this case, we
have elided the proofs: The proofs for the tree-based increment-only counter follow the
structure proofs for the elimination-tree stacks.

The preliminary version of Shavit and Touitou’s paper [12] suggests an upcoming
definitionε-linearizability, “a variant of linearizability that captures the notion of ‘al-
mostness’ by allowing a certain fraction of concurrent operations to be out-of-order.”
Since the details did not make it into the final version of the paper [13], it is unclear
whether the “fraction of concurrent operations” is meant tovary depending on the
amount of concurrency available in execution at any given moment, or if the “fraction”
is fixed at the outset. If it is meant to vary, then it would be very similar to QQC.

This thread was picked up by Afek, Korland, and Yanovsky [1] and improved by
Henzinger, Kirsch, Payer, Sezgin, and Sokolova [8]. As defined in [8], the idea is to
define a cost metric on relaxations of strings and to bound therelaxation cost for the
specification trace that matches an execution. This approach has been used to validate
several novel concurrent data structures [1, 6].

Unlike QQC, the metrics in these papers do not depend on the available concur-
rency in the execution. In fact, with the exception of the increment-only counter vali-
dated in [1], all of the concurrent data structures of [1, 6] intentionally violate quiescent
consistency. As such, their work is orthogonal to the approach we pursue here, which
specifically refines quiescent consistency.

The primary difference between QQC and the relaxation-based approach of [1, 8]
can be stated as follows: with QQC, the maximal degradation depends upon the amount
of concurrent access, whereas in the relaxation-based approach it does not. Thus, QQC
“degrades gracefully” as concurrency increases. In particular, a QQC data structure that
is accessed sequentially will exactly obey the sequential specification, whereas a data
structure validated against the relaxation-based approach may not.

In the rest of the paper, we formalize QQC and study its properties. The heart of
the paper is section 5, which defines QQC and establishes its properties. The impatient
reader can safely skim up to that section, referring back as necessary.

Our contributions are as follows.

– We define linearizability (section 3), quiescent consistency (section 4) and QQC
(section 5) in terms of partial orders over events with duration. The formalities of
the model are described in section 2. As in Example 1.1, the definitions are given in
terms of the order between a response and a subsequent invocation.

6 Radha Jagadeesan and James Riely

– We provide an alternative characterization of QQC in terms of the number of invoca-
tions that precede a response, as well as a similar characterization of linearizability.

– We provide an alternative characterization of QQC in terms of a proxy that controls
access to the underlying sequential data structure. The proxy adds a form ofspec-
ulation to the flat combining technique of Hendler, Incze, Shavit, and Tzafrir [7].
We show that the operational semantics is sound and completefor QQC; that is, it
generatesall and onlytraces that are QQC.

– Like linearizability and quiescent consistency [10], QQC is non-blocking and com-
positional. Like quiescent consistency and unlike linearizability, a QQC execution
may not respect program order. We provide a proof for compositionality.

– We show that QQC is useful for reasoning about data structures in the literature. In
section 6, we prove that the elimination tree stacks of Shavit and Touitou [13] are
QQC, as long as no pop overtakes a push on the same stack.

2 Model

The semantics of a concurrent program is given as a process. Aprocessis a set of traces.
A trace is a finite, polarized LPO (labelled partial order). Formally, we define traces to
be finite sets of namedevents. The event names are the carrier set for the LPO, and the
order is embedded in the events themselves using name sets.

2.1 Events

An event is a quadruple, consisting of a polarity, a label, a name (identifying a node
the partial order) and a set of names (identifying the preceding nodes in the partial
order). As a standard example, the reader may want to consider labels generated by the
grammarℓ ::= callτ o f w | retτ o f w whereτ is a thread identifier,o is an object
name,f is a function name, andw is the actual parameter or return value.

Let a, b∈ Namerange over names andA, B⊆ Namerange over finite sets of names.
And letℓ∈ Labelrange over labels (with some interpretation in the application domain).
Then events are defined as follows1.

u, v ::= 〈?ℓ〉a
A | 〈bℓ〉a

A

Under our standard example, we would expect events to come inpairs of the form
〈?callτ o f w〉a

A and〈aretτ o f w′〉b
B, wherew is the actual parameter andw′ is the re-

turned value. The appearance ofa in the return event indicates that this event closes the
open call nameda.

Three of the components in an event can be retrieved simply. We use the following
functions:label(〈?ℓ〉a

A)
△

= ℓ, id(〈?ℓ〉a
A)

△

= a andbefore(〈?ℓ〉a
A)

△

= A. For the remaining
component, we define both the functionspol andbrak. Let ρ ∈ {?, !} range over the
polarities for input (?) and output (!) and letnone be a reserved name.

pol(u)
△

=

{

? if u= 〈?ℓ〉a
A

! if u= 〈bℓ〉a
A

brak(u)
△

=

{

none if u= 〈?ℓ〉a
A

b if u= 〈bℓ〉a
A

1 In this paper, we consider the simple case of non-interacting composition. This allows us to
ignore the internal polarity which arise from the interaction of input and output.

Between Linearizability and Quiescent Consistency 7

Because the standard example is so familiar, we will consider invocation/call/input/? to
be synonymous, and likewise response/return/output/!.

We sometimes use superscripts on name metavariables, such asa! anda?. Any name
bound toa! must be associated with an output event, and likewise for input events. The
superscript makes these distinct metavariables. Thus we havea! 6= a?.

Turning to the order between events, we writeu⇒ v to indicate thatu precedesv:
(u⇒ v)

△

= id(u) ∈ before(v).

2.2 Traces

We usep–t to range overevent sets(finite sets of events). Defineids(s)
△

= {id(u) | u∈ s}
and leta∈ sbe shorthand fora∈ ids(s).

Given an event sets and name setA, defineindexingass[A]
△

= {u∈ s | id(u) ∈ A}.
Thuss[ids(s)] = s. If event names are unique, this generates the partial function s[a]
for single names: ifs[{a}] = /0 thens[a] is undefined; ifs[{a}] = {u} thens[a]

△

= u.
Indexing provides a natural way to lift ordering relations from events to names:(a⇒s

b)
△

= (s[a]⇒ s[b]). Let be⇛s the reflexive closure of⇒s.
An event sets is a trace if it satisfies the following,∀u, v∈ s.

(1) event names are unique: ifid(u) = id(v) thenu= v
(2) before okay:∀a∈ before(u). ∃w∈ s. a= id(w)
(3) brak okay: if pol(u) = ! thenbrak(u) ∈ before(u) andpol(s[brak(u)]) = ?

(4) input acquires control: ifa⇒s b? then∃c!. a⇛s c!⇒s b?

(5) output releases control: ifa!⇒s b then∃c?. a!⇛s c!⇒s b
(6) ⇒s defines a strict partial order (irreflexive, antisymmetric and transitive)

A traces is operationalif ∀a?, b!∈ s. eithera?⇒s b! or b!⇒s a?.
A traces is sequentialif ∀a, b∈ s. eithera⇒s b or b⇒s a.

Our model can be viewed as a labelled partial order enriched with polarity and
bracketing. Most significant here are requirements (4) and (5) in the definition of a
trace. One immediate consequence is that input events cannot be related to other input
events unless there is an intervening output event, and similarly for the dual case.

Consider two bracketed event sequences[] and(). As indicated by condition (3)
in the definition of traces, the open brackets must be? events. There are six possible
relations among the events. Three of these are familiar: it could be that[] precedes
(), or that() precedes[] or that they are concurrent.

[] () () []
()

[]

All of these traces are fully specified in the sense that every? is ordered with respect
to every!, and dually every! is ordered with respect to every?. We call such traces
operationalin that they correspond to traces generated by an interleaving semantics. In
addition, the first two traces aresequential, since there is a total order on the events.

8 Radha Jagadeesan and James Riely

Note that in any sequential trace, the initial event must be an input; this follows from
properties (2) and (3) in the definition of traces.

