The Leaky Semicolon

Compositional Semantic Dependencies for Relaxed-Memory Concurrency

ALAN JEFFREY, Roblox, USA

JAMES RIELY, DePaul University, USA

MARK BATTY, University of Kent, UK

SIMON COOKSEY, University of Kent, UK

ILYA KAYSIN, JetBrains Research, Russia and University of Cambridge, UK
ANTON PODKOPAEV, HSE University, Russia

Program logics and semantics tell a pleasant story about sequential composition: when executing (S1;S2),
we first execute S then Sp. To improve performance, however, processors execute instructions out of order,
and compilers reorder programs even more dramatically. By design, single-threaded systems cannot observe
these reorderings; however, multiple-threaded systems can, making the story considerably less pleasant. A
formal attempt to understand the resulting mess is known as a “relaxed memory model” Prior models either
fail to address sequential composition directly, or overly restrict processors and compilers, or permit nonsense
thin-air behaviors which are unobservable in practice.

To support sequential composition while targeting modern hardware, we enrich the standard event-based
approach with preconditions and families of predicate transformers. When calculating the meaning of (S1;S2),
the predicate transformer applied to the precondition of an event e from S, is chosen based on the set of
events in S; upon which e depends. We apply this approach to two existing memory models.

CCS Concepts: » Theory of computation — Parallel computing models; Preconditions.

Additional Key Words and Phrases: Concurrency, Relaxed Memory Models, Pomsets, Preconditions, Predicate
Transformers, Multi-Copy Atomicity, Arm8, C11, Thin-Air Reads, Compiler Optimizations

ACM Reference Format:

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky
Semicolon: Compositional Semantic Dependencies for Relaxed-Memory Concurrency. Proc. ACM Program.
Lang. 6, POPL, Article 54 (January 2022), 68 pages. https://doi.org/10.1145/3498716

1 INTRODUCTION

Sequentiality is a leaky abstraction [Spolsky 2002]. For example, sequentiality tells us that when
executing (71 :=x; y :=ry), the assignment r; :=x is executed before y :=r,. Thus, one might rea-
sonably expect that the final value of r; is independent of the initial value of ;. In most modern
languages, however, this fails to hold when the program is run concurrently with (s:=y; x:=s),
which copies y to x.

In certain cases it is possible to ban concurrent access using separation [O’Hearn 2007], or to ac-
cept inefficient implementation in order to obtain sequential consistency (SC) [Marino et al. 2015].

Authors’ addresses: Alan Jeffrey, Roblox, Chicago, USA, ajeffrey@roblox.com; James Riely, DePaul University, Chicago,
USA, jriely@cs.depaul.edu; Mark Batty, University of Kent, Canterbury, UK, m.j.batty@kent.ac.uk; Simon Cooksey, Uni-
versity of Kent, Canterbury, UK, simon@graymalk.in; Ilya Kaysin, JetBrains Research, Russia and University of Cambridge,
Cambridge, UK, ik404@cam.ac.uk; Anton Podkopaev, HSE University, Saint Petersburg, Russia, apodkopaev@hse.ru.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART54

https://doi.org/10.1145/3498716

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0001-6342-0318
HTTPS://ORCID.ORG/0000-0002-8731-1463
HTTPS://ORCID.ORG/0000-0001-7053-4364
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
https://doi.org/10.1145/3498716
https://orcid.org/0000-0001-6342-0318
https://orcid.org/0000-0002-8731-1463
https://orcid.org/0000-0001-7053-4364
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3498716

54:2 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

When these approaches are not available, however, the humble semicolon becomes shrouded in
mystery, covered in the cloak of something known as a memory model. Every language has such
a model: For each read operation, it determines the set of available values. Compilers and runtime
systems are allowed to choose any value in the set. To allow efficient implementation, the set must
not be too small. To allow invariant reasoning, the set must not be too large.

For optimized concurrent languages, it is surprising difficult to define a model that allows com-
mon compiler optimizations and hardware reorderings yet disallows nonsense behaviors that don’t
arise in practice. The latter are commonly known as “thin-air” behaviors [Batty et al. 2015]. There
are only a handful of solutions, and all have deficiencies. These can be classified by their approach
to dependency tracking (from strongest to weakest):

e Syntactic dependencies [Boehm and Demsky 2014; Kavanagh and Brookes 2018; Lahav et al.
2017; Vafeiadis and Narayan 2013]. These models require inefficient implementation of re-
laxed access. This is a non-starter for safe languages like Java and JavaScript, and may be an
unacceptable cost for low-level languages like C11.

o Semantic dependencies [Chakraborty and Vafeiadis 2019; Cho et al. 2021; Jagadeesan et al.
2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005]. These models compute depen-
dencies operationally using alternate worlds, making it impossible to understand a single
execution in isolation; they also allow executions that violate temporal reasoning (see §9).

e No dependencies, as in C11 [Batty et al. 2015] and JavaScript [Watt et al. 2019]. This allows
thin-air executions.

These models are all non-compositional in the sense that in order to calculate the meaning of any
thread, all threads must be known. Using the axiomatic approach of C11, for example, execution
graphs are first constructed for each thread, using an operational semantics that allows a read to see
any value. The combined graphs are then filtered using a set of acyclicity axioms that determine
which reads are valid. These axioms use existentially defined global relations, such as memory
order (mo), which must be a per-location total order on write actions.

Part of this non-compositionality is essential: In a concurrent system, the complete set of writes
is known only at top-level. However, much of it is incidental. Two recent models have attempted
to limit non-compositionality. Jagadeesan et al. [2020] defined Pomsets with Preconditions (PwP),
which use preconditions and logic to calculate dependencies for a Java-like language. Paviotti
et al. [2020] defined Modular Relaxed Dependencies (MRD), which use event structures to calculate
a semantic dependency relation (sdep). PWP is defined using (acyclic) labeled partial orders, or
pomsets [Gischer 1988]. MRD adds a causality axiom to C11, stating that (sdep U rf) must be acyclic.
In both approaches, acyclicity enables inductive reasoning.

While PwWP and MRrD both treat concurrency compositionally, neither gives a compositional ac-
count of sequentiality. PWP uses prefixing, adding one event at a time on the left. MRD encodes se-
quential composition using continuation-passing. In both, adding an event requires perfect knowl-
edge of the future. For example, suppose that you are writing system call code and you wish to
know if you can reorder a couple of statements. Using PWP or MRD, you cannot tell whether this
is possible without having the calling code! More formally, Jagadeesan et al. state the equivalence
allowing reordering independent writes as follows:

[x:=M;y:=N;S]=[y:=N;x:=M;S] ifx#y

This requires a quantification over all continuations S. This is problematic, both from a theoretical
point of view—the syntax of programs is now mentioned in the definition of the semantics—and in
practice—tools cannot quantify over infinite sets. This problem is related to contextual equivalence,
full abstraction [Milner 1977; Plotkin 1977] and the CIU theorem of Mason and Talcott [1992].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:3

In this paper, we show that PwP can be extended with families of predicate transformers (PwT)
to calculate sequential dependencies in a way that is compositional and direct: compositional in
that the denotation of (S;; Sz) can be computed from the denotation of S; and the denotation of
Sz, and direct in that these can be calculated independently. With this formulation, we can show:

[x:=M;y:=N]=[y:=N;x:=M] ifx#y

Then the equivalence holds in any context—this form of the equivalence enables reasoning about
peephole optimizations. Said differently, unlike prior work, PwT allows the presence or absence
of a dependency to be understood in isolation—this enables incremental and modular validation
of assumptions about program dependencies in larger blocks of code.

