
On abstraction and compositionality for
weak-memory linearisability ?

Brijesh Dongol1, Radha Jagadeesan2, James Riely2, and
Alasdair Armstrong1,3

1 Brunel University of London, UK
2 DePaul University, Chicago, USA

3 University of Cambridge, Cambridge, UK

Abstract. Linearisability is the de facto standard correctness condition
for concurrent objects. Classical linearisability assumes that the effect
of a method is captured entirely by the allowed sequences of calls and
returns. This assumption is inadequate in the presence of relaxed memory
models, where happens-before relations are also of importance.
In this paper, we develop hb-linearisability for relaxed memory models by
extending the classical notion with happens-before information. We con-
sider two variants: Real time hb-linearisability, which adopts the classical
view that time runs on a single global clock, and causal hb-linearisability,
which eschews real-time and is appropriate for systems without a global
clock. For both variants, we prove abstraction (so that programmers can
reason about a client program using the sequential specification of an
object rather than its more complex concurrent implementation) and
composition (so that reasoning about independent objects can be con-
ducted in isolation).

1 Introduction

An implementation is linearisable [19] if for every history of the implementa-
tion, there exists a legal history of the specification such that (1) each thread
makes the same method invocations in the same order, and (2) the order of non-
overlapping invocations is preserved. This notion of linearisability intuitively
ensures that each method invocation takes effect between its invocation and
response events. Thus, instead of complex concurrent reasoning that requires
a characterisation of all possible interactions across method invocations, lin-
earisability ensures that every method call can be understood in isolation via
preconditions and postconditions, as familiar in sequential computing.

Linearisability is a local property. Thus, we can reason compositionally about
a system; i.e., to prove the linearisability of the whole, it suffices to prove the lin-
earisability of projections to components with disjoint memories. This ability to
decompose large linearisability proofs is critical to scale the use of linearisability
in concurrent reasoning.

? This work was partially supported by EPSRC grants EP/N016661/1 and EP/
K008528/1, and NSF Grant No. 1617175.

In this paper, we are also interested in understanding abstraction or con-
textual refinement for correctness conditions, i.e., what correctness conditions
allow a concurrent object implementation CS to be substituted for an abstract
specification AS within a client program? Specifically, we would like to find a
condition Z between AS and CS for which

Z(AS ,CS)⇒ ∀C : Client . C[AS] v C[CS] (†)

holds, where v denotes some notion of refinement, C[AS] denotes a client C
that uses the abstract object AS , and C[CS] denotes a client C that uses the
implementation object CS .

There are different solutions to (†), depending on the notion of refinement
that one uses. Filipović et al. [16] study contextual refinement for terminating
computations. They establish refinement between the initial and final states of
C[AS] and C[CS] by showing that (†) holds if Z is instantiated to linearisability.
Others have studied contextual refinement for traces of C[AS] and C[CS], where
Z must be strengthened to cope with liveness properties [15, 17, 29, 22].

The works cited above assume that threads communicate via sequentially
consistent (sc) memory [21], where memory events appear to occur according
to a single, global, total order consistent with program order. However, high-
performance multicore systems typically implement relaxed memory models,
where memory events may appear to occur out-of-order with respect to program
order [1, 2, 5, 6, 23, 25–27]. Under sc, client memory events that occur before a
method call in program order cannot overlap with client memory events that
occur after the method call (in program order). Under relaxed memory, this
property fails to hold.

The impact of relaxed memory in the specification of concurrent data struc-
tures is already seen in practice via the explicit specification of happens-before
(hb) information, e.g., consider the ConcurrentQueue in java.util.concurrent4. In
addition to the usual guarantee — “The ConcurrentLinkedQueue class supplies
an efficient scalable thread-safe non-blocking FIFO queue” — the specification
of this class also describes memory consistency effects — “As with other con-
current collections, actions in a thread prior to placing an object into a Concur-
rentLinkedQueue happen-before actions subsequent to the access or removal of
that element from the ConcurrentLinkedQueue in another thread.” This pattern
is repeated for all the classes in this package.

In this paper, we study correctness criteria for data structures in the presence
of such memory effects.

– We provide a formalisation of sequential specifications that have been aug-
mented with happens-before information. This augmentation is essential for
compositional reasoning. Classical linearisability does not mention happens-
before information (since it assumes sc). Following [20], we demonstrate by

4 This package contains data structures and utilities for concurrent programming in
Java. See https://docs.oracle.com/javase/9/docs/api/index.html?java/util/

concurrent/package-summary.html.

example that the traditional perspective fails to ensure contextual refinement
for threads that communicate via relaxed memory.

– We define real-time hb-linearisability, strengthening linearisability to pre-
serve happens-before.

– Concurrent programming in Java-like languages eschews a notion of global
time. Rather, the idea is that a programmer specifies ordering constraints by
defining how threads communicate with explicit mechanisms, such as locks,
to ensure that actions taken by one thread would be seen in a reasonable
way by other threads [23]. We define causal hb-linearisability to more directly
model this partial order perspective on executions.

Real-time hb-linearisability is stronger than classical linearisability. As we shall
demonstrate, causal hb-linearisability and real-time hb-linearisability are incom-
parable.

Both notions of hb-linearisability are defined relative to a memory model. For
both, we show that contextual refinement holds for any relaxed memory model
that satisfies the axioms5 of Alglave, Maranget and Tautschnig (AMT) [3], which
are summarised in Section 2. One of our key contributions is the enhancement of
AMT to account for events arising from method invocations and responses (Sec-
tions 4). We show that, under mild assumptions, any linearisable implementation
of concurrent collection must already satisfy the extra happens-before required
by a specification; thus discharging the additional proof obligations incurred
when proving correctness relative to real-time hb-linearisability.

We provide motivational examples in Section 3. The main definitions and
results follow in Sections 4 and 5, respectively.

2 Background: AMT axioms

AMT provide an exhaustive study of relaxed memory models in [3]. Impressively,
they manage to capture the details of several specific architectures (including
TSO, ARMv7 and Power) in a general framework. They provide a list of axioms
that are satisfied by all of the architectures they consider. Fortunately, these
axioms are sufficient to establish our results. In this section, we describe the
core components of this framework; we refer the interested reader to the original
paper [3] for further details.

Let E be a set of events. Each event e is a tuple consisting of a unique
identifier, id(e), a thread identifier, thread(e), an action, and other data. Actions
include memory actions, e.g., reads and writes; other actions are architecture
dependent, including fences. The axioms take as input six relations over E, which
together define an execution.

– po (program order), which defines a total order on the events of each thread.
Events of different threads are unrelated.