There is a homomorphism from strings of bracketed labels to operational traces:
each input in the string is ordered with respect to each output that follows it in the
string, and dually. If we narrow attention to sequential traces, this is an isomorphism.
For example, we can write the first two traces above as the strings[]() and()[],
respectively. The last trace above can be written as any interleaving in[] 9 () that
orders the inputs before both outputs; these are[(]), ([]), [()], and([)]. We
use this notation when giving examples of operational traces, as in the introduction.

As a consequence of the homomorphism, we can use string notation on operational
traces without ambiguity. Specifically, letst represent the concatenation ofs andt and
s9 t represent the set of their interleavings, with renaming as necessary to avoid colli-
sions between the names ofsandt.

Our model also allows underspecification of the relationship.

()

[]

()

[]

()

[]

The leftmost of these says only that() cannot precede[]. Said positively, either[]
precedes(), or they are concurrent. The rightmost of these places no constraints on the
relative order of[] and().

Operational traces can be seen as having a global notion of time: everyone agrees
what happened before what. The constraints between pairs ofinputs and pairs of output
simply indicate the limits of observability: it is impossible to tell which of two calls
happened first. In this light, one may view an underspecified trace as a representative
for the set of operational traces that can be derived by augmenting the partial order. We
take this viewpoint in our compositionality result, which is stated only for operational
traces.

We define several notations for event sets and traces.
As noted above, for operational tracessandt we use string notation for concatena-

tion (st) and the set of interleavings (s9 t).
A renamingof a trace is identical to the original trace up to a bijectionon names2.

We write=α for equivalence up to renaming.
A permutationof a trace contains events with the same names, labels and polarities,

but may differ in ordering. Permutation doesnotallow renaming; the names to pick out
the witnessing bijection. We write=π for equivalence up to permutation3.

A prefixis a down-closed subtrace4. We writet ≤pre sor s≥pre t to indicate thatt is
a prefix ofs, and↓sa for the smallest down-closed subset ofs that includesa.

2 (s=α t) is defined to mean that there exists a bijectionα on names such that (1)ids(s) = α
(ids(t)), and (2)∀a∈ ids(s). s[a] = t[α(a)]. (In the first condition, we have used the obvious
homomorphic extension ofα to sets of names.)

3 Let (u=label
brak v)

△

= (label(u) = label(v))∧ (brak(u) = brak(v)).
Then define(s=π t)

△

= (ids(s) = ids(t))∧ (∀a∈ s. s[a] =label
brak

t[a]).
4 Tracet is aprefixof traces if ∀a, b∈ s. if a∈ t andb⇒s a thenb∈ t.

Between Linearizability and Quiescent Consistency 9

We treat traces both as sets of events and as partial orders. We use(−) for set
difference and(÷) for partial order difference5.

3 Linearizability

We give two characterizations of linearizability and provecompositionality.
In subsection 3.1, we give a characterization that looks at every way tocut a trace

into prefix and suffix; linearizability requires that response-to-invocation order be re-
spected across all cuts. This corresponds to characterization of QQC given in subsec-
tion 5.1. In the case of QQC, a certain number of invocations may be ignored, propor-
tional to the number of calls that are both open across the cutand out of specification-
order with respect to the response.

In subsection 3.2 we give a subset-based characterization,which requires that if a
response matches theith method call in the specification, then it must be preceded by at
the firsti invocations of the specification. This corresponds to characterization of QQC
given in subsection 5.2. In the case of QQC, it is sufficient that a response by theith

method be preceded by anyi invocations, not necessarily the firsti invocations of the
specification.

The proof of compositionality in subsection 3.3 is providedas a warmup for the
proof compositionality for QQC in subsection 5.4.

3.1 First characterization: response to invocation

Intuitively, linearizability requires that the response-to-invocation order in an execution
be respected by a specification trace. To show thats′′ is linearizable, it suffices to do the
following

– Choose a specification tracet.
– Choose an extensions′ of s′′ that closes the open calls ins′′. Let extensions(s′′) be

the set ofextensionsof s′′, such that (1) ifs′ ∈ extensions(s′′) thens′′ is a prefix of
s′ (s′ ≥pre s′′), and (2) all of the new events ins′− s′′ are ordered after all events of
opposite polarity ins′′6 (that is, calls after returns and returns after calls).

– Choose a renamings=α s′ such thats=π t. Informally, this establishes thats′ is
a permutation oft. Rather than carrying the permutation around in the definition,
as usual in definitions of linearizability, we perform a renaming up front, once and

5 An event sett is bracketedif every output int has a matching input int; that is∀u ∈ t. if
pol(u) = ! thenbrak(u) ∈ ids(t). A bracketed set may contain unmatched inputs, but not un-
matched outputs.

For arbitrary event sets, we writes− t for set difference. For traces and bracketed
event sett, we write s÷ t for partial order difference. For example, consider the trace the
sequential traces = 〈?ℓ1〉

a
/0〈aℓ2〉

a′
{a}〈?ℓ3〉

b
{a,a′}〈bℓ4〉

b′
{a,a′,b}〈?ℓ5〉

c
{a,a′ ,b,b′} and let t be the

bracketed set{s[b], s[b′]}. Then we haves− t = 〈?ℓ1〉
a
/0〈aℓ2〉

a′
{a}〈?ℓ5〉

c
{a,a′,b,b′} and s÷ t =

〈?ℓ1〉
a
/0〈aℓ2〉

a′
{a}〈?ℓ5〉

c
{a,a′}.

6 extensions(p)
△

= {s | p≤pre s∧ ∀a!∈ p. ∀b?∈ s− p. a!⇒p b?

∧ ∀a?∈ p. ∀b!∈ s− p. a?⇒p b!}

10 Radha Jagadeesan and James Riely

for all. The names are then witness to the permutation. This works nicely, since
our traces are indexed by names. Typically, linearizability is defined over strings,
indexed by integers, so this technique is not available.

– Show that for every responsea! in s and invocationb? in s, if a! precedesb? in s
(a!⇒s b?), then the same must be true int (a!⇒t b?).

Stated compactly, we have the following definition.

Definition 3.1. Traces′′ linearizesto t if ∃s′ ∈ extensions(s′′). ∃s=α s′. s=π t and

∀a!∈ s. ∀b?∈ s. (a!⇒s b?) implies(a!⇒t b?).

Trace setS linearizesto T if ∀s′′ ∈ S. ∃t ∈ T. s′′ linearizes tot. ✷

This definition differs from the traditional one in several small details, but is equiv-
alent under reasonable assumptions. The differences are asfollows.

– We do not require that specifications be sequential.
– We do not make requirements specific to threads. A thread is simply a totally or-

dered sequence of actions, with the result that every pair ofinvocations must be
separated by a response, and similarly for pairs of responses. The fact that thread
order is respected by linearizability follows from the general requirement that order
from response to invocation must be respected.

– In addition toreturns, we allows∈ extensions(s′) to includecalls that are not ins′.
Assuming that specifications are prefix-closed, this permissiveness is harmless. For
every spect that includes the extra calls in a suffix, there is a corresponding spect ′

such thatt ∈ extensions(t ′) that does not include them; ifs′ linearizes tot, then it
also linearizes tot ′.

– We require that all incomplete calls remain ins′. Assuming that specifications are
input-enabled, this restriction is harmless. For every spec t that does not include the
extra calls, there is a corresponding spect ′ ∈ extensions(t) that does include them;
if s′ linearizes tot with some incomplete calls removed, then it also linearizesto t ′.

We can refactor the definition slightly to pull it into the shape used to define quies-
cent consistency and QQC.

Definition 3.2. For tracess, t, we writes⊑lin t if s=π t and for every prefixp≤pre s

∀a!∈ p. ∀b?∈ s− p. (a!⇒s b?) implies(a!⇒t b?).

Then(s′′ ∼❁lin t)
△

= (∃s′ ∈ extensions(s′′). ∃s=α s′. s⊑lin t). ✷

Lemma 3.3. s is linearizes to t iff s∼❁lin t.

PROOF. This is an immediate consequence of the definition of prefix. ✷

This characterization of linearizability requires that welook at every way tocut the
traces into a prefixp and suffixs− p. We then look at the return events inp and the
call events ins− p and ensure that the order of eventscrossing the cutis respected int.
The definitions are equivalent since we quantify over all possible cuts.