Our main insight is that for language models, sequentiality is the hard part. Concurrency is easy!
Or at least, it is no more difficult than it is for hardware. Compilers make the difference, since
they typically do little optimization between threads. We motivate our approach to sequential
dependencies in §2 and provide formal definitions in §3. In §8, we extend the model to include
additional features, such as address calculation and Rmws. We discuss related and future work in
§9-10.

We extend PwT to a full memory model in §4, based on PwP [Jagadeesan et al. 2020]. §5 sum-
marizes the results for this model. In addition to powering such a bespoke model, the dependency
relation calculated by PwT can also be used with off-the-shelf models. For example, in §6 we show
that it can be used as an sdep relation for C11, adapting the approach of MrD [Paviotti et al. 2020].
§7 describes a tool for automatic evaluation of litmus tests in this model. C11 allows thin-air in
order to avoid overhead in the implementation of relaxed reads. Safe languages like OCaml [Dolan
et al. 2018] have typically made the opposite choice, accepting a performance penalty in order to
avoid thin-air. Just as PWT can be used to strengthen C11, it could also be used to weaken these
models, allowing optimal lowering for relaxed reads while banning thin-air.

PwT has been formalized in Coq. We have formally verified that the sequential composition
satisfies the expected monoid laws (Lemma 3.5). In addition we have formally verified that [if (¢)
{51; SsYelse{Sz; S33] 2 [if(P){S1}>else{S,}; S3] (Lemma 3.6e).

Supplementary material for this paper is available at https://weakmemory.github.io/pwt.

2 OVERVIEW

This paper is about the interaction of two of the fundamental building blocks of computing: se-
quential composition and mutable state. One would like to think that these are well-worn topics,
where every issue has been settled, but this is not the case.

2.1 Sequential Composition

Novice programmers are taught sequential abstraction: that the program Sy ; S, executes S; before
S,. Since the late 1960s, we’ve been able to explain this using logic [Hoare 1969]. In Dijkstra’s [1975]
formulation, we think of programs as predicate transformers, where predicates describe the state of
memory in the system. In the calculus of weakest preconditions, programs map postconditions to
preconditions. We recall the definition of wpg (/) for loop-free code below (where r—s range over
thread-local registers and M—N range over side-effect-free expressions).

Wpr::M(l//) = l//[]\/I/r] WpSI;SZ (l//) = Wpsl (WPSZ (lﬁ)) Wpskip(llj) = W
WPDif(M){S,}else {52}(‘//) = ((M#0) = Wphs, ¥) A ((M=0) = Wpsz(w))

Without loops, the Hoare triple {¢} S {/} holds exactly when ¢ = wps(¢). This is an elegant
explanation of sequential computation in a sequential context. Note that the assignment rule is
sound because a read from a thread-local register must be fulfilled by a preceding write in the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://weakmemory.github.io/pwt

54:4 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

same thread. In a concurrent context, with shared variables (x-z), the obvious generalization of
the assignment rule for reads, wp,._ (/) = ¥/[x/r], is unsound! In particular, a read from a shared
memory location may be fulfilled by a write in another thread.

In this paper we answer the following question: what does sequential composition mean in a
concurrent context? An acceptable answer must satisfy several desiderata:

(1) it should not impose too much order, overconstraining the implementation,
(2) it should not impose too little order, allowing bogus executions, and
(3) it should be compositional and direct, as described in §1.

Memory models differ in how they navigate between desiderata 1 and 2. In one direction there
are both more valid compiler optimizations and also more potentially dubious executions, in the
other direction, less of both. To understand the tradeoffs, one must first understand the underlying
hardware and compilers.

2.2 Memory Models

For single-threaded programs, memory can be thought of as you might expect: programs write to,
and read from, memory references. This can be thought of as a total order over memory actions
(—), where each read has a matching fulfilling write (—), for example:

x:=0;x:=1;y:=2;r:=y; s:=x

(50)-» (W W 2o

This model extends naturally to the case of shared-memory concurrency, leading to a sequen-
tially consistent semantics [Lamport 1979], in which program order inside a thread implies a total
causal order between read and write events, for example (where ; has higher precedence than ||):

x:=0;x:=1;y:=2 || r:=y;s:=x

(W) (Wt (R

We can represent such an execution as a labeled partial order, or pomset [Gischer 1988; Pratt 1985].
A program may give rise to many executions, each reflecting a different interleaving of the threads.

Unfortunately, this model does not compile efficiently to commodity hardware, resulting in a 37—
73% increase in CPU time on Arm8 [Liu et al. 2019] and, hence, in power consumption. Developers
of software and compilers have therefore been faced with a difficult trade-off, between an elegant
model of memory, and its impact on resource usage (such as size of data centers, electricity bills
and carbon footprint). Unsurprisingly, many have chosen to prioritize efficiency over elegance.

This has led to relaxed memory models, in which the requirement of sequential consistency is
weakened to only apply per-location. This allows executions that are inconsistent with program
order, such as the following, which contains an antidependency (—):

x:=0;x:=1;y:=2|r:=y; s:=x

(W= [Wn_(W2)

In such models, the causal order between events is important, and includes control and data
dependencies (—) to avoid paradoxical “out of thin air” examples such as the following. (We rou-
tinely elide initializing writes when they are uninteresting.)

re=x; if(r){y:=1} || s:=y; x:=s

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:5

This candidate execution forms a cycle in causal order, so is disallowed, but this depends crucially
on the control dependency from (Rx1) to (Wy1), and the data dependency from (Ry1) to (Wx1).
If either is missing, then this execution is acyclic and hence allowed. For example dropping the
control dependency results in the following execution, which should be allowed:

ri=x;y:=1]|s:=y;x:=s

While syntactic dependency calculation suffices for hardware models, it is not preserved by
common compiler optimizations. For example, consider the following program:
ri=x;if(r){y:=1}else{y:=1} || s:=y; x:=s

Because y :=1 occurs on both branches of the conditional, a compiler may lift it out. With the
dependency removed, the compiler could reorder the read of x and write to y, allowing both reads
to see 1. Attempting to generate this execution with syntactic dependencies, however, results in
the following candidate execution, which has a cycle and therefore is disallowed:

To address this, Jagadeesan et al. [2020] introduced Pomsets with Preconditions (PwP), where
events are labeled with logical formulae. Nontrivial preconditions are introduced by store actions
(modeling data dependencies) and conditionals (modeling control dependencies):

if(s>0){z:=rx(s—1)}
[(s>o) A (r+(s—1))=0 | Wzo]

In this diagram, (s>0) is a control dependency and (r#(s—1))=0 is a data dependency. Precondi-
tions are updated as events are prepended (we assume the usual precedence for logical operators):

r:=x;s:=y; if(s>0){z:=r=(s—1)}

[(1=s) = (s>0) A (r+(s—1))=0 | vvzo]

In this diagram there are two reads. As evidenced by the arrow, the read of y is ordered before the

write, reflecting possible dependency; the read of x is not, reflecting independency. The dependent

read of y allows the precondition of the write to weaken: now the old precondition need only be

satisfied assuming the hypothesis (1=s). The independent read of x allows no such weakening.