5 While we state our results relative to the axioms of Alglave et al., the ideas behind
real-time and causal hb-linearisability can be applied to any other axiomatic memory
model based on partial orders.

– co (coherence order), which is a total order on the writes of each location.
– rf (reads from), which maps writes to reads. Each read must be associated

with exactly one write, but a write may map to more than one read.
– ppo (preserved program order), which is a suborder derived from po by

removing order between events that commute according to the architecture.
– fences, which relates events in po that are separated by a fence.
– prop (propagation order), which relates writes that must propagate to mem-

ory in a particular order.

Program order only relates events of the same thread. All of the other relations
come in “standard” and “external” versions, denoted with a final e. For example
rfe

M
= {(w, r) | (w, r) ∈ rf ∧ thread(w) 6= thread(r)} relates reads that see writes

from a different thread.
The first three relations are execution specific. The remaining relations are

defined by the architecture. Additionally, the axioms use the following derived
relations:

– fr
M
= {(r, w1) | ∃w0.(w0, r) ∈ rf ∧ (w0, w1) ∈ co}, pronounced “from-read”.

Here r is a read, and w1 is a write which must come after r, since r has seen
a write that preceded w1 on the same location.

– hb
M
= ppo ∪ fences ∪ rfe defines “happens-before”, ordering events that are

causally related.

Various architectures can be defined by instantiating these relations in different
ways. On TSO, ppo removes the order between a write and a subsequent read.
Thus TSO is defined by setting ppo = po\WR, fences = mfence, prop = ppo ∪
rfe∪ fr, where WR is the set of all write-read pairs and mfence orders all memory
events before a fence with respect to those after the fence.

Executions must satisfy several sanity conditions. For example, co must be
a partial order relating only writes to the same location, which is a total order
per location. In addition rf is a relation matching each read to a write with the
same value and location. For emphasis, we refer to executions that fulfil these
requirements as sane.

A sane execution is valid if it satisfies the four AMT axioms. By (No-Thin-
Air), causality cannot be cyclic. By (SC-Per-Location), each location taken
separately is sc, where po-loc is po restricted to events on the same location.
By (Observation), events hidden in the causal past cannot be observed. By
(Propagation), writes must be propagated in an order consistent with coher-
ence.

acyclic(hb) (No-Thin-Air)

acyclic(po-loc ∪ co ∪ rf ∪ fr) (SC-Per-Location)

irreflexive(fre; prop; hb∗) (Observation)

acyclic(co ∪ prop) (Propagation)

We write relations using both set and arrow notation; thus (a, b) ∈ po is syn-
onymous with a

po−→ b. We also pun between events and their labels in examples.

3 Linearisability for Weak Memory

The goal of the paper is to distinguish “good” implementations, those that ensure
contextual refinement, from “bad” ones, that do not. In this section, we present
some examples that motivate real-time and causal hb-linearisability as well as the
contextual refinement and compositionality properties that they must guarantee.

3.1 Real-time hb-linearisability

Consider the following code, which uses a lock to coordinate the activities of two
threads.

Init: x, y = 0, 0

Thread α: lock.acq(); x := 1; y := 1; lock.rel();

Thread β: lock.acq(); print "x=" x; print "y=" y; lock.rel();

The abstract specification for a lock will forbid two returns from acq without
an intervening call to rel. From this, a programmer would expect that any
execution of the client running against a correctly implemented lock must print
y=1 whenever it prints x=1.

For sc-memory, one can establish the validity of this reasoning using classical
linearisability. This form of reasoning is unsound, however, for relaxed memory.

To see this, consider the following example, which is a possible execution of
the program using the abstract lock specification executing under TSO memory.
We extend the AMT model to include events denoting method invocation and
response. The invocation of the acquire method is depicted as acq!. The return
of the acquire method is depicted as acq?. The release method is similar.

acq!
ppo // acq?

ppo//Wα(x, 1)
ppo //

rf

��

Wα(y, 1)
ppo // rel!

ppo // rel?

Wι(x, 0),Wι(y, 0) rf

++

ppo 55

ppo))
acq!

ppo
// acq?

ppo
// Rβ(x, 1)

ppo
// Rβ(y, 0)

ppo
//

fr

OO

rel! ppo
// rel?

We show the threads in two rows, with events ordered left to right in program
order. Applying AMT’s framework results in the set of ppo, rf and fr edges be-
tween memory events shown above. Since AMT do not address abstract method
calls, there are no edges into and out of invocation and response events, except
ppo. TSO only relaxes program order between a write and subsequent read.
Hence, in the execution above, all program order between memory events is pre-
served. Here, we have also preserved program order into and out of the method
events — in the next subsection and throughout the paper, we consider other
strategies for handling the interaction of memory and method events.

The execution satisfies all four AMT axioms, and hence is accepted as a valid
execution. However, it clearly violates a programmer’s intuition since it describes
an execution that prints x=1 and then y=0.

Of course the problem here is that the abstract method calls are being ignored
by the memory-model axioms. To remedy this, we must introduce additional

happens-before order that is derived from the abstract specification.6 We specify
this using a specification order, so, which relates each invocation to the responses
that must happen-after that invocation.

If rel! in thread α occurs before acq? in thread β, the programmer should
be able to assume that any event that precedes rel! (in program order) must
happen before any event that follows the corresponding acq?. This should in-
validate the execution above. We repeat that execution below, augmented with
so, showing only the edges relevant to invalidating this execution.

acq! acq? Wα(x, 1) Wα(y, 1)
ppo // rel!

so

tt

rel?

Wι(x, 0),Wι(y, 0)

acq! acq?
ppo
// Rβ(x, 1)

ppo
// Rβ(y, 0)

fr

OO

rel! rel?

With hb extended to include so, the exhibited cycle above contradicts AMT’s
Observation axiom, assuming ppo between a memory and method event is
included in prop. Thus, the execution is considered invalid, as desired.

In Section 4, we formalise the concept of a specification augmented with
happens-before information and describe its effect on a program execution. We
also define real-time hb-linearisability, which is an extension of linearisability that
allows one to distinguish a good implementation of an augmented specification
from a bad one. A good implementation of the lock must be able guarantee
the happens-before relation required by the specification. To reason about such
implementations, we must also enrich the semantics of implementations to relate
method invocation/response events with memory events.

3.2 Causal hb-linearisability

Real-time hb-linearisability is appropriate for tightly coupled systems, such as
current generation multicore processors. In distributed systems, however, the
cost of real-time synchronisation is high, making real-time hb-linearisability
unattractive. We propose causal hb-linearisability as an alternative notion that
requires less synchronisation overhead. Causal hb-linearisability may be appro-
priate for future generation multicore processors: as the number of cores in-
creases, the necessary synchronisation overhead may force these systems to adopt
a looser model (c.f. [28]).