Between Linearizability and Quiescent Consistency 11

As an example, consider the incrementing counter specification from Example 1.1:
[+]+0 {

+ }+1 (
+)+2 . For a completely concurrent trace, such as[+ {+ (+)+2 }

+
1]

+
0 lineariz-

ability is trivially satisfied since there is no cut that has areturn on the left and call on
the right. The trace{+ [+ }+1 (

+]+0)
+
2 is also linearizable. The interesting cut is{+ [+ }+1

which requires only that}+1 precede(+ in the specification. By the same reasoning,
{+ (+ }+1 [

+)+2]
+
0 , is not linearizable, since it requires that}+1 precede[+ .

3.2 Second characterization: invocation to response

Theorem 3.4. Let t be a sequential trace with name order(a?1, a!1, a?2, a!2, . . . , a?n, a!n).
Let s be an operational trace such that s=π t. Then

s⊑lin t iff ∀ j. {1, . . . , j} ⊆ {i | a?i ⇒s a!j}

PROOF. Using the definition of linearizability and calculating, we have the following
proof obligation.

(∀i, j. a!i ⇒s a?j impliesi < j) ⇔ (∀i, j. i ≤ j impliesa?i ⇒s a!j)

(⇒) Fix i ≤ j. If i = j the right implication holds by the definition of traces. Sup-
posei < j. By operationality, eithera?i ⇒s a!j or a!j ⇒s a?i . In the first case, the right
implication holds. In the second case, the left implicationrequiresj < i, a contradiction.

(⇐) Fix a!i ⇒s a?j . By way of contradiction, supposei ≤ j. From the right impli-
cation we deduce thata?i ⇒s a!j . The resulting cycle,a!i ⇒s a?j ⇒s a!i contradicts the
supposition thats is a trace. Therefore it must be thati < j as required. ✷

Let us revisit the incrementing counter specification[+]+0 {
+ }+1 (

+)+2 . In the com-
pletely concurrent trace[+ {+ (+)+2 }

+
1]

+
0 all invocations precede all responses, and

therefore linearizability is trivially satisfied. The linearizability of{+ [+ }+1 (
+]+0)

+
2 fol-

lows from the fact that}+1 is preceded by both[+ and{+ , and the nonlinearizability of
{+ (+ }+1 [

+)+2]
+
0 , follows from the fact that[+ does not precede}+1 .

3.3 Compositionality

We re-prove one of the fundamental properties of linearizability: compositionality [9].
The proof we give here is similar to the proof given for QQC in subsection 5.4, in a
simpler setting.

Lemma 3.5 (Operational traces). Suppose that s is an operational trace that imposes
the following order.

a?1 b?1a?0

a!0

b?0

b!0

Then either a?1 ⇒s b!0 or b?1 ⇒s a!0.

12 Radha Jagadeesan and James Riely

PROOF. If neither holds, then, by operationality we must have bothb!0 ⇒s a?1 anda!0 ⇒s

b?1, which results in the cycleb!0 ⇒s a?1 ⇒s a!0 ⇒s b?1 ⇒s b!0. ✷

Recall from subsection 2.2 that(9) denotes interleaving and(÷) denotes partial
order difference. To split traces in “half,” it suffices to postulate the existence ofs1 and
s2 such thats1 = s÷ s2 ands2 = s÷ s1.

Theorem 3.6. Let t1 and t2 be sequential traces.
Let s, s1 and s2 be operational traces such that s1 = s÷ s2 and s2 = s÷ s1.
For i ∈ {1, 2}, suppose that each si ⊑lin ti .
Then there exists a sequential trace t∈ (t1 9 t2) such that s⊑lin t.

PROOF. Without loss of generality, assume thatids(t1) andids(t2) are disjoint. Let the
sequence of names int1 be (a?1, a!1, . . . , a?m, a!m) and sequence of name int2 be (b?1,
b!1, . . . , b?n, b!n). Applying Theorem 3.4 to the suppositions1 ⊑lin t1, we have thati ≤ j
impliesa?i ⇒s a!j , and similarly for thebs.

Our aim is to construct a sequential interleaving oft1 andt2. To do this, we construct
a partial order over event pairs. Any interleaving consistent with the partial order will
satisfy the conclusion of the theorem by construction. For the elements of the partial
order, letai represent the paira?i a!i and letbk represent the pairb?kb!k. Let theas be
totally ordered by subscript, corresponding to the fact that a?i ⇒s a!j wheneveri ≤ j, and
similarly thebs. Let there be across edgefrom ai to bℓ if a!i ⇒s b?ℓ , and symmetrically
from bs toas. Visually, we have an order such as the following.

a1 a2 · · · ai · · · a j · · · am

b1 b2 · · · bk · · · bℓ · · · bn

Thea-a andb-b edges go from? to ! in s, whereas the cross edges go from! to ?.
The proof obligation is to show that this order is acyclic, inwhich case it induces

at least one interleaving. We show that any cycle in the defined order corresponds to a
cycle ins, contradicting the supposition thats is a trace. For there to be a cycle in the
defined order, there must bei < j andk < ℓ, such thata?i ⇒s a!j ⇒s b?k ⇒s b!ℓ ⇒s a?i .
This contradicts the supposition thats is a trace. ✷

4 Quiescent Consistency

Let open(s) be the set of calls ins that have no matching return7. We say that traces
is quiescentif open(s) = /0. This notion of quiescence does not require that there be no
active thread, but only that there be no open calls. Thus, this notion of quiescence is
compatible with libraries that maintain their own thread pools.

The definition of quiescent consistency is similar to Definition 3.2 of linearizabil-
ity. The difference lies in the quantifier for the prefixp≤pre s: Whereas linearizability
quantifies overeveryprefix, quiescent consistency only quantifies overquiescentpre-
fixes.

7 open(s)
△

= {u∈ s | pol(u) = ? ∧ 6 ∃v∈ s. brak(v) = id(u)}

Between Linearizability and Quiescent Consistency 13

Definition 4.1. We writes⊑qc t if s=π t and for anyquiescentprefix p≤pre s

∀a!∈ p. ∀b?∈ s− p. (a!⇒s b?) implies(a!⇒t b?).

Then(s′′ ∼❁qc t)
△

= (∃s′ ∈ extensions(s′′). ∃s=α s′. s⊑qc t). ✷

Again let us revisit the counter specification from Example 1.1: [+]+0 {
+ }+1 (

+)+2 .

This notion quiescent consistency places some constraintson the system even when it
has no nontrivial quiescent points. For example, the execution [+ {+ (+)+3 }

+
1]

+
0 is not

quiescently consistent with the given specification, sinceit is not a permutation. If one
extends the execution to[+ {+ (+)+3 }

+
1]

+
0 <

+ >+2 and attempts to matches it against the
specification[+]+0 {

+ }+1 <
+ >+2 (

+)+3 , quiescent consistency continues to fail: In the qui-
escent prefix[+ {+ (+)+3 }

+
1]

+
0 , the order across the cut from)+3 to <+ is not preserved

in the specification.
For linearizability, we argued that because specificationsare prefix-closed, only re-

sponses need be included in theextensions of a trace. The same does not hold for
quiescent consistency. For example, since(+ {+ }+1 [

+]+0)
+
2 is quiescently consistent,

its prefix(+ {+ }+1 should also be quiescently consistent. However, there is nospecifica-
tion trace that can be matched that does not include[+]+0 . Therefore, it does not suffice
merely to close the open call by adding)+2 ; We must include[+ and]+0 .

Compositionality (as expressed in Theorem 3.6) also holds for quiescent consis-
tency. The proof is straightforward: any quiescent point ofs1 ∪ s2 is also a quiescent
point for eachsi ; the two specifications may be interleaved arbitrarily between these
quiescent points.