Nonetheless, the precondition of the write is now a tautology, and so can be elided in the diagram.
We can complete the execution by adding the required writes:

x:=1;y:=1||r:=x;s:=y; if(s>0){z:=rx(s-1)3}

D)

In order for a PWP to be complete, all preconditions must be tautologies and all reads must be
fulfilled by matching writes. The first requirement captures the sequential semantics. The second
requirement captures the concurrent semantics. These correspond to two views of memory for
each thread: thread-local and global. In a multicopy-atomic (MmcA) architecture, there is only one
global view, shared by all processors, which is neatly captured by the order of the pomset (see §4).

An untaken conditional produces no events. PWP models this by including the empty pomset in
the semantics of every program fragment. To then ensure that skip is not a refinement of x :=1,
PwP include a termination action, v/, which we have elided in the examples above.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:6 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

2.3 Predicate Transformers For Relaxed Memory

PwP shows how the logical approach to sequential dependency calculation can be mixed into a
relaxed memory model. Our contribution is to extend PwP with predicate transformers to arrive
at a model of sequential composition. Predicate transformers are a good fit for logical models of
dependency calculation, since both are concerned with preconditions.

Our first attempt is to associate a predicate transformer with each pomset. We visualize this in
diagrams by showing how 1 is transformed, for example:

ri=x s:=y if(s>0){z:=r«(s—1)}

((>0) A (re(s=1))=0 | Wz0) [g[res/z]]

The predicate transformer for a write z := M matches Dijkstra: taking 1 to ¥/[M/z]. For a read
r:=x, however, Dijkstra would transform i/ to ¢/[x/r], which is equivalent to (x=r) = ¢ under the
assumption that registers are assigned at most once. Instead, we use (1=r) = ¥/, reflecting the fact
that 1 may come from a concurrent write. The obligation to find a matching write is moved from
the sequential semantics of substitution and implication to the concurrent semantics of fulfillment.
For a sequentially consistent semantics, sequential composition is straightforward: we apply
each predicate transformer to subsequent preconditions, composing the predicate transformers.

r:=x;s:=y; if(s>0){z:=r*(s—1)} ™

_>[(1:r) = (1=s) = (s>0) A (r#(s—1))=0 | Wzoj \ (1=r) = (1=s) = Y[r=(s—1)/z] \

This works for the sequentially consistent case, but needs to be weakened for the relaxed case.

The key observation of this paper is that rather than working with one predicate transformer,
we should work with a family of predicate transformers, indexed by sets of events. For example,
for single-event pomsets, there are two predicate transformers, since there are two subsets of any
one-element set. The independent transformer is indexed by the empty set, whereas the dependent
transformer is indexed by the singleton. We visualize this by including more than one transformed
predicate, with a dotted edge leading to the dependent one (-->). For example:

=y

N

The model of sequential composition then picks which predicate transformer to apply to an event’s
precondition by picking the one indexed by all the events before it in causal order.

For example, we can recover the expected semantics for (*) by choosing the predicate trans-
former which is independent of (Rx1) but dependent on (Ry1), which is the transformer which
maps ¥ to (1=s) = ¢. (In subsequent diagrams, we only show predicate transformers for reads.)

ri=x

r:=x;s:=y; if(s>0){z:=r*(s—1)}

Rx1) _[(1:3) = (5>0) A (r+(s=1))=0 | Wz0)
» BTN 4 €
((=r)=y| [(=r)=(=)>y]| [(=5)=y]
In the diagram, the dotted lines indicate set inclusion into the index of the transformer-family. As
a quick correctness check, we can see that sequential composition is associative in this case, since

it does not matter whether we associate to the left—with the intermediate step as in the diagram
above, eliding the write action—or to the right—with the intermediate step:

s:=y; if(s>0){z:=rx(s-1)3}

<--[(1:s) = (s>0) A (r+(s=1))=0 | Wzo]

This is an instance of the general result that sequential composition forms a monoid (Lemma 3.5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:7

3 SEQUENTIAL SEMANTICS

After some preliminaries (§3.1-3.2), we define the model and establish some basic properties (§3.3
and Fig. 1). We then explain the model using examples (§3.4-3.9). We encourage readers to skim
the definitions and then skip to §3.4, coming back as needed.

In this section, we concentrate on the sequential semantics, ignoring the requirement that con-
current reads be fulfilled by matching writes. We extend the model to a full concurrent semantics
in §4 and §6 by defining a reads-from relation (rf) subject to various constraints.

3.1 Preliminaries
The syntax is built from

e a set of values V, ranged over by v, w, ¢, k,
e a set of registers R, ranged over by r, s,
e a set of expressions M, ranged over by M, N, L.

Memory references, aka locations, are tagged values, written [£]. Let X be the set of memory
references, ranged over by x, y, z. We require that

e values and registers are disjoint,

e values are finite! and include at least the constants 0 and 1,

e expressions include at least registers and values,

e expressions do not include memory references: M[N/x] = M (for all x).

We model the following language.
mv ==rlx | rel | acq | sc
Su=r:=M | r:=[01* | *:=M | F¥ | skip | S1;S; | if(M){Si1}else{S;} | Si4 S,

Access modes, y, are relaxed (rlx), release (rel), acquire (acq), and sequentially consistent (sc).
Reads (r := [L]¥) support rlx, acq, sc. Writes ([L]¥ :=r) support rlx, rel, sc. Fences (F*) support rel,
acq, sc. Register assignments (r := M) only affect thread-local state and therefore have no mode. In
examples, the default mode for reads and writes is rlx—we systematically drop the annotation.

Commands, aka statements, S, include fences and memory accesses at a given mode, as well as
the usual structural constructs. Following Ferreira et al. [1996],4p denotes parallel composition,
preserving thread state on the right after a join. In examples without join, we use the symmetric
|| operator.

We use common syntactic sugar, such as extended expressions, M, which include memory loca-
tions. For example, if M includes a single occurrence of x, then (y :=M; S) is shorthand for (r:=x;
y:=M][r/x]; S). Each occurrence of x in an extended expression corresponds to an separate read.
We also write if (M){S} as shorthand for if (M){S}else {skip}.

Throughout §1-7 we require that each register is assigned at most once in a program. In §8, we
drop this restriction, requiring instead that there are registers that do not appear in programs.

The semantics is built from the following.

e a set of events &, ranged over by e, d, c, and subsets ranged over by E, D, C,
o a set of logical formulae ®, ranged over by ¢, ¢, 0,
e a set of actions A, ranged over by a, b,
o a family of quiescence symbols Qy, indexed by location.
We require that
e formulae include tt, ff, Qy, and the equalities (M=N) and (x=M),

1We require finiteness for the semantics of address calculation (§8.4), which quantifies over all values. Using types, one
could limit the finiteness assumption to the subset of values used for address calculation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:8 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

e formulae are closed under —, A, V, =, and substitutions [M/r], [M/x], [¢/Qx],

o there is a relation F between formulae, capturing entailment,

o has the expected semantics for =, -, A, V, = and substitutions [M/r], [M/x], [¢/Qx],
o there is a subset of A, distinguishing read actions,

o there are four binary relations over A X A: delays and matches C blocks C overlaps.