Linearisability requires that the order of non-overlapping methods be pre-
served in the specification. In the literature, this constraint is motivated by
showing that compositionality fails if one requires only that the order of method
calls in each thread be preserved. We reexamine these examples in order to
motivate causal hb-linearisability.

6 In fact, APIs such as java.util.concurrent document the happens-before be-
haviour of the methods using edges from the beginning of one method activation
to the end of another (or a set of others); that is, from call to return.

α1 : q1.enq(1)
ppo // α2 : q2.enq(2)

ppo //

so
))

α3 : q1.deq(2)

β1 : q2.enq(1)
ppo

// β2 : q1.enq(2)
ppo

//
so

55

β3 : q2.deq(2)

Fig. 1. Non-compositional execution

α1 : q1.enq(1)

ppo

++
α2 : q2.enq(2)

so
))

α3 : q1.deq(2)

β1 : q2.enq(1)

ppo

33β2 : q1.enq(2)
so

55

β3 : q2.deq(2)

Fig. 2. Compositional execution

Fig. 1 shows a well-known example [18], with method invocation and response
collapsed into a single atomic event (shown within a box) for simplicity. Here,
threads α and β interact via a pair of queues. The queue specification naturally
imposes hb order between an enqueue and a subsequent dequeue of the same
element; therefore, the figure shows so edges between α2 and β3, as well as
between β2 and α3. In addition, the figure shows the preserved program order
(ppo) between the calls on the two queues in each thread. Recall from Section 2
that ppo ⊆ hb.

If we consider either q1 and q2 in isolation, the execution is linearisable,
since the second enqueue operation for each queue can be considered to have
taken effect first. However, the order for each queue is impossible given the order
between queues. In particular, due to the hb edges when restricting the execution
to a single queue and the FIFO ordering requirement of a queue specification,
the order of operations for q1 must be β2

hb−→ α1
hb−→ α3, while the order for q2

must be α2
hb−→ β1

hb−→ β3. In the full trace, we get a cycle α1
hb−→ α2

hb−→ β1
hb−→ β2

hb−→ α1.

Herlihy and Wing solve this problem by strengthening the definition to re-
quire that linearisability preserve real-time order of non-overlapping method
calls. Thus, the execution of at least one queue in Fig. 1 must be invalidated.

An alternative is to weaken ppo to remove the order between events on inde-
pendent queues. This is analogous to the way events on independent variables
are handled under the ARM and Power memory models. Note that we are free
to make such a choice here, outside of the implementation memory model, since
the ppo order here is at the abstract level between method events. The result is
shown in Fig. 2. Here, α1 and α3 are hb ordered, but α2 is not ordered with re-
spect to either event. In this case composition holds. We formalise this intuition
as causal hb-linearisability in Section 4.

We prove abstraction for both real-time and causal hb-linearisability. The
story for composition is more complex since clients may be obtrusive, enforcing
additional program order between events on different objects. Formally, an ex-
ecution is unobtrusive if it matches a specification string v such that whenever
v = s·a!·a?·t·b!·b?·u and a?

hb−→b! in the execution then a!
so−→b? in the specifica-

tion. A client is unobtrusive if all of its executions are unobtrusive. An obtrusive
client, such as the one in Fig. 1, may place a fence between the method calls, or
use some form of synchronisation to enforce order between them, for example by
writing-to and then reading-from another thread. An unobtrusive client, such as
the one in Fig. 2, must perform no such synchronisation. We show that causal
hb-linearisability satisfies compositionality if the client is unobtrusive.

Obtrusive clients are not problematic if the specification is commutative,
i.e., if for any specification string s · a! · a? · t · b! · b? · u either a!

so−→ b? or
s · b! · b? · t · a! · a? ·u is a specification string. Figs. 1 and 2 show the interaction
of a client with a composite double-queue. A double-queue specification is not
commutative because it does not permit reordering of calls to enq, yet the usual
specification does not contain a happens-before specification among calls to enq.
An example of a commutative specification is a double bag or multi-set where a
call to add is specified to happen-before the corresponding remove, but where all
commutations are permitted between the operations on separate elements. We
show that causal hb-linearisability satisfies compositionality if the specification
is commutative.

4 Traces and Weak-Memory Semantics

In this section we formalise the interaction between a client and a set of objects.
We divide the event set E into four disjoint subsets: Let C be the set of client

events, let O be the set of object events, let I be the set of invocation events and
let R be the set of response events. We use M ⊆ I ∪ R to range over method
events. Like others [15–17], we assume clients and objects only communicate via
the object interface, specified as subset of I ∪R. Thus, clients and objects must
operate over disjoint sets of locations: location(e) 6= location(f) for any e ∈ C
and f ∈ O.

For any relation R ⊆ E× E and set X ⊆ E, let R|X denote the restriction of
R to X, i.e., R|X = R ∩ (X× X).

In order to connect AMT-style executions to specifications, we work with
strings of events, which we refer to as traces7. While our definitions are given
directly in terms of traces, we often use program syntax in examples. It is
straightforward to define a semantics which gives the denotation of programs
as sets of traces, where memory reads and method returns may yield any value.
For example, the semantics of “x:=1;push(5)” is the set {Wα(x, 1) · push!α(5) ·
push?α | α ∈ Threads}. The semantics of “r1:=pop();r2:=x” is the set {pop!β ·
7 Since events include unique identifiers (and therefore cannot repeat), there is an

isomorphism between strings of events and total orders over finite set of events.

pop?β(u) · Rβ(x, v) | β ∈ Threads, u ∈ Values, v ∈ Values}. The semantics of
“x:=1;push(5) || r1:=pop();r2:=x” is any interleaving of these where α 6= β.
Note that both the pop and the read of x may return any value.

In the remainder of this introductory text, we consider method events and
memory events independently: method events relate to specifications and mem-
ory events relate to executions. In the following subsections, we show how these
can be combined, both for abstract and concrete object systems.

First we discuss method events. Rather than modelling specifications using
formal languages such as Larch, Z, or LTL, we model specifications semantically
as sets of strings of method events. Strings provide a total order on the method
events, which is sufficient to capture sequential behaviours. When considering
event strings as specifications, we ignore the thread identifier in events. For
example, the specification of stack includes strings such as push!(5) · push? ·
pop! ·pop?(5). Thus a trace of method events may be seen directly as an element
of a specification, where we ignore thread identifiers. For example, the trace
push!α(5) · push?α · pop!β · pop?β(5) is a valid trace for a stack, whereas neither
push!α(5) · push?α · pop!β · pop?β(1) nor pop!β · pop?β(5) · push!α(5) · push?α is
valid.