As noted in the introduction, if the sequence of interlocking calls[+ (+]+i [
+)+j (

+]+k
[+ · · · , never reaches quiescence, then the counter may return any natural number for
i, j andk. QQC reduces this permissiveness by looking at every cut. Itremains less
strict than linearizability by loosening the requirement thateveryresponse-to-invocation
across the cut be respected in the specification.

5 Quantitative Quiescent Consistency

We provide three characterizations of QQC and prove their equivalence.

– In subsection 5.1, we define QQC in the style that we have defined linearizability
and quiescent consistency, from response to invocation.

– In subsection 5.2, we give acounting characterizationof QQC, which requires that
if a response matches theith method call in the specification, then it must be pre-
ceded by at leasti invocations.

– In subsection 5.3, we give a operational characterization of QQC as a proxy between
the concurrent world and an underlying sequential data structure. This can be seen
a mix of flat combining Hendler, Incze, Shavit, and Tzafrir [7] with speculation.

Finally, in subsection 5.4, we demonstrate that QQC is compositional, as in [9].

14 Radha Jagadeesan and James Riely

To give some intuition for the what is allowed by QQC, we first give some examples
using the 2-Counter from the introduction. First we note that the capability given by an
open call can be used repeatedly, as in the execution(+ [+]+1 {

+ }+0 [
+]+3 {

+ }+2 [
+]+5 {

+ }+4
)+6 . Alternatively, multiple open calls may be accumulated to create an trace with events
that are arbitrarily far off, as in(+ [+]+1 (

+ [+]+3 (
+ [+]+5 (

+ [+]+7 [
+]+0)

+
2)

+
4)

+
6)

+
8 . Note

that[+]+0 follows [+]+7 in this execution! It is worth emphasizing that the order be-
tween these actions is observable to the outside: a single thread can callgetAndInc-
rement and get 7, then subsequently callgetAndIncrement and get 0.

In general, anN-Counter can give results that arek×N off of the expected value,
wherek is the maximum number of open calls andN is the width of the counter. There
is no way to bound the behavior of this counter, as in [8], without also bounding the
amount of concurrency, as in [1].

It is also possible for open calls to overlap in nontrivial ways. The trace(+ [+]+1 {
+

[+]+0)
+
3 (

+)+2 }
+
4 is QQC. Here, the first(+ justifies the out-of-order execution of[+]+1

and[+]+0 . The subsequent{+ justifies an inversion of the previous justifier, namely
(+)+3 and(+)+2 . A similar example is{+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 .

Finally, we note that the stack execution{+c [
-]-a (

+
a)

+ }+ is QQC with respect to
the specification(+a)

+ [-]-a {
+
c }

+ . This follows from exactly the kind of reasoning that
we have done for the counter. This lack of causality may be troubling, but we note that
it is typical of weak correctness criteria such as quiescentconsistency. We revisit this
issue in the conclusions.

5.1 First characterization: response to invocation

Linearizability requires that foreverycut,all response-to-invocation order crossing the
cut must be respected in the specification. Quiescent consistency limits this attention
to quiescentcuts. QQC restores the quantification over every cut, but relaxes the re-
quirement to match all response-to-invocation order crossing the cut. When checking
response-to-invocation pairs across the cut, QQC allows some invocations to be ig-
nored. How many?

One constraint comes from our desire to refine quiescent consistency. For quiescent
cuts, we cannot drop any invocations, since this quiescent consistency does not. As a
first attempt at a definition, we may take the number of droppedinvocations at any cut
to be bounded by

∣

∣open(p)
∣

∣. However, this is too permissive. For example, this simple
criterion cannot distinguish the following executions from Example 1.1.

(+ {+ }+1 [
+]+0)

+
2 [+ (+)+2 {

+ }+1]
+
0

The interesting cut splits the traces in half at the midpoint. In each case there is one
open call. Therefore in the first trace, we can ignore[+ in the suffix, and in the second
trace, we can ignore{+ in the suffix. However, we believe that these traces should be
distinguished. The second trace is “more off” than the first.

The difference can be seen by looking not only at the number ofopen calls, but also
at whichcalls are open. In the first trace we have(+ before}+1 , and in the second, we
have[+ before)+2 . We say that(+ is early for }+1 , since it does not precede}+1 in the
specification, whereas[+ is not early for)+2 , since itdoesprecede)+2 . We restrict our
attention to calls that are both open and early with respect to the response of interest.

Between Linearizability and Quiescent Consistency 15

Given a specificationt anda! ∈ t none of the actions in thet-downclosure ofa!

could possibly be early fora!; any other action could be. Thus, the actions inopen(p)−
(↓t a!) are both open and early fora!. This leads us to the following definition. (In
subsection 5.2, we show that for sequential specifications,we can swap the quantifiers
(∃r) and(∀a!), pulling out the existential.)

Definition 5.1. We writes⊑qqc t if s=π t and for any prefixp≤pre s

∀a!∈ p. ∃r ⊆ s.
∣

∣r
∣

∣≤
∣

∣open(p)− (↓t a!)
∣

∣.

∀b?∈ ((s− p)− r). (a!⇒s b?) implies(a!⇒t b?).

Then(s′′ ∼❁qqc t)
△

= (∃s′ ∈ extensions(s′′). ∃s=α s′. s⊑qqc t). ✷

In this definition, it is safe to restrict attention to setsr consisting only of input
events that are concurrent with the open calls. We do not impose these restrictions
explicitly because they are not necessary. Choosing outputs does not add any flexibility,
effectively wasting an open call. Non-concurrent calls will be revealed by the prefix in
which the call is closed.

Theorem 5.2.(∼❁lin)⊂ (∼
❁qqc)⊂ (∼

❁qc)

PROOF. Containment is immediate from the definitions, always taking r = ε for QQC.
To see that the containment is proper, consider the incrementing counter specification
from Example 1.1,[+]+0 (

+)+1 {
+ }+2 . With respect to this specification,{+ (+)+1 [

+]+0 }
+
2

is QQC but not linearizable[+ {+ }+2 (
+)+1]

+
0 is quiescently consistent but not QQC.✷

5.2 Second characterization: counting invocations

Given the subtlety of Definition 5.1, it may be surprising that QQC has the following
simple characterization for sequential specifications.

Theorem 5.3. Let t be a sequential trace with name order(a?1, a!1, . . . , a?n, a!n). Let s be
an operational trace such that s=π t. Then

s⊑qqc t iff ∀ j. j ≤
∣

∣{a?i | a?i ⇒s a!j}
∣

∣

PROOF. (⇒) Fix j, let p= ↓sa!j , and letq, r ′, o be the following disjoint sets.

q= {a?i | i ≤ j ∧a?i ⇒s a!j}

r ′ = {a?i | i ≤ j ∧a?i 6⇒s a!j}= {a?i | i ≤ j ∧a!j ⇒s a?i } (by operationality)

o= {a?i | i > j ∧a?i ⇒s a!j} ⊇ open(p)− (↓t a!j) (by calculation)

Note thatq∪o= {a?i | a?i ⇒s a!j}; therefore it suffices to show that
∣

∣q∪o
∣

∣≥ j.
For every event ina?i ∈ r ′ we have thati ≤ j and thereforea!j ⇒s a?i anda!j 6⇒t a?i .

Hence the setr chosen in Definition 5.1 must includer ′. From Definition 5.1, we have
that

∣

∣r
∣

∣ ≤
∣

∣open(p)− (↓t a!j)r
∣

∣. Sincer ′ ⊆ r andopen(p)− (↓t a!j)⊆ o, we have
∣

∣r ′
∣

∣≤
∣

∣o
∣

∣. Since
∣

∣q∪ r ′
∣

∣= j, we have
∣

∣q∪o
∣

∣≥ j, as required.

16 Radha Jagadeesan and James Riely

(⇐) Fix p. Following the argument given in the proof of Lemma 5.4, in order to
show that the requirements of Definition 5.1 hold for everya!∈ p, it suffices to show
that they hold fora!j , where letj = max{k | a!k ∈ p}.