Logical formulae include equations over registers and memory references, such as (r=s+1) and
(x=1). We use expressions as formulae, coercing M to M#0.

We write ¢ = y when ¢ F iy and ¥ £ ¢p. We say ¢ is a tautology if tt £ ¢. We say ¢ is unsatisfiable
if ¢ £ ff, and satisfiable otherwise.

3.2 Actions in This Paper
In this paper, each action is either a read, a write, or a fence:
a,b == Rfxo | WHxo | FH

We use shorthand when referring to actions. In definitions, we drop elements of actions that
are existentially quantified. In examples, we drop elements of actions, using defaults. Let E be the
smallest order over access and fence modes such that rIx C rel C sc and rlx C acq C sc. We write
(W2"¢!) to stand for either (W™') or (W5°), and similarly for the other actions and modes.

Definition 3.1. Actions (R) are read actions.

We say a matches b if a = (Wxv) and b = (Rxv).

We say a blocks b if a = (Wx) and b = (Rx), regardless of value.

We say a overlaps b if they access the same location, regardless of whether they read or write.

Let >, capture write-write, read-write coherence: ><c, = {(Wx, Wx), (Rx, Wx), (Wx,Rx)}.

Let »<sync capture conflict due to synchronization:* <sync = {(a, wareh) (g Farehy (R, F2ca),
(Rgacq, b), (F;acq’ b), (F;rel, W), (W;relx’ Wx)}

Let »<5. capture conflict due to sc access: <5 = {(W¢, W), (R, W), (W5, R*¢), (R%,R*%)}.

We say a delays b if a >, b or a <sync b or a v<gc b.

3.3 PwT: Pomsets with Predicate Transformers

Predicate transformers are functions on formulae that preserve logical structure, providing a natural
model of sequential composition. The definition follows Dijkstra [1975].3

Definition 3.2. A predicate transformer is a function 7 : & — @ such that
(x1) (1 A) = (Y1) A T(Y2), (x3) if ¢ £ ¢, then 7(¢) E 7(¢).
(x2) 7(¥1 Vo) = 1(Y1) V 7 (¥),

We consistently use i/ as the parameter of predicate transformers. Note that substitutions (/[M/r]
and [M/x]) and implications on the right (¢ =) are predicate transformers.

As discussed in §1, predicate transformers suffice for sequentially consistent models, but not
relaxed models, where dependency calculation is crucial. For dependency calculation, we use a

family of predicate transformers, indexed by sets of events. When computing [S;; S.], we will use
c

7 as the predicate transformer for event e € [[S,], where C includes all of the events in [S;] that
2This formalization includes release sequences (W=2"¢x, Wx). Symmetry would suggest that we include (Rx, R%9x), but
this is not sound for Arm8.

3In addition to the three criteria of Def. 3.2, Dijkstra [1975] requires (x4’) 7 (ff) = ff. The dependent transformer for read
actions (r4a) fails x4’, since ff is not equivalent to v=r = ff. We can define an analog of x4’ for our model using the register
naming conventions of §8. Define 0 to capture the register state of a pomset: 03 = A((e,0)e(ExV)|A(e)=(Ro)} (Se=0) Where
E = dom(A). We say that ¢ is A-inconsistent if ¢ A 6 is unsatisfiable. We can then require (x4) if i/ is A-inconsistent then
7 () is A-inconsistent. x4 is not needed for the results of this paper, therefore we have elided it from the main development.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:9

precede e in causal order (d <; e implies d € C). Under the following definition, the larger C is,
the better, at least in terms of satisfying preconditions. Adding more order can only increase the
size of C. Thus more order means weaker preconditions.

Definition 3.3. A family of predicate transformers over E consists of a predicate transformer 77

for each D C &, such that if C N E C D then 7°(¢) & 72 (¢).

In a family of predicate transformers, the transformer of a smaller set must entail the transformer
of a larger set. Thus bigger sets are better and 7 (1) —the transformer of the biggest set—is the best.
(The definition is insensitive to events outside E—it is for this reason that we have taken D C &
rather than D C E.)

Definition 3.4. A pomset with predicate transformers (PwT) is a tuple (E, A, k, 7, v/, <) where

(M1) E C & is a set of events,
(M2) A : E — A defines an action for each event,
(M3) x : & — ® defines a precondition for each event, such that
(M3a) e ¢ E implies x(e) = ff,
(M4) 7 : 28 — & — D is a family of predicate transformers over E,
(M5) V' : @ is a termination condition, such that
(M5a) v E 7E(tt),
(M6) < C E X E, is a strict partial order capturing causality.
A PwT is complete if
(c3) k(e) is a tautology (for every e € E), (c5) V is a tautology.

We refer to PwTs simply as pomsets. Let P range over pomsets, and P over sets of pomsets.

Throughout the rest of this section, we endeavor to explain Fig. 1, which gives the semantics of
programs [-]. We use consistent sub- and super-scripts to refer to the components of a pomset. For
example <; is the order of P;, <’ is the order of P, and < is the order of P. We also use consistent
numbering. For example, item 3 always refers to k and item 5 always refers to v'. As usual, we
writed < etomeand < eord =e.

The core of the model is a labeled partial order, including a set of events (m1), a labeling (M2),
and an order (M6). On top of this basic structure, M3-m5 add a layer of logic. For each pomset, M5
provides a termination condition. For each event in a pomset, M3 provides a precondition. For each
set of events in a pomset, M4 provides a predicate transformer. The partial order and the logic are
tied together formally in the definition of 7, in SEQ in Fig. 1, which calculates dependencies.

Before discussing the details, we note that the semantics satisfies the expected monoid laws, as
well as some laws concerning the conditional. We have verified Lemma 3.5 and Lemma 3.6e in
Coq". Similar laws apply to parallel composition—for example [S] = [skip4p S]. Note, however,
that [S] # [SHb skip]—this asymmetric operator throws away thread state from the left.

Lemma 3.5. (a) [S] = [(S; skip)] = [(skip; S)]. (B) [(S1; S2); S3] = [S1; (Sz; S3)].

The proof of (a) requires M5a for the termination condition in (S; skip). The proof of (b) requires
both conjunction closure (x1, for the termination condition) and disjunction closure (x2, for the
predicate transformers themselves). The proof of (b) also requires that s6 enforce projection as
well as inclusion (see the definition of respects in Fig. 1).

LEMMA 3.6. (c) [if(9){S1}else{S:}] 2 [Si] if ¢ is a tautology.
@) [if(p){S)else{S3] 2 [S].
(e) [if($){S1; SsYelse{Sy; S3}] 2 [if(P){S1}else{S;3; S5].

4Specifically, we have proven these results for the semantics of Fig. 1 with the refinements of §3.7, §8.1, and §8.3

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:10 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

(f) [if(P){S1; S2yelse{Si; S33] 2 [Si; if(p){S:}else {S33].
(8) [if (=) {S2}; if ($){S1}] € [if (@) {Si}else{S;}] 2 [if(P){S1}; if (=) {S23].