We now discuss memory events. From a trace, we can generate AMT execu-
tions as follows.

Definition 1. A tuple (t, co, rf, ppo, fences, prop) is an execution of trace t if
these relations satisfy AMT’s sanity conditions (see Section 2), where program
order is given by pot = {(e, f) | (e, f) ∈ t ∧ thread(e) = thread(f)}.

Let execs(t) be the set of executions of t. We use τ to range over executions.

Note that we require executions to be sane, but do not enforce validity at this
stage. We discuss validity in the following subsections. We usually drop sub-
scripts from order relations, preferring po to pot, etc.

A single trace may give rise to many executions. For example, the pro-
gram “r=x || x:=5 || x:=5” gives rise to a set of traces which includes Rα(x, 5) ·
Wβ(x, 5)·Wγ(x, 5). Executions of this trace may have either Wβ(x, 5)

rf−→Rα(x, 5)
or Wγ(x, 5)

rf−→Rα(x, 5). This program also gives rise to traces such as Rα(x, 1) ·
Wβ(x, 5) ·Wγ(x, 5), which has no executions, since the read can not be fulfilled
by any write.

The trace order of events from the same thread determines program order;
however, the trace order between events from different threads is ignored. If α 6=
β, then the traces Rα(x, 5)·Wβ(x, 5) and Wβ(x, 5)·Rα(x, 5) generate exactly the
same executions, modulo the trace itself, as do push!α(5)·push?α ·pop!β ·pop?β(5)
and pop!β · pop?β(5) · push!α(5) · push?α.

4.1 Clients with object specifications

We now discuss the semantics of client-object systems, where object behaviours
are described by a specification. In terms of condition (†) from the introduction,
this section formalises the behaviours of C[AS]. As discussed in Section 3, it

is important for specifications to provide happens-before guarantees to client
programs to enable writes to propagate in the correct order.

Example 2. Consider the program “x:=5;push(5) || r1:=pop();r2:=x”. If vari-
able x is initialised to 0, then the following is a trace of this program:

Wι(x, 0) ·Wα(x, 5) · push!α(5) · push?α · pop!β · pop?β(5) · Rβ(x, 0)

There are valid AMT executions of this trace. Here the thread β returns a
value 0 for x, missing the value 5 written by thread α, even if we assume that
the memory model guarantees Wι(x, 0)

hb−→Wα(x, 5). We wish to disallow such
traces via extra happens-before orders introduced via the stack specification. In
particular, we enhance the specification with an additional ordering relation that
ensures each push is hb ordered before the corresponding pop. When used in a
client program, we assume that such an enhanced specification induces additional
order, namely that it ensures Wα(x, 5)

hb−→ Rβ(x, 0). Now, if the memory model
ensures Wι(x, 0)

hb−→Wα(x, 5) the trace becomes invalid, as intended. ut
In order to encode happens-before information, we take a specification string

to be pair consisting of a string of method events, h, and a specification-based
happens-before order so, relating events in h. For example, in the stack specifi-
cation h = push!(5) · push? · pop! · pop?(5), we expect that push!(5)

so−→ pop?(5).
Various choices of so are possible. The Java concurrency APIs specify that each
push happens-before the corresponding pop. Many concurrent implementations
actually give stronger guarantees, which could be included in the specification if
one wished. For example, a Trieber stack guarantees that a push happens-before
the matching pop and every subsequent pop. If this specification were adopted,
the client programmer would be able to make stronger assumptions. Our results
are parametrised by a chosen specification.

In the following definition, we recall that M ⊆ I ∪ R is the set of method
events, and require that so only relate invocations to responses. In addition, so
must be consistent with h.

Definition 3 (Specification). A specification is a pair (M, H), where H ⊆
2M×M × 2I×R such that for each (h, so) ∈ H, h is a total order and so ⊆ h.

We now define what it means for a client to interact with an abstract speci-
fication: When projected to client events, we must have a sane AMT execution.
When projected to method events, we must have a specification string.

Definition 4 (Client-specification execution). Let AS = (M, H) be a spec-
ification, C be a client and t ∈ (M ∪ C)∗ be a trace of C[AS]. We say that the
tuple (t, co, rf, ppo, fences, prop) is a client-specification execution for so iff

– (t|C, co, rf, ppo, fences, prop) ∈ execs(t|C), where t|C is the trace t restricted
to elements in C, and

– so ⊆ I× R is an order such that (t|M, so) ∈ H.

A valid client-specification execution must satisfy the AMT axioms, where
method events are included in the happens-before relation by lifting so to relate
memory events ordered by po; so; po.

Definition 5 (Valid client-specification execution). A client-specification
execution for so is valid iff the AMT axioms hold with hb

M
= ppo∪fences∪rfe∪hbs,

where

hbs = {(e, e′) ⊆ C× C | ∃i ∈ I, r ∈ R. e po−→t i ∧ i
so−→ r ∧ r po−→t e

′}.

4.2 Client-implementation traces

We now describe the meaning of a client that executes with an implementation
object. In terms of condition (†) from the introduction, this section formalises
the behaviours of C[CS]. One can interpret a client interaction with a concrete
object system as an execution by simply removing method events. For example,
if s is the sequence of memory events implementing push, and t is the sequence
of memory events implementing pop, then the following is a concrete trace of
the program in Example 2:

Wι(x, 0) ·Wα(x, 5) · push!α(5) · s · push?α · pop!β · t · pop?β(5) · Rβ(x, 0).

One could say that this trace is valid exactly if Wι(x, 0) ·Wα(x, 5) · s · t ·Rβ(x, 0)
is valid, i.e., the trace with method events removed. While sufficient for some
purposes, any connection with the abstract object system is lost. In this sec-
tion we describe how to integrate method actions into concrete executions so
as to support a notion of operational refinement between concrete and abstract
systems.

In general, a terminating thread of a client/object interaction has the form
C∗(IO∗RC∗)∗: the client may perform memory actions in C until it invokes a
method, giving control to the object; the object then may perform memory
actions O until it returns, giving control back to the client8. In executions of
concrete traces, method events are placeholders, which should have no memory
effects themselves. Any memory effects should arise from the concrete implemen-
tation. Thus we expect that empty methods should have no effects in a concrete
system. More generally, our definition should support method inlining.

The problem boils down to which po edges between method events and mem-
ory events should be preserved in ppo, and therefore hb. Since method events
denote the boundary between client events and object events, there are two sets
of edges to consider:

(1) po edges between M and C, and
(2) po edges between M and O.