Fix j = max{k | a!k ∈ p}. We now show that the requirements of Definition 5.1 hold
for a!j . We chooseq, r ando as before.

q= {a?i | i ≤ j ∧a?i ⇒s a!j}

r = {a?i | i ≤ j ∧a?i 6⇒s a!j}= {a?i | i ≤ j ∧a!j ⇒s a?i }

o= {a?i | i > j ∧a?i ⇒s a!j} ⊆ open(p)− (↓t a!j)

To see thato⊆ open(p), consider that ifa?i ∈ o thena!i 6∈ p; otherwisej 6=max{k | a!k ∈
p}. By the second characterization ofr above (which follows from operationality),
∀a?i 6∈ r. (a!j ⇒s a?i) implies j < i. Thus, to establish the result it suffices to show that
∣

∣r
∣

∣≤
∣

∣open(p)− (↓t a!j)
∣

∣. By assumption,
∣

∣q∪o
∣

∣≥ j. Since
∣

∣q∪ r
∣

∣= j, we have
∣

∣r
∣

∣≤
∣

∣o
∣

∣ and therefore
∣

∣r
∣

∣≤
∣

∣open(p)− (↓t a!j)
∣

∣ as required. ✷

This characterization provides a simple method for calculating whether a trace is
QQC. For example the trace{+ (+)+1 (

+ [+]+0)
+
3 [

+]+2 }
+
4 is QQC since)+1 is preceded

by two calls,]+0 ,)+3 by four, and]+2 , }+4 by five. The trace{+ (+)+1 (
+)+3 [

+]+0 [
+]+2 }

+
4

is not QQC since)+3 is only preceded by three calls, yet it is the fourth call in the
specification.

For sequential specifications, we can also simplify Definition 5.1 by exchanging the
quantifiers(∃r) and(∀a!), pulling out the existential.

Lemma 5.4. Let t be a sequential trace with name order(a?1, a!1, . . . , a?n, a!n). Let s be
an operational trace such that s=π t. Fix p≤pre s. Then the displayed requirement of
Definition 5.1 is equivalent to

∃r ⊆ s.
∣

∣r
∣

∣≤
∣

∣openEarlyt(p)
∣

∣.

∀a!∈ p. ∀b?∈ ((s− p)− r). (a!⇒s b?) implies(a!⇒t b?),

whereopenEarlyt(p)
△

= {b?∈ open(p) | 6 ∃a!∈ p. b?⇒t a!}.

PROOF. (5.4⇒ 5.1) Immediate.
(5.1⇒ 5.4) Consider the proof of the reverse direction (⇐) in the Theorem 5.3. An

examination of the proof shows that the open calls constructed satisfy the more stringent
requirements of 5.4. In fact, the proof of 5.3 shows that (5.3⇒ 5.4). The result follows
since the forward direction of 5.3 shows that (5.1⇒ 5.3). ✷

For full concurrent specifications and implementations, wesuspect that Lemma 5.4
fails. (To get a sense of the issues, consider a specificationthat ordersa c andb d,
and an implementation that executesa d andb c.) In this paper, however, all of
our results concern sequential specifications and operational implementations.

5.3 Third characterization: speculative flat combining

Our third characterization of QQC describes how QQC affectsan arbitrary sequential
data structure, using aproxy that generates QQC traces from an underlying sequential

Between Linearizability and Quiescent Consistency 17

implementation. The proxy issound, in that every trace that it accepts is QQC, and
complete, in that it generates every operational trace that is QQC with respect to the
sequential data structure.

This characterization of QQC incorporatesspeculationinto flat combining [7].Flat
combiningis a technique for implementing concurrent data structuresusing sequen-
tial ones by introducing a mediator between the concurrent world and the sequential
data structure. As for speculation, we push the obligation to predict the future into the
underlying sequential object, with must conform to the following interface.

interface Object {

method run(i:Invocation):Response;

method predict():Invocation; }

Therun method passes invocations to the underlying sequential structure and returns
the appropriate response. Thepredictmethod is an oracle that guesses the invocations
that are to come in the future. It is the use ofpredict that makes our code speculative.

Given anObject o, the proxy is defined as follows.

class QQCProxy<o:Object> {

field called:ThreadSafeMultiMap<Invocation,Semaphore> = [];

field returned:ThreadSafeMap <Semaphore, Response> = [];

method run(i:Invocation):Response { // proxy for external access to o
val m:Semaphore = [];

called.add(i, m);

m.wait();

return returned.remove(m); }

thread { // single thread to interact with o
val received:MultiMap<Invocation,Semaphore> = [];

val executed:MultiMap<Invocation,Response> = [];

repeatedly choose {

choice if called.notEmpty() {

received.add(called.removeAny());

val i:Invocation = o.predict();

val r:Response = o.run(i);

executed.add(i, r); }

choice if exists i in received.keys() intersect executed.keys() {

val m:Semaphore = received.remove(i);

val r:Response = executed.remove(i);

returned.add(m, r);

m.signal(); } } } }

Communication between the implementation threads and the underlyingObject is
mediated by two maps. When a thread would like to interact with theObject, it creates
a semaphore, registers the semaphore incalled and waits on the semaphore. Upon
awakening, the thread removes the result fromreturned and returns.

TheObject is serviced by a singleproxy thread which loops forever making one
of two nondeterministic choices. The proxy keeps two private maps. Upon receiving an
called invocation, the proxy moves the invocation fromcalled to received. Rather
than executing the received invocation, the proxy asks the oracle to predict an arbitrary

18 Radha Jagadeesan and James Riely

invocationi and executes that instead, placing the result inexecuted. Once a invoca-
tion is bothreceived andexecuted, it may becomereturned.

At the beginning of this section, we noted that the stack execution{+c [
-]-a (

+
a)

+ }+

is QQC with respect to the specification(+a)
+ [-]-a {

+
c }

+ .How can such a trace possibly
be generated? The execution of the proxy proceeds as follows. Upon receipt of{+c , the
proxy executes(+a , storing the response)+ . Upon receipt of[- , the proxy executes[- ,
storing the response]-a . At this point[-]-a can be returned. Upon receipt of(+a , the
proxy executes{+c , storing the response}+ . At this point both(+a)

+ and{+c }
+ can be

returned.
Theorem 5.5. The concurrent proxy is sound for QQC with respect to the underlying
Object. It is also complete for operational traces.
PROOF. For soundness, note that proxy maintains the invariant that the sizes ofreceived
andexecuted are equal, and therefore the number of returned calls can never exceed
the number that has been received. In addition, the number ofthings added toreceived
always exceeds the number added toreturned.

For completeness, suppose that traces⊑qqc t and let the sequence of names int
be (a?1, a!1, . . . , a?m, a!m). Consider any total order on the events ofs that is consistent
with the order already present int. Let (b?1, . . . , b?m) be the order on the call actions in
this total order. Whenb?i arrives, addb?i to received and executea?i , placinga!i into
executed. From Theorem 5.3 we know that whenever a response is required, there will
be enough prior invocations so that the required response will be found inexecuted.✷

5.4 Compositionality

We now prove compositionality for QQC, following the proof for linearizability in The-
orem 3.6. Below, we give some examples of the construction given in the proof, which
is more complex than the one required for linearizability. Recall that (÷) denotes partial
order difference.
Theorem 5.6. Let t1 and t2 be sequential traces.

Let s, s1 and s2 be operational traces such that s1 = s÷ s2 and s2 = s÷ s1.
For i ∈ {1, 2}, suppose that each si ⊑qqc ti .
Then there exists a sequential trace t∈ (t1 9 t2) such that s⊑qqc t.

PROOF. As in the proof of Theorem 3.6, assumeids(t1) and ids(t2) are disjoint, and
let the sequence of names int1 be (a?1, a!1, . . . , a?m, a!m) and sequence of name int2 be
(b?1, b!1, . . . , b?n, b!n). Applying Theorem 5.3 to the suppositions1 ⊑lin t1, we have that
j ≤

∣

∣{a?i | a?i ⇒s a!j}
∣

∣, and similarlyℓ ≤
∣

∣{b?k | b?k ⇒s b!ℓ}
∣

∣. It suffices to construct an
interleavingt ∈ (t1 9 t2) such that whenevert contains a subsequence with names

a?j , a!j , b?k, b!k, b?k+1, b!k+1, . . . , b?k+x, b!k+x

then for everyk≤ ℓ≤ k+ x, we have

{a?i | a?i ⇒s a!j} ⊆ {a?i | a?i ⇒s b!ℓ}

and symmetrically for subsequencesb?k, b!k, a?j , a!j , a?j+1, a!j+1, . . . , a?j+y, a!j+y. Given

such at, we know thatj + ℓ≤
∣

∣{a?i | a?i ⇒s b!ℓ}∪{b?k | b?k ⇒s b!ℓ}
∣

∣, as required.