In §8.3, we refine the semantics to validate the reverse inclusions for (d-f) using if-introduction.
Although the semantics of Fig. 1 validates the reverse inclusions for (g), these do not hold for
PwT-McA (see §10).

The semantics is closed with respect to augmentation: P, is an augment of P if all fields are
equal except, perhaps, the order, where we require <; 2 <.

LEMMA 3.7. If P; € [S] and P, augments P; then P, € [S].

Augment closure captures the intuition that it is always sound for a compiler to make more
conservative assumptions about dependencies than the semantics.
Unless otherwise noted, all pomsets in examples are complete and augment-minimal.

3.4 Pomsets and Complete Pomsets: Termination

Ignoring the logic, the definitions of Fig. 1 are straightforward. Reads, writes and fences map to
pomsets with at most one event—we allow the empty pomset so that these may appear in the
untaken branch of a conditional. skip and register assignment map to the empty pomset. The
structural rules combine pomsets: PAR performs disjoint union, inheriting labeling and order from
the two sides. SEQ and IF both perform a union.

We say that d € E; and e € E; coalesce if d = e. As a trivial consequence of using union
rather than disjoint union, s1 validates mumbling [Brookes 1996] by coalescing events. For example
[x :=1; x :=1] includes the singleton pomset (Wx1). From this it is easy to see that [x :=1; x :=1] 2
[x:=1] is a valid refinement. It is equally obvious that [x:=1] 2 [x:=1; x:=1] is not a valid
refinement, since the latter includes a two-element pomset, but the former does not. (These are
observationally distinguished by the context: [-] || r:=x; x:=2; s:=x; if (r=s){z:=1}.)

In complete pomsets, 3 requires that all preconditions must be tautologies. In order to allow
complete pomsets with untaken conditionals, such as if (ff){x := 1}, we allow the empty pomset
in the semantics of all statements. Termination conditions ensure that the empty pomset is not
used inappropriately. At top level, c5 requires that v is a tautology. w5 and 5 ensure that writes
and fences are included in complete pomsets, unless they are inside an untaken conditional. For
example, termination conditions ensure that [x :=1] 2 [skip], since [skip] includes the empty
pomset with v = tt, but [x :=1] can only include the empty pomset with v/ = K(0) = ff.

For reads, the definition of v' depends on the mode: relaxed reads may be elided in complete
pomsets (rR5a), but acquiring reads must be included (r5b). From this, it is easy to see that [r:=x] 2
[skip] is a valid refinement (where the default mode is rlx).

Note that [x :=2] can write any value v; the fact that v must be 2 is captured in the logic. In
particular, w5 requires that v/ = 2=o for this program and c5 requires that v' be a tautology at top-
level. In combination, these ensure that complete pomsets do not include bogus writes. Consider
the following incomplete pomsets:

x:=1 x:=2 if(M){x:=3}

W1 2=3 | Wx3

By merging, the semantics allows the following:
x:=1;x:=2; if(M){x :=3}

Wi

However, this pomset is incomplete—regardless of M—since v = 2=3 = ff.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:11

If P € SKIP then E = 0 and 7°(¢) = ¢ and v = tt.

If P € ASSIGN(r, M) then E = 0 and 7° () = /[M/r] and v = tt.

Suppose R; is a relation in E; X E;. We say R respects R; if RN (E; X E;) = R;.
If P € PAR(P;, P») then (3P, € Py) (TP, € P,)

(p1) E = (E1 W Ey), (p4) 7P (y) = 77 (¥),
(P2) A= (A1 U Ap), (5) V' = V1 A Vo,
(p3) k(e) = k1(e) V Kko(e), (p6) < respects <; and <j.

IfP e SEQ(P], Pz) then (3P1 (S Pl) (Ele S Pz)
let k) (e) = Tlc(Kz(e)) where C = {c|c < e}

(s1) E = (E1 U Ey), (s4) T (¥) =77 (3 (),
(s2) A= (L ULy), (s5) v = V4 AT (Va),
(s3) x(e) = k1(e) V K5(e), (s6) < respects <y and <.
If P € IF(p, P1, P,) then (3P, € P;) (AP, € Py)
(11) E = (E1 U Ey), (14) () = (B AT W)V (=g AT (W),
(12) A= (4L U4y), (15) V' = (P AV V(=g A V2),
(13) k(e) = (P Ax1(e)) V (=g A ka(e)), (16) < respects <; and <.

Let K(D) = \gepk(d). Note that K(0) = ff.

If P € FENCE(y) then
(F1) |E| < 1, (r4) P () = ¢,
(r2) A(e) = FH, (r5) v = K(E).
(F3) k(e) = tt,
If P € WRITE(x, M, p) then (Jv € V)
(w1) |E[<1, (w4) 72 (y) = ¢[M/x][K(E)/Qx],
(W2) A(e) = WHxu, (w5) v =K(E),
(w3) k(e) = M=o,

If P € READ(r, x, p) then (Jo € V)
(R1) |E| €1, (Ré4c) if E = 0 then 7 (¢) = ¢,
(r2) A(e) = R¥xo, (r5a) if u C rix then v/ = tt,
(R3) k(e) = Qy, (r5b) if p 3 acq then v = K(E).

(R4a) if e € EN D then 72 (¢) = (k(e) = v=r) = ¥,

(r4b) if e € E\ D then 7P (¢) = (x(e) = (v=r V x=r)) = ¥,

[r:=M] = ASSIGN(r, M) [F¥] = FENCE(y) [Si4b S2] = PAR([S.]. [S:])
[x":=M] = WRITE(x, M, g) [skip] = SKIP [S1; S2] = SEQ([S:], [S:])
[r:=x"] = READ(r, x, p) [if (M){S1}else {S;3] = IF(M=0, [S1], [S2])

Fig. 1. PwT Semantics

Ignoring predicate transformers, p5 and s5 both take v/ = v'; A V5. This is as expected: the
program terminates if both subprograms terminate. In 15, v/ = (¢ A V1) V (—¢ A V72): the program
terminates as long as the taken branch terminates. Thus [if (tt){x :=1} else {y :=1}] contains a
complete pomset with exactly one event: (Wx1). To construct this pomset, we take the singleton
from the left and the empty set from the right. This is a general principle: for code that contributes
no events at top-level, use the empty set.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:12 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

3.5 Preconditions, Predicate Transformers, and Data Dependencies

In this section, we ignore the Q, symbols that appear in the semantics of read and write, taking
Qyx = tt, for all x. We also introduce the independent transformer for reads (r4b) without explain-
ing why it is defined as it is. We take up both subjects in §3.8.

Preconditions are discharged during sequential composition by applying predicate transformers
— r,—from the left to preconditions—x,(e)—on the right. The specific rule is s3, which uses the
transformed predicate x/(e) = Tf(Kz(e)), where C = {c | ¢ < e} is the set of events that precede e
in causal order. We call C the dependent set for e. Then E \ C is the independent set.

Before looking at the details, it is useful to have a high-level view of how nontrivial precondi-
tions and predicate transformers are introduced.