We cannot preserve both (1) and (2). To see why, consider the trace t below,
where c, c′ ∈ C, i ∈ I, r ∈ R and o, o′ ∈ O are events of the same thread:

c
t // i

t // o t // . . . o′
t // r t // c′

8 Recall from the beginning of this section O and C range over disjoint sets of memory
locations.

The preserved po edges must not introduce any new ppo order between c and
o that is not present in the memory model since the invocation i, in isolation,
cannot affect memory. In other words, if both c

po−→ i and i
po−→ o were preserved,

this would ultimately create a transitive happens-before edge between c and o,
disallowing them from being reordered even in a memory model that doesn’t
enforce this restriction. For example, in TSO, we may have c = W (z, 1) and o =
R(x, 2), which may be reordered; introduction of a method invocation between
c and o should not prevent the reordering from occurring.

We must also preserve (1) and (2) in such a way that we are able to decouple
object correctness (hb-linearisability) from contextual refinement. Our solution is
to always preserve (1), resulting in a set of edges cio (client-interface order), and
conditionally preserve (2), resulting in a set of edges oio (object-interface order).
The intention is to introduce both cio and oio into an extended hb ordering.

To justify our choices, consider the abstract trace s, given below, which shows
a client interacting with an abstract specification object. The actions cα and cβ
are client actions of separate threads, α and β.

cα
s //

po
;;

hbs

((
iα

s //

so

55rα
s // iβ

s // rβ s //

po
;;
c′β

Assume that the specification requires so between iα and rβ . Thus, by Defini-
tion 5, for any execution of s, we must have an hbs edge between client events cα
and c′β . This (again by Definition 5) means that we have cα

hb−→ c′β since hbs ⊆ hb.
Suppose we wish to determine whether the trace t below is a contextual

refinement of s.

cα
t // iα

t // o1α
t // o2α

t // rα
t // iβ

t // o3β
t // o4β

t // rβ t // c′β

Among other things, we must be able to guarantee cα
hb−→ c′β for any execution

of t (see Definition 9) since this order is present in the specification.
An implementation of the sequential object can take us part of the way

there by ensuring hb between object events. Suppose for our example that the
implementation guarantees o2α

hb−→ o3β . This, together with the fact that we
always preserve (1), results in an execution of the following form:

cα
t //

cio

;; iα
t // o1α

t // o2α
t //

hb

44rα
t // iβ

t // o3β
t // o4β

t // rβ t //

cio

;;
c′β

Note that the hb above is introduced via AMT’s standard conditions described
in Section 2, i.e., without taking invocations and responses into account.

To complete the hb chain from cα to c′β , we require edges from iα to o2α
and from o3β to rβ . The condition for preserving (2) is as follows. Suppose o is
an object event. We preserve program order from an invocation i to o if after
replacing the action in i with an arbitrarily chosen memory action to obtain
an event i′, the relation ppo ∪ fences orders i′ before o. The case for ordering o

before a response event is similar. Since an arbitrary memory action is ordered
before o, any client memory action that occurs before i in t must also be ordered
with respect to o. Moreover, these conditions are independent of any specific
client, and hence our treatment allows one to reason about the properties of the
concurrent object (e.g., hb-linearisability) in isolation, relying on our abstraction
theorem to guarantee contextual refinement.

Suppose for our example that o2α and o3β do indeed satisfy the conditions
described above. Our execution thus becomes:

cα
t //

cio

;; iα
t //

oio

66o1α
t // o2α

t //

hb

44rα
t // iβ

t // o3β
t //

oio

66o4β
t // rβ t //

cio

;;
c′β

The presence of the oio edge to o2β means that any client memory event of
α that precedes iα in program order must also be ordered with o2β (since an
arbitrary action was considered when constructing oio). Since we do not have an
oio edge to o1α, it would be possible to reorder cα with o1α if the memory model
semantics permits the reordering. (The same applies to o4β and c′β .) Thus, we
have only introduced as much order as necessary.

Example 6. Consider TSO, and suppose cα = Wα(x, 1), o1α = Rα(y, 2) and
o2α = Wα(z, 4). We do not have iα

oio−−→ o1α since for TSO, ppo = po\WR.
However, we do have iα

oio−−→ o2α. The program under TSO could reorder cα
and o1α, but would never reorder cα and o2α. Now suppose o1α = fence and
o2α = Rα(y, 3). Again, we have iα

oio−−→ o2α, but in this instance, the order from
iα is generated by the fence.

We now formalise both orders in the context of an extended execution, i.e.,
an execution extended with orders cio and oio. Such a definition is necessary
because the definition of oio requires relabelling of invocation actions within a
trace. In the definition below, we let relabel(e, a) denote the event e with its
action relabelled to a, labels(e) = {relabel(e, a) | a is a memory action} denote
the set of all possible relabelings of e and t[e′/e] denote the trace t with event e
replaced by e′.

Definition 7 (Client-implementation execution). For a trace t, we say
that the tuple (t, co, rf, ppo, fences, prop, cio, oio) is a client-implementation exe-
cution iff the (t|(C ∪O), co, rf, ppo, fences, prop) ∈ execs(t|(C ∪O)), and

cio = pot ∩ ((C× I) ∪ (R× C))

oio = {(i, o) ∈ I×O | IO(t, i, o)} ∪ {(o, r) ∈ O× R | OR(t, o, r)}

where IO and OR are defined as follows.

IO(t, i, o) = ∀i′ ∈ labels(i). ∀τ ∈ execs(t[i′/i] | (C ∪O ∪ {i′})). i′ ppo∪fences−−−−−−→τ o

OR(t, o, r) = ∀r′ ∈ labels(r). ∀τ ∈ execs(t[r′/r] | (C ∪O ∪ {r′})). o ppo∪fences−−−−−−→τ r
′

In this definition, e
ppo∪fences−−−−−−→τ f denotes (e, f) ∈ ppoτ ∪ fencesτ , recalling that

ppoτ and fencesτ are the ppo and fences relations of the execution τ , respectively.

Within IO(t, i, o), for any i′ obtained by replacing the action in i with a memory
action, and any execution τ of the trace t with i replaced by i′ restricted to
C∪O∪ {i′}, we have that i′ is ordered before o with respect to ppoτ or fencesτ .
The predicate OR(t, i, o) is similar.

Definition 8 (Valid client-implementation execution). We say client-im-
plementation execution is valid iff the AMT axioms hold, where hb

M
= ppo ∪

fences ∪ rfe ∪ cio ∪ oio.

Our notion of contextual refinement is based purely on the observations that
a client makes over the memory and object states. Thus, it simply ensures that
every valid execution of the client when using the implementation object is a
possible execution of the client when it uses the specification object.