Between Linearizability and Quiescent Consistency 19

We now demonstrate the existence of such at. Define the setmerge(~a,~b) as follows.

merge(~a, ε) = {~a} merge(ε ,~b) = {~b}

merge(~aa?j a!j , ~bb?ℓ b!ℓ) ∋~cb?ℓ b!ℓ if ~c∈ merge(~aa?j a!j , ~b)
and{a?i | a?i ⇒s a!j} ⊆ {a?i | a?i ⇒s b!ℓ}

merge(~aa?j a!j , ~bb?ℓ b!ℓ) ∋~ca?j a!j if ~c∈ merge(~a, ~bb?ℓ b!ℓ)
and{b?k | b?k ⇒s b!ℓ} ⊆ {b?k | b?k ⇒s a!j}

To demonstrate the existence of an appropriatet, it suffices to show thatmerge(a?1a!1
. . . a?ma!m, b?1b!1 . . . b?nb!n) is nonempty. By operationality, it must be the case that either
(1) a!j ⇒s b!ℓ , in which case{a?i | a?i ⇒s a!j} ⊆ {a?i | a?i ⇒s b!ℓ}, (2) b!ℓ ⇒s a!j , in which
case{b?k | b?k ⇒s b!ℓ} ⊆ {b?k | b?k ⇒s a!j}, or (3) a!j andb!ℓ are unordered, in which case
both conclusions hold. Therefore an appropriatet exists. ✷

Example 5.7.We demonstrate themerge function defined in the proof above using the
following traces.

t1 = [+]+0 (
+)+1 {

+ }+2 t2 = [|+ |]+0 (|
+ |)+1 {|

+ |}+2

s1 = {+ (+)+1 [
+]+0 }

+
2 s2 = {|+ (|+ |)+1 [|

+ |]+0 |}
+
2

s= {|+ (|+ |)+1 {
+ [|+ |]+0 (

+)+1 [
+]+0 }

+
2 |}

+
2

In the graph below, we draw an edge froma j to bℓ if {a?i | a
?
i ⇒s a!j} ⊆ {a?i | a

?
i ⇒s b!ℓ},

indicating thatbℓ may come aftera j . Edges frombℓ to a j are similar. When an edge is
bidirectional, we use a dashed line.

[+]+0 (+)+1 {+ }+2

[|+ |]+0 (|+ |)+1 {|+ |}+2

The following traces are derived from themerge algorithm.

[|+ |]+0 (|
+ |)+1 {|

+ |}+2 [
+]+0 (

+)+1 {
+ }+2

[|+ |]+0 (|
+ |)+1 [

+]+0 {|
+ |}+2 (

+)+1 {
+ }+2

[|+ |]+0 (|
+ |)+1 [

+]+0 (
+)+1 {|

+ |}+2 {
+ }+2

[|+ |]+0 (|
+ |)+1 [

+]+0 (
+)+1 {

+ }+2 {|
+ |}+2

Suppose instead that we have the followings.

s= {|+ (|+ |)+1 {
+ [|+ (+)+1 |]

+
0 |}

+
2 [

+]+0 }
+
2

Then the graph and resulting traces are as follows.

[+]+0 (+)+1 {+ }+2

[|+ |]+0 (|+ |)+1 {|+ |}+2

[|+ |]+0 (|
+ |)+1 {|

+ |}+2 [
+]+0 (

+)+1 {
+ }+2

[|+ |]+0 (|
+ |)+1 [

+]+0 {|
+ |}+2 (

+)+1 {
+ }+2

[|+ |]+0 (|
+ |)+1 [

+]+0 (
+)+1 {|

+ |}+2 {
+ }+2

20 Radha Jagadeesan and James Riely

In general, if one where to include the linear order from the specification (eg, from[+]+0
to (+)+1), the resulting graph might be cyclic, even if the dotted edges were removed.✷

6 Stack example

We show that, under reasonable assumptions, ourN-Stack is QQC. We extend this
argument to the elimination-tree stacks of [13].

In proving that executions of ourN-Stack are QQC, the key step is to generate the
corresponding specification trace. To do so, we consider thefollowing instrumentation.

1 class Stack<N:Int> {

2 field b:[0..N-1] = 0; // 1 balancer
3 field s:Stack[] = [[], [], ..., []]; // N stacks of values
4 field e:[0..N-1] = 0; // 1 emitter
5 field q:Queue[] = [[], [], ..., []]; // N queues of actions
6 method push(x:Object):Unit {

7 val i:[0..N-1];

8 atomic {i=b; b++;}

9 atomic {val v=s[i].push(x); q[i].add("push" x); emit(); return v;} }

10 method pop():Object {

11 val i:[0..N-1];

12 atomic {i=b-1; b--;}

13 atomic {val v=s[i].pop(); q[i].add("pop" v); emit(); return v;} }

14 method emit():Unit {

15 while (q[e].first()=~"push" || q[e-1].first()=~"pop") {

16 if (q[e].first()=~"push") {print (q[e].remove()); e++;}

17 if (q[e-1].first()=~"pop") {print (q[e-1].remove()); e--;} } } }

The state of the machine includes the values of the balancerb and stackss. It also
includes queuesq to store the actions that have been executed on each stack anda
emitter e, with the same range asb, which indicates the queue that should produce
the next specification action. The emitter prints any completed pushes froms[e] and
any completed pops froms[e-1]. When the emitter prints a push, it removes it from
the queue and incrementse; when it prints a pop, it removes it from the queue and
decrementse. Emitter actions take place as soon as possible, and the emitter continues
until it has nothing left to do.

Atomic blocks can only execute concurrently if they do not touch the same shared
state. For the code in the introduction, this imposes an order between all executions
of the first atomic (lines 8 and 12), since they touch the shared variableb; order is
only imposed between executions of the second atomic that update the same stack. The
presence ofemit indicates also imposes an order between all executions of the second
atomic (lines 9 and 13), sinceemit touches the shared variablee. This total order on
calls toemit ensures that the printed trace is indeed a stack trace, as we argue below.

Definition 6.1. Letabe a call topush orpop. Thentime1(a) is the time of the execution
of the first atomic statement in theN-Stack, andtime2(a) is the time of the execution
of the second atomic. Alinearized traceof anN-Stack is one in which the invocations
are ordered consistently withtime1 and the responses are ordered consistently with
time2. ✷

Between Linearizability and Quiescent Consistency 21

For example, from the linearization(+b [
+
a]

+)+ we knowtime1((
+
b) < time1([

+
a)

andtime2(]
+)< time2()

+). Such a linearized trace is distinct from other linearizations
of the same trace, such as(+b [

+
a)

+]+ , [+a (
+
b]

+)+ and[+a (
+
b)

+]+ .

The response order in the linearized trace is particularly significant. For example,
the linearization(+b [

+
a]

+)+ [-]-a (
-)-b cannot result from the execution of a 1-Stack.

In this casea is pushed beforeb and therefore the pop ofa cannot be ordered before the
pop ofb.

Example 6.2.Consider the following linearized trace of a 2-Stack.

(+c <
+
b >

+ [+a]
+)+ (-)-c <

- >-b [
-]-a

Execution proceeds as follows. We show the atomic that is being executed above the
arrow. Arrows without labels are executed withinemit, atomically with the prior label.
On the right-hand side, we show any emitted actions, followed by the resulting state.
The initial state of the machine is〈b= 0, e= 0, s= [[], []], q= [[], []]〉.