Preconditions are introduced in: Predicate transformers are introduced in:
(w3) for data dependencies, (r4a) for reads in the dependent set,
(13) for control dependencies. (r4b) for reads in the independent set,

(w4) for writes.

The rules track dependencies. We discuss data dependencies (w3) here and control dependencies
(13) in §3.6. We enrich the semantics to handle address dependencies in §8.4.

A simple example of a data dependency is a pomset P € [r:=x; y:=r]. If P is complete, it
must have two events. Then SEQ (Fig. 1) requires P; € [r:=x]] and P, € [y :=r] of the following
form. (We only show the independent transformer for writes—ignoring Qy, the dependent and
independent transformers for writes are the same.)

r:=x y:=r

Redf ol =7 [ir/ol] (e [War) “‘)

First we consider the case that v = w. For example, if v = w = 1, we have:

) fimr=v] i) G 1)

For the read, the dependent transformer rfd} is 1=r = /; the independent transformer T? is (1=rv

x=r) = . These are determined by r4a and Rr4b, respectively. For the write, both 1'58} and Tg) are
Y[r/y], as are determined by w4. Combining these into a single pomset, we have:

ri=x;y:=r

[G=r vx=r) = ylr/yl | Ret) (1= > ylrl] (] Woi)'

Looking at the precondition ¢ of the write, recall that in order for e to participate in a top-level
pomset, the precondition ¢ must be a tautology at top-level. There are two possibilities.

o If d < e then we apply the dependent transformer and ¢ = (1=r = r=1), a tautology.
e If d # e then we apply the independent transformer and ¢ = ((1=r V x=r) = r=1). Under
the assumption that r is bound (see footnote 3), this is logically equivalent to (x=1).

Eliding transformers and tautological preconditions, the two outcomes are:

r:=x;y:=r r:=x,y:=r

Rx1 - Wy1 ‘ Rx1 ¢ x=1| Wyl ‘

The independent case on the right can only participate in a top-level pomset if the precondition
(x=1) is discharged. To do so, we can prepend a program that writes 1 to x:

x:=1 x:=1;r:=x;y:=r

(97 (= W G @' = Wa)

Here we apply the transformer from the left (¢/[1/x]) to (x=1), resulting in the tautology (1=1).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:13

Now suppose that v # w in (f). Again there are two possibilities. Taking v=0 and w=1:
ri=x;y:=r ri=x;y:=r

F @ven=rm [We)

Assuming that r is bound, both preconditions on e are unsatisfiable.
If a write is independent of a read, then clearly no order is imposed between them. For example,
the precondition of e is a tautology in:

r:=x;y:=1
[(0=r vx=r) = ylr/y]] '-1->\ o=r = ¢lr/yl| ((0=rVvx=r)=1=1|Wy1)

Note that both r4a and r4b degenerate to the identity transformer when x(e) = ff. This is the
same as the transformer for the empty pomset (rR4c).
Also note that [S;4p S.] is asymmetric, taking the predicate transformer for S in p4.

3.6 Control Dependencies

In IF(¢, P1, P2), the predicate transformer (14) is (¢ A rlD(xﬁ)) V(= A rg(gb)), which is the dis-
junctive equivalent of Dijkstra’s conjunctive formulation: (¢ = TID W) A (m¢p = Té) (¥)).

Control dependencies are introduced by the conditional. For coalescing events in E; N E,, 13
requires (¢ A x1(e)) V (=@ A kz(e)). For other events from E;, it requires ¢ A k;(e), using m3a.
Control dependencies are eliminated in the same way as data dependencies. Consider:

ri=x if(r=1){y:=1}

DY) vy Ty e L)

As for (), there are two possibilities:
re=x; if(r=1){y:=1} ri=x; if(r=1){y:=1}

(" (o= [W) ®) @ven=rm [We)

When events coalesce, 13 ensures that control dependencies are calculated semantically, rather
than syntactically. For example, consider P € [if(r=1){y :=r}else {y := 1}], which is built from
P € [y:=r] and P; € [y :=1]. For example, consider:

if(r=1){y:=r}else{y:=1}

y:=r y:=1
(= W) (=1 [Wa)’ (=i Grta = [W)

Here, the precondition in the combined pomset (on the right) is a tautology, independent of r.

The semantics allows common code to be lifted out of a conditional, validating the transforma-
tion [if (M){S}else{S}] 2 [S]. The semantics also validates dead code elimination: if M+0 is a
tautology then [if (M){S;}else {S,}] 2 [S1]. Here, we take the empty pomset as the denotation
of Sy. Since M=0 is unsatisfiable, 15 ignores the termination condition of S,. It is worth noting that
the reverse inclusion, dead-code-introduction, holds for complete pomsets, but not in general.

3.7 A Refinement: No Dependencies into Reads

To avoid stalling the CPU pipeline unnecessarily, hardware does not enforce control dependencies
between reads. To support if-introduction (§8.3), software models must not distinguish control
dependencies from other dependencies. Thus, we are forced to drop all dependencies into reads.
To achieve this, we modify the definition of x, in Fig. 1.

() = {rfl(xz(e)) if 1(e) is a read

Tlc(lcz(e)) otherwise, where C = {c | ¢ < e}

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:14 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Thus reads always use the “best” transformer, rfl. In order for non-reads to get a good transformer,
they need to add order. Throughout the remainder of the paper, we use this definition.

3.8 Local State

Several of the ymm Causality Test Cases [Pugh 2004] center on compiler optimizations that result
from limiting the range of variables. Because the compiler is allowed to collude with the scheduler
when estimating the range, we refer to this as local invariant reasoning. The basic idea is that a
write to y is independent of a read of x that precedes it, as long as the local state of x prior to the
read justifies the write. For example, consider Tc1:’

x:=0; (r:=x; if (r>0){y:=1} [x:=y)
(rc1)

Using local invariant reasoning, a compiler could determine that x is always either 0 or 1, and
therefore that the write to y does not depend on the read of x, allowing these to be reordered,
resulting in the execution shown above. This is captured by our semantics as follows. Using r4b
and w4, the precondition ¢ is ((1=r V x=r) = r>0)[0/x] which is ((1=r VvV 0=r) = r>0) which
is indeed a tautology, justifying the independency. When used to form complete pomsets, rR4b
requires that subsequent preconditions be tautological under the assumption that the value of the
read is used (1=r) and under the assumption that the local value of x is used instead (x=r).

This requires that we put locations into logical formulae, in addition to registers. While logi-
cal formulae involving registers are discharged by predicate transformers from ASSIGN or READ
(Fig. 1), logical formulae involving locations are discharged by predicate transformers from WRITE.
In other words, registers track the value of reads, whereas locations track the value of the most
recent local write. This provides a local view of memory, distinct from the global view manifest in
the labels on events. See [Jagadeesan et al. 2020] for further discussion.