Definition 9 (Contextual refinement). Suppose t is a trace of C[CS] and s
is a trace of C[AS]. We say t contextually refines s (denoted s v t) iff

– t|C = s|C,
– whenever (t, co, rf, ppo, fences, prop, cio, oio) is a valid client-implementation

execution, (s, co|C, rf|C, ppo|C, fences|C, prop|C) is a valid client-specification
execution.

The first condition requires that s and t restricted to client events are equal (i.e.,
they have the same denotational behaviour), whereas the second requires that a
valid execution of t can be restricted to form a valid execution of s. In particular,
if t is valid, then s must also be valid.

Contextual refinement is lifted to the level of programs in the standard man-
ner. We say C[AS] is contextually refined by C[CS], denoted C[AS] v C[CS], iff
for every valid trace t of C[CS], there exists a valid trace s of C[AS] such that
s v t. We say AS is contextually refined by CS , denoted AS v CS iff for any
client C, we have C[AS] v C[CS].

4.3 Implementation objects and happens-before linearisability

In this section, we formalise the correctness expectations on an implementation
object in terms of a sequential specification. The notions we develop are based
on linearisability. In the context of weak memory, we show that linearisability
is not sufficient: additional requirements must be enforced. At the same time,
weak memory makes it natural to look at notions of linearisability that do not
strictly enforce realtime order. In terms of (†), this section formalises the sorts
of behaviours CS must satisfy in order to prove the abstraction property.

Linearisability in a weak memory setting must preserve the happens-before
order of an abstract specification. An implementation trace comprises client/ob-
ject memory events as well as invocation/response events of object operations.
From the perspective of an object, invocation/response events abstractly repre-
sent a client’s memory events in program order. Thus preserved program order
between object memory events and invocation/response events are execution
specific, and introduced into the happens-before order of a trace.

The final component of hb-linearisability is a restriction on how invocations
and responses can be (re)ordered. In a weak memory setting there is more than
one potential restriction. Two of these are to: (a) order operation calls according
to their real-time program order (real-time hb-linearisability), and (b) order op-
eration calls according to their happens-before order (causal hb-linearisability).
Choice (a) is closer to Herlihy and Wing’s original definition, while (b) is closer
to an ordering one might expect in a weak-memory setting.

In the definition below, like linearisability [19], since operations may take
effect before they return, we allow histories to be extended by adding matching
responses to operations that have been invoked but not yet returned.

Definition 10. A valid client execution is real-time hb-linearisable with respect
to (h, so) iff it can be extended to an execution of some trace t with happens-before
relation hb such that the following holds:

∀α ∈ Threads. [t|α|(I ∪ R) = h|α] ∨
[∃i ∈ I. t|α|(I ∪ R) = (h|α) · i]

(Permutation)

∀i ∈ I, r ∈ R. r t−→ i⇒ r
h−→ i (RTO-Preservation)

∀i ∈ I, r ∈ R. i so−→ r ⇒ i
hb−→ r (HB-Satisfaction)

An execution is linearisable with respect to a specification AS = (M, H) if it is
linearisable for some (h, so) ∈ H.

Conditions (Permutation) and (RTO-Preservation) are equivalent to Her-
lihy and Wing’s original requirements for linearisability [19]. Thus, hb-linearisability
implies standard linearisability. Condition (HB-Satisfaction) ensures that the
order between invocations and responses (of different operations) expected by
the specification is respected by the happens-before order in the implementation.

Definition 11. Causal hb-linearisability differs from real-time hb-linearisability
only in that condition (RTO-Preservation) is replaced by:

∀i ∈ I, r ∈ R. r hb+−−→ i⇒ r
h−→ i (HB-Preservation)

Real-time and causal hb-linearisability are incomparable since po and hb+ are
incomparable. The differences between these requirements are shown in Figs. 3-6.
In Fig. 3, the execution is considered to be sequential according to both con-
ditions, but in the second example, the method calls are causally ordered in a
different order to real-time order. In Fig. 4, both executions are concurrent ac-
cording to real-time order, but sequential according to causal order, in Fig. 5
the operations are considered to be concurrent according to both orders, and in
Fig. 6 the execution is real-time sequential, but causally concurrent.

Consider the following simplified version of the queue example from Sec-
tion 3.2.

Example 12. A two-place buffer has operations put1, put2, get1 and get2. The
sequential specification states that a call to geti must return the argument given
on the most recent call to puti. If we follow the model of the data structures
in java.util.concurrent, the expected happens-before relation is that puti

m1!
t // m1?

t //

hb+

��
m2!

t // m2?

m1!
t // m1?

t // m2!
t // m2?

hb+

jj

Fig. 3. Real-time and causal sequential

m1!
t // m2!

t // m1?
t //

hb+

��
m2?

m1!
t // m2!

t // m1?
t // m2?

hb+

jj

Fig. 4. Real-time concurrent, causal
sequential

m1!
t // m2!

t // m1?
t // m2?

Fig. 5. Real-time and causal concurrent

m1!
t // m1?

t // m2!
t // m2?

Fig. 6. Real-time sequential, causal
concurrent

happens-before any geti that returns a matching value. In particular, note that
there is no happens-before expectation between put1 and get2.

It is possible to implement the two-place buffer using independent synchro-
nisation variables. Supposing that the buffer initially holds zeros, the client

Thread α: put1(5); get2()

Thread β: put2(5); get1()

can return zero for both calls to get. This execution is correct with respect to
causal hb-linearisability, but not with respect to real-time hb-linearisability.

We now turn our attention to the cases when the two notions coincide: Real-
time hb-linearisability and causal hb-linearisability coincide if for the execution
τ ∈ execs(t) under consideration hb+ = t. In particular, for the sc memory
model, real-time and causal hb-linearisability coincide.

We simply use the term hb-linearisability whenever we do not distinguish
between real-time and causal hb-linearisability. The next definition lifts hb-
linearisability to the level of objects in the standard manner.

Definition 13 (hb-linearisable implementation). We say that an object CS
is an hb-linearisable implementation of specification AS = (M, H) if for all
clients C, and all valid executions τ of C[CS], τ is hb-linearisable with respect
to some (h, so) ∈ H.

4.4 Establishing hb-linearisability

In this section, we demonstrate that for some implementations it is no more diffi-
cult to establish hb-linearisability than it is to establish standard linearisability.
Of course, establishing standard linearisability on a relaxed memory model is
still more difficult than under sc memory.

For example, in the Treiber stack algorithm, each method call must perform
a compare-and-set operation on a single memory location, representing the top
of the stack. The order of successful CAS operations is the linearisation order

used to establish linearisability. It also establishes happens-before between the
call of a method and the return of every method that follows it in linearisation
order, assuming that CAS is given acquire/release semantics, as in Java and
TSO.