〈b= 0, e= 0, s= [[], []], q= [[], []]〉
(+c−−→ 〈b= 1, e= 0, s= [[], []], q= [[], []]〉
<+b−−→ 〈b= 0, e= 0, s= [[], []], q= [[], []]〉
>+−→ 〈b= 0, e= 0, s= [[], [b]], q= [[], [<+b >

+]]〉
[+a−−→ 〈b= 1, e= 0, s= [[], [b]], q= [[], [<+b >

+]]〉
]
+

−→ 〈b= 1, e= 0, s= [[a], [b]], q= [[[+a]
+], [<+b >

+]]〉

−→ [+a]
+ 〈b= 1, e= 1, s= [[a], [b]], q= [[], [<+b >

+]]〉

−→ <+b >
+ 〈b= 1, e= 0, s= [[a], [b]], q= [[], []]〉

)+−→ 〈b= 1, e= 0, s= [[ca], [b]], q= [[(+c)
+], []]〉

−→ (+c)
+ 〈b= 1, e= 1, s= [[ca], [b]], q= [[], []]〉

(-−−→ 〈b= 0, e= 1, s= [[ca], [b]], q= [[], []]〉
)
-
c−→ 〈b= 0, e= 1, s= [[a], [b]], q= [[(-)-c], []]〉

−→ (-)-c 〈b= 0, e= 0, s= [[a], [b]], q= [[], []]〉
<-−−→ 〈b= 1, e= 0, s= [[a], [b]], q= [[], []]〉
>-b−→ 〈b= 1, e= 0, s= [[a], []], q= [[], [<- >-b]]〉

−→ <- >-b 〈b= 1, e= 1, s= [[a], []], q= [[], []]〉
[-−−→ 〈b= 0, e= 1, s= [[a], []], q= [[], []]〉
]-a−→ 〈b= 0, e= 1, s= [[], []], q= [[[-]-a], []]〉

−→ [-]-a 〈b= 0, e= 0, s= [[], []], q= [[], []]〉 ✷

Example 6.3.Consider the following execution of the instrumented counter.

〈b= 0, e= 0, s= [[], []], q= [[], []]〉
[+0−−→ 〈b= 1, e= 0, s= [[], []], q= [[], []]〉
(+a−−→ 〈b= 0, e= 0, s= [[], []], q= [[], [(+a)

+]]〉

22 Radha Jagadeesan and James Riely

)+−→ 〈b= 0, e= 0, s= [[], [a]], q= [[], [(+a)
+]]〉

(-−−→ 〈b= 1, e= 0, s= [[], [a]], q= [[], [(+a)
+]]〉

)-a−→ 〈b= 1, e= 0, s= [[], []], q= [[], [(+a)
+ (-)-a]]〉

(
+
b−−→ 〈b= 0, e= 0, s= [[], []], q= [[], [(+a)

+ (-)-a]]〉
)+−→ 〈b= 0, e= 0, s= [[], [b]], q= [[], [(+a)

+ (-)-a (
+
b)

+]]〉
[
+
2−−→ 〈b= 1, e= 0, s= [[], [b]], q= [[], [(+a)

+ (-)-a (
+
b)

+]]〉
(+c−−→ 〈b= 0, e= 0, s= [[], [b]], q= [[], [(+a)

+ (-)-a (
+
b)

+]]〉
)
+

−→ 〈b= 0, e= 0, s= [[], [bc]], q= [[], [(+a)
+ (-)-a (

+
b)

+ (+c)
+]]〉

]+−→ 〈b= 0, e= 0, s= [[0], [bc]], q= [[[+0]
+], [(+a)

+ (-)-a (
+
b)

+ (+c)
+]]〉

−→ [+0]
+ 〈b= 0, e= 1, s= [[0], [bc]], q= [[], [(+a)

+ (-)-a (
+
b)

+ (+c)
+]]〉

−→ (+a)
+ 〈b= 0, e= 0, s= [[0], [bc]], q= [[], [(-)-a (

+
b)

+ (+c)
+]]〉

−→ (-)-a 〈b= 0, e= 1, s= [[0], [bc]], q= [[], [(+b)
+ (+c)

+]]〉

−→ (+b)
+ 〈b= 0, e= 0, s= [[0], [bc]], q= [[], [(+c)

+]]〉
]+−→ 〈b= 0, e= 0, s= [[01], [bc]], q= [[[+1]

+], [(+c)
+]]〉

−→ [+1]
+ 〈b= 0, e= 1, s= [[01], [bc]], q= [[], [(+c)

+]]〉

−→ (+c)
+ 〈b= 0, e= 0, s= [[01], [bc]], q= [[], []]〉

This produces the following linearized tracesand specificationt.

s= [+0 (
+
a)

+ (-)-a (
+
b)

+ [+1 (
+
c)

+]+]+

t = [+0]
+ (+a)

+ (-)-a (
+
b)

+ [+1]
+ (+c)

+

After the push ofc returns, we haveq[1]= [(+a)
+ (-)-a (

+
b)

+ (+c)
+]. When the first]+

occurs, the first three actions in theq[1] must be emitted. ✷

Lemma 6.4. Given an instrumented execution of an N-Stack, the linearized trace of
the execution is QQC with the emitted specification.

PROOF SKETCH. Let us refer to a sequence like(+a)
+ (-)-a (

+
b)

+ as achain. A chain
is a sequence of calls that can be emitted from a single queue without any intervening
change toe. By Theorem 5.3 suffices to show that after the execution of each atomic,
the number of chains is bounded by the number of open calls. This follows by induction
on the length of the instrumented execution. ✷

In light of Lemma 6.4, to show that theN-Stack is QQC, it suffices to show that
the emitted specification is indeed a stack specification. Unfortunately, as observed in
[13], this fails to hold.

Example 6.5.As discussed in Example 1.4, the linearized trace[+a]
+ (+b)

+ [+c [
-]-a]

+

generates the specification[+a]
+ (+b)

+ [-]-a [
+
c]

+ . However, this specification is not a
stack trace. With some number of initial pushes, this execution is still possible: The lin-
earized trace[+x]

+ (+y)
+ [+a]

+ (+b)
+ [+c [

-]-a]
+ generates the specification[+x]

+ (+y)
+

[+a]
+ (+b)

+ [-]-a [
+
c]

+ . ✷

Between Linearizability and Quiescent Consistency 23

This problematic execution occurs because a push and pop areracing at the first
stack, yet the pop retrieves a prior value: the pop hasovertakenthe push. We must
disallow such executions. It is not sufficient to require only that pop operations block
on an empty stack.

Definition 6.6. An execution isproperly-poppedif for every pusha and popb that are
assigned the same stacks[i],

time1(a)< time1(b) impliestime2(a)< time2(b). ✷

Lemma 6.7. If an execution of the instrumented N-Stack is properly-popped, then it
trace it prints is a stack trace.

PROOF SKETCH. It is sufficient to note that the execution of the emitter follows the
same pattern as the uninstrumentedN-Stack on a sequential execution. (This is only
true with proper popping.) The result follows since, as shown in [13], the sequential
execution of theN-Stack does simulate a stack. ✷

Theorem 6.8. Any properly-popped execution of an N-Stack is QQC.

PROOF. By Lemmas 6.4 and 6.7. ✷

We have shown that for properly-popped executions (where a pop may not ignore a
concurrent push on the same stack) theN-Stack is QQC. As noted in the introduction,
we know of no analogous condition for increment/decrement counters.

In [13], Shavit and Touitou show that in a quiescent state, their elimination-tree
stack reaches a state consistent with a stack. We now consider the relation between our
N-Stacks and these elimination-tree stacks.

Example 6.9.A depth-2 elimination-tree stack can be implemented using three atomic
booleans—top (t), left (l) and right (r)—and 4 linearizable stacks with addresses00,
01, 10 and11.

t

l

00 01

r

00 01

The addressof a stack in an depth-d elimination tree is a sequence ofd booleans,
indicating the value of the boolean at each level, going downa branch of the tree. Both
push andpop toggle the booleans as they go down the tree, using an atomic read and
update. Ift = 0, thenpush setst = 1 and goes left. Ift = 0, thenpop setst = 1 and
goes right. The methods follow this same pattern down the tree until they reach the

24 Radha Jagadeesan and James Riely

bottom-level stack, at which point they perform the operation. Initially all booleans are
set to 0. For example, one uninstrumented execution proceeds as follows.