A related concern arises when eliding changes to local state from the untaken branch of a con-
ditional, creating indirect dependencies. Consider the following example [Paviotti et al. 2020, §6.3]:

x:=1;r:=y; if(r=0){x:=0; s:=x; if(s){z:=13}}

else{s:=x; if(s){z:=1}} H 1f(z){y:1}

In SC executions, the left thread always takes the then-branch of the conditional, reading 0 for x
and therefore not writing z. As a result the second thread does not write y, and the program is
data-race-free under SC. To satisfy the DRF-sc theorem, no other executions should be possible.
Complete executions of the left thread that take the then-branch must include (Wx0), whereas
those that take the else-branch must not include (Wx0). A problem arises if events from the sub-
sequent code of the left thread—common to the two branches—coalesce, thus removing an essential
control dependency. Consider the following candidate execution:

)

Note that the write to z depends on the read of x, but not the read of y. Ignoring Q,, as we have
done up to now, the precondition ¢ is:

¢ = (1=r vy=r) = (r=0 A (1=s = s#0))
V (r#0 A (1=s = s#0))

Since (1=s) implies (s#0), the precondition is a tautology and (77) is allowed, violating DRF-sC.

5TC6 and TC8-9 are similar. TC2 and TC17-18 require both local invariant reasoning and resolving the nondeterminism
of reads using redundant read elimination—see §8.1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:15

Without Q,, the semantics enforces (Wz1)’s direct dependency on (Rx1), but not its indirect
dependency on (Ry1). By eliding (Wx0), we have forgotten the local state of x in the untaken
branch of the execution. Nonetheless, we are using the subsequent—stale—read of x, by merging
it with the read from the taken branch. This half-stale merged read is then used to justify (Wz1).

In Fig. 1, r4 corrects this by introducing quiescence symbols into predicate transformers. Qui-
escence symbols capture the intuition that—in the untaken branch of a conditional—the value of a
read from x can only be used if the most recent local write to x is included in the execution. Quies-
cence symbols are eliminated from formulae by the closest preceding write (w4). With quiescence,
the precondition of (f1) becomes the following:

¢ = (Qy = 1=r Vy=r) = (r=0 A ((Qy[ff/Qs] = 1=5) = 5£0))
V (r#£0 A ((Qx[1=1/Qy] = 1=5) = 5£0))

Adding initializing writes, Q, becomes tt at top-level. Regardless, ¢’ is non-tautological: in the top
conjunct, we have lost the ability to use 1=s to prove s#0. Intuitively, Q is true when the local
state of x is up to date, and false when it is stale. In order to read x, Q, requires that the most
recent prior write to x must be in the pomset.

We also include quiescence symbols directly in preconditions of reads (r3). This guarantees
initialization in complete pomsets: every (Rx) must have a sequentially preceding (Wx) in order
to eliminate the precondition Q.

We end this subsection by noting that value range analysis of MrD [Paviotti et al. 2020] is overly
conservative. Consider the following execution:

x:=0; (r:=x; if(r < D{x:=2;y:=1} || x:=y)
F)

PwT correctly allows this execution; MRD forbids it by requiring (Rx1) — (Wy1). The co-product
mechanism in MRD seeks an isomorphic justification under the (Rx2) branch of the read in the
event structure, and—failing to find such a justification—leaves the dependency in place.

3.9 The Burdens of Associativity
Many of the design choices in PwT are motivated by Lemma 3.5—in particular, the need for se-
quential composition to be associative. In this subsection, we give three examples.

First, the predicate transformers we have chosen for r4a and r4b are different from the ones
used traditionally, which are written using substitution. Attempting to write r4a and r4b in this
style we would have (as in [Jagadeesan et al. 2020]):

(r4a’) if e € EN D then 7°(y) = y[o/r],
(r4b) if e € E\ D then 7° (¢) = ¢/[0/r] A ¢[x/r].

R4b’ does not distribute through disjunction (x2), and therefore is not a predicate transformer. This
is not merely a theoretical inconvenience: adopting rR4b” would also break associativity. Consider
the following example, where “!” represents logical negation:

r:=y x:=lr x:=!r

Associating to the right, we coalesce the writes then prepend the read:

ri=y x:=lr; x:=!lr ri=y; (x:=!r; x:=r)

The precondition ¢ is (1=0 V y=0) A (1#0 V y#0), which is a tautology.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:16 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Associating to the left, instead, we prepend the read then coalesce the writes:

re=y; x:=lr x:=!r (re=y;x:=lr); x:=lr

(1=0Ay=0[Wx1) (rz0|Wx1)

The precondition ¢’ is (1=0 A y=0) V (1#0 A y#0), which is not a tautology.

Our solution is to Skolemize, replacing substitution by implication, with uniquely chosen reg-
isters. Using Skolemization, Fig. 1 computes ¢’ = ((1=r V y=r) = r=0) V ((1=r V y=r) = r+0),
which is equivalent to ¢ = (1=r V y=r) = (r=0 V r#0). Both are tautologies.

Second, Jagadeesan et al. impose consistency, which requires that for every pomset P, A\, k(e) is
satisfiable. Associativity requires that we allow inconsistent preconditions. To see this, note that

(IF(M){x:=13}; if M) {x:=1}) ; (if(M){y:=1}; if(M){y:=13})
has a complete pomset that writes x and y, regardless of M. In order to match this in
IFM{x:=1}; (IfCM){x:=1}; if (M){y:=1}) ; if(M){y:=1},
the middle pomset must include the inconsistent actions (M=0 | Wx1) and (M#0 | Wy1).
Finally, we drop Jagadeesan et al.’s causal strengthening for the same reason. Consider:
if(M){r:=x};y:=r; if({M){s:=x}

Associating to the right, this program has a complete pomset containing (Wy1). Associating to
the left, with causal strengthening, it does not.

4 PwT-MCA: POMSETS WITH PREDICATE TRANSFORMERS FOR MCA

In this section, we develop a model of concurrent computation by adding reads-from to Fig. 1. To
model coherence and synchronization, we add delay to the rule for sequential composition. For
Mmca architectures, it is sufficient to encode delay in the pomset order. The resulting model, PwT-
MCAj, supports optimal lowering for relaxed access on Arma8, but requires extra synchronization
for acquiring reads. (Lowering is the translation of language-level operators to machine instruc-
tions. A lowering is optimal if it provides the most efficient execution possible.)

A variant, PwT-mca;, supports optimal lowering for all access modes on Arm8. To achieve this,
PwT-Mca;, drops the global requirement that reads-from implies pomset order (M7c). The models
are the same, except for internal reads, where a thread reads its own write. We show an example at
the beginning of §4.2. The lowering proofs can be found in the supplementary material. The proofs
use recent alternative characterizations of Arm8 [Alglave et al. 2021].

4.1 PwT-MCA1

We define PwT-mcA; by extending Def. 3.4 and Fig. 1. The definition uses several relations over
actions—matches, blocks and delays—as well a distinguished set of read actions; see §3.2.

Definition 4.1. The definition of PwT-mca; extends that of PwT with a relation rf such that
(M7) rf € E X E is an injective relation capturing reads-from, such that
(m7a) if d - e then A(d) matches A(e),
(M7b) if d 3 e and A(c) blocks A(e) then either ¢ < dore < c,
(m7c) ifd T e then d < e.
The definition of completeness extends Def. 3.4 as follows:
(c7) if A(e) is a read then there is some d 3 e.