We can establish a similar result for any classically linearisable implementa-
tion of a collection class, under one of two assumptions:

– there is a memory fence at beginning of every mutator method and at the
end of every accessor method, or

– data values are stored in memory locations with acquire/release semantics.

In the remainder of this section, we establish that, in either case, a classically
linearisable collection already satisfies the happens-before requirements of the
Java collections API.

A collection class refers to common data structures such as Stacks, Queues,
Lists, Trees that are containers of elements of objects of a given type. In the rest
of this discussion, we pick Stack as the example; however, our discussion applies
equally well to the other examples. We use the happens-before semantics of the
Java collections classes.

Recall that the signature of a Stack<T> of elements of type T is given by void

push(T), T pop(), T top() and boolean isEmpty(). The happens-before re-
quirement is carried by the objects of type T, i.e. there is a happens-before edge
to the return of any pop or top from the invocation of the corresponding push.
Notably, there are no happens-before requirement between different push or dif-
ferent pop methods.

Consider an implementation I of Stack<T>. We say that I is generic if the
operations that it performs on values of type T are restricted to load, and store.
All classical Stack (indeed, collection!) algorithms, such as Treiber stack, follow
this discipline. We call such implementations generic because such an imple-
mentation treats type T as abstract, only writing and reading the values, thus
eschewing any operation that exploit the structure of type T. The correctness of
I is implied by studying the traces that restrict the push methods to be of form
push(new T()), i.e. every push is of a new object reference that has not been
seen thus far9.

In such a restricted trace, it is immediately clear that there is a location that
is written by push(o) that is also read by a pop or top method that returns
o, since the argument to the push is a new reference. Since the AMT axioms
ensure that reads-from is always contained in happens-before, this ensures that

9 The proof of this fact is inspired by proofs of information flow. In an execution trace
of I, consider the locations partitioned into “low” locations L that store values not
of type T and “high” locations H that store values of type T. Two memories (L1,H1)
and (L2,H2) are related by E if they agree on their “low” parts. By the restrictions
on generic implementations, any program statement in a generic implementation
preserves the E relationship of memories. Thus, in order to validate I, it suffices to
consider the execution traces where pushes are restricted to have new references as
parameters.

any classically linearisable generic implementation of Stack will always have the
required happens-before to pop or top from the corresponding push.

5 Abstraction and compositionality

Having established the formal definitions of real-time and causal hb-linearis-
ability, we now turn to their contextual guarantees. That is, we return to our
questions originally raised in Sections 1 and 3.

Our first theorem and its associated corollary establishes trace abstraction
(or contextual refinement) for (real-time and causal) hb-linearisability. That is,
if the implementation object under consideration satisfies hb-linearisability with
respect to the corresponding abstract object, any (observable) client behaviour
when it uses the implementation is a possible behaviour when it uses the abstract
specification.

Theorem 14. Suppose t is a trace of C[CS]. If for any τ ∈ execs(t), τ is hb-
linearisable with respect to AS, then there exists a valid trace s of C[AS] such
that s v t.

The proof of the theorem amounts to showing that assuming object calls of
t are hb-linearisable with respect to an abstract history h then, there is a valid
trace t′ that is a permutation of t such that: all calls in t′ are atomic and in the
order given by h.

Corollary 15. If CS is an hb-linearisable implementation of AS, then AS v
CS.

Following Herlihy and Wing, we say hb-linearisability is compositional if two
objects that individually satisfy hb-linearisability together satisfy hb-linearisabil-
ity. For simplicity, we define (and verify) the compositionality property for two
objects. This trivially generalises to a composition result for n objects. For causal
hb -linearisability, recall the notion of commutative specification and unobtrusive
client from Section 3.2.

Theorem 16. Let AS = (I ∪ R, H) be a specification. Suppose I = I1] I2 and
R = R1]R2, such that for each (h, so) ∈ H, ((R2×I1)∩so) = ∅∧((R1×I2)∩so) =
∅. For i ∈ {1, 2}, let Mi = Ii ∪ Ri and AS i = (Mi, H|Mi) be the specification
restricted to Mi, where H|Mi = {(h|Mi, so|Mi) | (h, so) ∈ H}.

Consider a trace t of C[CS 1,CS 2] and τ ∈ execs(t).

– If τ is real-time hb-linearisable with respect to each AS i, then τ is real-time
hb-linearisable with respect to AS.

– If τ is causal hb-linearisable with respect to each AS i and both AS1 and AS 2

are commutative, then τ is causal hb-linearisable with respect to AS.
– If τ is causal hb-linearisable with respect to each AS i and C is unobtrusive,

then τ is causal hb-linearisable with respect to AS.

The assumption ((R2 × I1) ∩ so) = ∅ ∧ ((R1 × I2) ∩ so) = ∅ ensures that AS can
be projected onto two independent objects. It is possible to generalise this by
assuming that clients ensure any “cross-object” happens-before requirements in
AS . However, such a theorem is more complicated to state formally and hence
has been omitted for space reasons.

The consequences of compositionality for real-time hb-linearisability, are sim-
ilar to those that Herlihy and Wing observed for standard linearisability: we need
only add that no so-order is lost when we combine independent suborders.

The results for causal hb-linearisability are less familiar. Consider the commu-
tative specification of a bag, where each remove happens-after the corresponding
add; the second clause of Theorem 16 establishes that two disjoint causal hb-
linearisable bags may be combined to produce a “larger” hb-linearisable bag.
Next, consider a double queue, as in section 3.2; if we can partition the client
into independent, non-synchronising thread groups, such that each group only
interacts with a single queue, then the third clause of the theorem tells us that
executions of the client with the double queue will be causal hb-linearisable.

6 Conclusion

This paper has developed two modified notions of linearisability for weak mem-
ory models based on partially ordered notions of execution. These address the
inability of standard linearisability [19] to ensure that programmer expectations
about the happens-before relations are met by the objects used (see Section 3).
Our work has been integrated with the Alglave et al’s (AMT) memory model
axioms [3], permitting it to uniformly address a variety of memory models. We
enhance the axioms of AMT to address abstract objects, invocation/response
events of concrete implementations and the consequent modelling of additional
happens-before order for both abstract and implementation levels.

We provide two alternative definitions. Our first extension, real-time hb-
linearisability, simply adds an additional condition by requiring that the happens-
before requirement of the abstract specification is appropriately reflected by the
implementation. The second, causal hb-linearisability, additionally replaces the
real-time order preservation property by a happens-before order preservation
property. We establish composition and abstraction for our two definitions of
linearisability.