〈t= 0, 〈l= 0, sl = [[], []] 〉, 〈r = 0, sr = [[], []] 〉〉
(+e−−→〈t= 1, 〈l= 0, sl = [[], []] 〉, 〈r = 0, sr = [[], []] 〉〉

[
+
b]

+

−−−→〈t= 0, 〈l= 0, sl = [[], []] 〉, 〈r = 1, sr = [[b], []] 〉〉
[+a]+−−−→〈t= 1, 〈l= 1, sl = [[a], []] 〉, 〈r = 1, sr = [[b], []] 〉〉
[
+
d]

+

−−−→〈t= 0, 〈l= 1, sl = [[a], []] 〉, 〈r = 0, sr = [[b], [d]]〉〉
[+c]+−−−→〈t= 1, 〈l= 0, sl = [[a], [c]] 〉, 〈r = 0, sr = [[b], [d]]〉〉

)+−→〈t= 1, 〈l= 1, sl = [[ea], [c]]〉, 〈r = 0, sr = [[b], [d]]〉〉
{- }-e−−−→〈t= 0, 〈l= 0, sl = [[a], [c]] 〉, 〈r = 0, sr = [[b], [d]]〉〉
{- }-d−−−→〈t= 1, 〈l= 0, sl = [[a], [c]] 〉, 〈r = 1, sr = [[b], []] 〉〉
{- }-c−−−→〈t= 0, 〈l= 1, sl = [[a], []] 〉, 〈r = 1, sr = [[b], []] 〉〉
{- }-b−−−→〈t= 1, 〈l= 1, sl = [[a], []] 〉, 〈r = 0, sr = [[], []] 〉〉
{- }-a−−−→〈t= 0, 〈l= 0, sl = [[], []] 〉, 〈r = 0, sr = [[], []] 〉〉

This gives the trace(+e [
+
b]

+ [+a]
+ [+d]

+ [+c]
+)+ {- }-e {

- }-d {
- }-c {

- }-b {
- }-a which is

QQC with respect to[+a]
+ [+b]

+ [+c]
+ [+d]

+ (+e)
+ {- }-e {

- }-d {
- }-c {

- }-b {
- }-a . Our 4-

Stack does not generate this execution trace; however, our 2-Stack does. In general,
ourNd-Stack has strictly fewer behaviors than theN-branching elimination-tree stack
of depthd. We leave open the question of whether aN-branching elimination-tree stack
of depthd has behaviors that not possible for anN-Stack. ✷

The instrumented execution of aN-branching elimination-tree stack of depthd > 1
can be defined using the execution of elimination-tree stacks of depthd− 1, using
the same strategy as ourN-Stack. While the balancer’s behavior is more general in
the composed system, the emitter’s is not: The emitter code is entirely sequentialized,
therefore a 2-nestedN-branching emitter has the same behavior as a flatN2-branching
emitter.

Theorem 6.10. Any properly-popped execution of a N-branching elimination-tree stack
of depth d is QQC.

PROOF SKETCH. Following the strategy in Theorem 6.8, we need only prove the cor-
responding lemmas. In each case, the proof procedes by induction ond. In each case
the basis is the same: a depth 1 elimination tree stack is simply an N-Stack.

The analogue of Lemma 6.4 follows, as before, by induction onthe length of the
instrumented execution. An open call at depthd may initiate a new chain, but only in
onestack of depthd−1.

For the analogue of 6.7 it suffices to observe that the emitter’s behavior is the same
if levels d > 1 andd−1 are flattened into a single level of sizeN2. This follows from
the atomicity of the emitter. ✷

REFERENCES 25

7 Conclusions

Quantitative quiescent consistency (QQC)is a correctness criterion for concurrent data
structures that relaxes linearizability and refines quiescent consistency. To the best of
our knowledge, it is the first such criterion to be proposed.

To show that QQC is a robust concept, we have provided three alternate charac-
terizations: (1) in the style of linearizability, (2) counting the number of calls before a
return, and (3) using speculative flat combining. We have also proven compositionality
(in the style of Herlihy and Wing [9]) and the correctness of data structures defined by
Aspnes, Herlihy, and Shavit [3] and Shavit and Touitou [13].

In order to establish the correctness of the elimination-tree stack of [13], we had to
restrict attention to traces in which no popovertakesa push on the same stack. A related
constraint appears in a footnote of [11]: “To keep things simple, pop operations should
block until a matching push appears.” This, however, is not strong enough to guarantee
quiescent consistency as we have defined it. Our analysis provides a full account: The
stack is QQC with the no-overtaking requirement and only weakly quiescently consis-
tent without it.

As witnessed by the stack trace{+c [
-]-a (

+
a)

+ }+ in section 5, QQC does not enforce
causality. We have chosen not to treat causality in this paper in order to present the
basic idea of QQC as clearly as possible. Causality is an orthogonal concept: One can
enforce causality inaddition to QQC. We have not done so here because causality
requires a notion of derivation over the underlying values,in which one distinguishes
public values (eg, base types) from secret values (eg, pointers or nonces). For stacks,
derivation requires that the value returned by a pop must be either public or a previously
pushed secret.

Linearizability has proven to be a valuable foundation for program verification tech-
niques. It remains to be seen if QQC can be of use in this regard.

Linearizability is, at its core,linear. We have defined QQC in terms of general
partial orders, and yet the results reported here are statedin terms of sequential specifi-
cations. Partly we have done this so that we can relate the definition of QQC to the vast
amount of existing work on linearizability. However, the general case is interesting.

Acknowledgements

Gustavo Petri participated in the early discussions which motivated this work. Alan
Jeffrey and Corin Pitcher made useful comments on previous candidate definitions for
QQC.

References

[1] Y. Afek, G. Korland, and E. Yanovsky, “Quasi-linearizability: relaxed consis-
tency for improved concurrency,” inOPODIS, ser. LNCS, vol. 6490, Springer,
2010, pp. 395–410.

[2] W. Aiello et al., “Supporting increment and decrement operations in balancing
networks,”Chicago J. Theor. Comput. Sci., 2000.

26 REFERENCES

[3] J. Aspnes, M. Herlihy, and N. Shavit, “Counting networks,” J. ACM, vol. 41, no.
5, pp. 1020–1048, 1994.

[4] C. Busch and M. Mavronicolas, “The strength of counting networks (abstract),”
in PODC, J. E. Burns and Y. Moses, Eds., ACM, 1996, p. 311.

[5] C. Dwork, M. Herlihy, and O. Waarts, “Contention in shared memory algo-
rithms,” J. ACM, vol. 44, no. 6, pp. 779–805, 1997.

[6] A. Haas et al., “Distributed queues in shared memory: multicore performance
and scalability through quantitative relaxation,” inConf. Computing Frontiers,
ACM, 2013, p. 17.

[7] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining and the synch-
ronization-parallelism tradeoff,” inSPAA, 2010, pp. 355–364.

[8] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova, “Quanti-
tative relaxation of concurrent data structures,” inPOPL, 2013, pp. 317–328.

[9] M. Herlihy and J. M. Wing, “Linearizability: a correctness condition for concur-
rent objects,”ACM TOPLAS, vol. 12, no. 3, pp. 463–492, 1990.

[10] M. Herlihy and N. Shavit,The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[11] N. Shavit, “Data structures in the multicore age,”Commun. ACM, vol. 54, no. 3,
pp. 76–84, Mar. 2011.

[12] N. Shavit and D. Touitou, “Elimination trees and the construction of pools and
stacks (preliminary version),” inSPAA, 1995, pp. 54–63.

[13] —, “Elimination trees and the construction of pools andstacks,”Theory Comput.
Syst., vol. 30, no. 6, pp. 645–670, 1997.