The results in this paper advance the state of the art in the following ways:
firstly, we obtain a contextual refinement theorem and a composition theorem.
Secondly, we build on the framework for memory models created by Alglave et
al [3]; so our approach is generic, and applicable to any weak memory model
that is encompassed by [3], so we are also able to address TSO, C11 release-
acquire, ARM and POWER. Thirdly, our framework permits us to explore both
global-time and partial-order time variants of the definition of linearisability.

Related work. Since its introduction by Herlihy and Wing [19], linearisability has
emerged as the de-facto criterion for correctness of concurrent objects. We refer

the reader to our survey article [13] for a detailed overview and bibliography
of the large amount of research into the verification of linearisability. These
investigations were carried out in the context of sequential consistency. Below,
we discuss the most closely related papers that explore linearisability in the
context of relaxed memory.

The study of linearisability, in the presence of relaxed memory was initiated
by Burckhardt et al. [7]. This study was carried out for the TSO memory model.
The key idea behind this paper is the association of a separate notion of atomic
update of memory to a method call in addition to the usual notion of an atomic
execution of the method. Thus, a methods is not atomic in this perspective. In
our presentation, the happens before relation in the specification describes the
requirements of memory visibility on the implementation. In order to prove hb-
linearizability, these requirements have to be established, though we have seen
that in some cases this proof is immediate.

A notion of linearisability based on transforming sc histories by delaying
returns to an associated flush event has also been explored [14, 10], allowing
abstractions to remain atomic. Separately, working in the TSO memory model,
Doherty and Derrick [12] study a weakening of linearisability using commutations
allowed by the specification. In [9], motivated in part by hardware architectures
such as Power and ARM, Derrick and Smith provide a framework for defining
linearisability in relaxed memory models by allowing the observable order of the
execution to be weaker (and hence different) from the full program order. The
causal hb-linearisability definition of our paper follows the intuitions of [9]. In this
paper, we identify the observable order in the context of AMT models. Since the
AMT models provide a rich framework of relations to describe architectures, our
methods apply to a wide class of architectures, thus including TSO, Power, and
ARM. Our results also apply to the recent ARM8 proposal [24, 8] by identifying
the “observed-before” order of that formalisation as the causal order.

Contextual refinement for the C11 memory model is studied by Batty et al. [4].
They consider histories of events constructed using guarantees and deny rela-
tions [11] — guarantees describe happens-before representing synchronisations
internal to a library, whereas denies describe orders that cannot be enforced by
a client due to the internal synchronisations within a library.

The use of happens-before in specifications to aid abstraction based reasoning
has appeared in our prior paper [20]. We provided an order theoretic enhance-
ment of linearisability that addresses TSO, PSO as well as JMM.

In this paper, we have been inspired by a simplified version of [4] (as spe-
cialised to handle the release-acquire atomics of C11) and the methods in our
own prior paper [20]. In common with [20, 4, 10] and in contrast to [7], our defini-
tions maintain the classical atomic and instantaneous view of method executions
in linearisability. In common with all the above papers, we prove abstraction re-
sults. In common with [4], but in contrast with [7], we also prove composition
results.

Acknowledgements. We thank our anonymous reviewers, whose comments have
helped improve this paper.

References

1. Adve, S.V., Boehm, H.J.: Memory models: a case for rethinking parallel languages
and hardware. Commun. ACM 53, 90–101 (2010)

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer 29(12), 66–76 (1996)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

4. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: POPL. pp. 235–248. ACM (2013)

5. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL. pp. 55–66. ACM (2011)

6. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Gupta, R., Amarasinghe, S.P. (eds.) PLDI. pp. 68–78. ACM (2008)

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) ESOP. LNCS, vol. 7211,
pp. 87–107. Springer (2012)

8. Deacon, W.: Arm64 cat file. https://github.com/herd/herdtools7/commit/

daa126680b6ecba97ba47b3e05bbaa51a89f27b7 (2017)

9. Derrick, J., Smith, G.: An observational approach to defining linearizability on
weak memory models. In: FORTE. pp. 108–123 (2017)

10. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: IFM. LNCS, vol. 8739, pp. 341–356. Springer (2014)

11. Dodds, M., Feng, X., Parkinson, M.J., Vafeiadis, V.: Deny-guarantee reasoning.
In: Castagna, G. (ed.) ESOP. LNCS, vol. 5502, pp. 363–377. Springer (2009)

12. Doherty, S., Derrick, J.: Linearizability and causality. In: SEFM. LNCS, vol. 9763,
pp. 45–60. Springer (2016)

13. Dongol, B., Derrick, J.: Verifying linearisability: A comparative survey. ACM Com-
put. Surv. 48(2), 19 (2015)

14. Dongol, B., Derrick, J., Smith, G., Groves, L.: Defining correctness conditions for
concurrent objects in multicore architectures. In: Boyland, J.T. (ed.) ECOOP.
LIPIcs, vol. 37, pp. 470–494. Dagstuhl (2015)

15. Dongol, B., Groves, L.: Contextual trace refinement for concurrent objects: Safety
and progress. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM. LNCS, vol. 10009,
pp. 261–278 (2016)

16. Filipović, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51-52), 4379–4398 (2010)

17. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP(2). LNCS, vol. 6756, pp. 453–465 (2011)

18. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morg. Kauf.
(2008)

19. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

20. Jagadeesan, R., Petri, G., Pitcher, C., Riely, J.: Quarantining weakness - composi-
tional reasoning under relaxed memory models (extended abstract). In: Felleisen,
M., Gardner, P. (eds.) ESOP. LNCS, vol. 7792, pp. 492–511. Springer (2013)

21. Lamport, L.: How to make a correct multiprocess program execute correctly on a
multiprocessor. IEEE Trans. Computers 46(7), 779–782 (1979)

22. Liang, H., Hoffmann, J., Feng, X., Shao, Z.: Characterizing progress properties of
concurrent objects via contextual refinements. In: D’Argenio, P.R., Melgratti, H.C.
(eds.) CONCUR. LNCS, vol. 8052, pp. 227–241. Springer (2013)

23. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL ’05. pp.
378–391 (2005)

24. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying arm
concurrency: Multicopy-atomic axiomatic and operational models for armv8. In:
POPL (2018), to appear

25. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding power
multiprocessors. In: PLDI. pp. 175–186. ACM (2011)

26. Sevćık, J.: Program Transformations in Weak Memory Models. PhD thesis, Labo-
ratory for Foundations of Computer Science, University of Edinburgh (2008)

27. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

28. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011)

29. Smith, G., Winter, K.: Relating trace refinement and linearizability. Formal As-
pects of Computing pp. 1–16 (2017)