The semantic function extends Fig. 1 as follows:
(s6a) if A;(d) delays A5(e) thend < e, (p7) (s7) (17) rf respects rf; and rf,.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:17

In complete pomsets, reads-from (rf) must pair every read with a matching write (c7). The re-
quirements M7a, M7b, and m7c guarantee that reads are fulfilled, as in [Jagadeesan et al. 2020, §2.7].
Parallel composition, sequential composition, and the conditional respect reads-from (»7, s7, 17).

From Def. 3.1, recall that a delays b if a <, b or a <gnc b or a p<sc b. s6a guarantees that
sequential order is enforced between conflicting accesses of the same location (><,), into a release
and out of an acquire (<sync), and between SC accesses (~<.). Combined with the fulfillment re-
quirements (M7a, M7b, m7c), these ensure coherence, publication, subscription and other idioms.
For example, consider the following:*

x:=0;x:=1; 9 =1 || ri=y?9; s:=x
D) S e G S GED o

The execution is disallowed due to the cycle. All of the order shown is required at top-level: The
intra-thread order comes from sé6a: (Wx0) — (Wx1) is required by »<c,. (Wx1) — (W'e'y1)
and (R**9y1) — (Rx0) are required by <sync. The cross-thread order is required by fulfillment: c7
requires that all top-level reads are in the image of 5. m7a ensures that (W''y1) - (R29y1),
and mM7c subsequently ensures that (W'®'y1) < (R2%9y1). The antidependency (Rx0) — (Wx1) is
required by m7b. (Alternatively, we could have (Wx1) — (Wx0), again resulting in a cycle.)

The semantics gives the expected results for store buffering and load buffering, as well as lit-
mus tests involving fences and SC access. The model of coherence is weaker than C11, in order
to support common subexpression elimination, and stronger than Java, in order to support local
reasoning about data races. For further examples, see [Jagadeesan et al. 2020, §3.1].

Lemmas 3.5 and 3.6 hold for PwT-mca;. We discuss 3.6g further in §10.

4.2 PwT-MCA2

Lowering PwT-mca,; to Arm8 requires a full fence before every acquiring read.” To see why, con-
sider the following attempted execution, where the final values of both x and y are 2.

x:=2;r=x29 =1 || y:=2; 2™ =1

.. (INTERNAL-ACQ)

The execution is allowed by Arm8, but disallowed by PwT-mcaA;, due to the cycle.

Arm38 allows the execution because the read of x is internal to the thread. This aspect of Arm8
semantics is difficult to model locally. To capture this, we found it necessary to drop m7c and relax
s6a, adding local constraints on rf to PAR, SEQ and IF. (For parallelism, we explicitly specify the
domain of d and e in s6a’.)

Definition 4.2. The definition of PwT-mcaA; is derived from that of PwT-mcA; by removing m7c
and s6a and adding the following:
(p6a) if d € Ey, e € E andd - e thend < e,
(r6b) if d € E1, e € Ey and e 3 dthene < d,
(s6a’) if d € Eq, e € E; and A;(d) delays A;(e) then either d My eord <e,

®We use different colors for arrows representing order:
e d — e arises from <, (562), o d —» e arises from reads-from (M7a),
o d — e arises from x<gync Or b<sc (S6a), e d — e arises from blocking (M7b).
e d — e arises from control/data/address dependency (s3, definition of «7, (d)),

In PwT-McAy, it is possible for rf to contradict <. In this case, we use a dotted arrow for rf: d -- % e indicates that e < d.
7Jagadeesan et al. [2020] erroneously elide the required synchronization on acquiring reads.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:18 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

p6a and p6b ensure that d 7 e implies d < e when the actions come from different threads.
However, we may have d -3 e and e < d within a thread, as between (Wx2) to (R*x2) in
INTERNAL-ACQ, thus allowing this execution. m7b and s6a’ are sufficient to stop stale reads within
a thread. For example, it prevents aread of 1inx:=1; x :=2; r:=x.

With the weakening of s6a, we must be careful not to allow spurious pairs to be added to the rf re-
latiQn. For example, [if (b){r:=x || x:=1} else{r:=x; x := 1}] should not include f,
taking rf from the left and < from the right. The use of “respects” in 16 and 17 ensures this.

As a consequence of dropping M7c, sequential rf must be validated during pomset construction,
rather than post-hoc. In §6, we show how to construct program order (po) for complete pomsets us-
ing phantom events (7). Using this construction, the following lemma gives a post-hoc verification
technique for rf. Let 7~ ! be the inverse of 7.

LEMMA 4.3. IfP € [S]mcaz is complete, then for every d -5 e either

o external fulfillment: d < e and if A(c) blocks A(e) then eitherc < d ore < c, or
e internal fulfillment: (3d’ € 7~(d))(3e’ € 771 (e))

These mimic the external consistency requirements of Arm8 [Alglave et al. 2021].

5 PwT-MCA RESULTS

Prop. 6.1 of Jagadeesan et al. [2020] establishes a compositional principle for proving that programs
validate formula in past-time temporal logic. The principal is based entirely on the pomset order
relation. Its proof, and all of the no-thin-air examples in [Jagadeesan et al. 2020, §6] hold equally
for the models described here.

In the supplementary material, we show that PwT-mcA; supports the optimal lowering of re-
laxed accesses to Arm8 and that PwT-mcaA;, supports the optimal lowering of all accesses to Arma3.
The proofs are based on two recent characterizations of Arm8 [Alglave et al. 2021]. For PwT-mcA;,
we use External Global Consistency. For PwT-mca,, we use External Consistency.

In the supplementary material, we also sketch a proof of sequential consistency for local-data-
race-free programs. The proof uses program order, which we construct for C11 in §6. The same
construction works for PwT-mcA. (This proof sketch assumes there are no RMwW operations.)

The semantics validates many peephole optimizations, such as reorderings on relaxed access:

[[r::x;s::y:”:[[s::y;r::x]] ifr?l:s
[x:=M; y:=N] = [y:=N; x:=M] ifx#y
[x:=M;s:=y] =[s:=y; x:=M] ifx #yands ¢id(M)

Here id(M) is the set of locations and registers that occur in M. Using augmentation closure, the
semantics also validates roach-motel reorderings [Sev¢ik 2008]. For example, on read/write pairs:

[xt:=M;s:=y] 2 [s:=y; x*:=M] ifx #yands ¢id(M)
[x:=M;s:=y"] 2 [s:=y"; x:=M] ifx #yands ¢id(M)
Notably, the semantics does not validate read-introduction. When combined with if-introduction
(§8.3), read-introduction can break temporal reasoning. This combination is allowed by speculative
operational models. See §9 for a discussion.
6 PwT-C11: POMSETS WITH PREDICATE TRANSFORMERS FOR C11

PwT can be used to generate semantic dependencies to prohibit thin-air executions of C11, while
preserving optimal lowering for relaxed access. We follow the approach of Paviotti et al. [2020],

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:19

using our semantics to generate C11 candidate executions with a dependency relation, then apply-
ing the axioms of RC11 [Lahav et al. 2017]. The No-Thin-Air axiom of RC11 is overly restrictive,
requiring that (rf Upo) be acyclic. Instead, we require that (rf U <) is acyclic. This is a more precise
categorization of thin-air behavior, and it allows aggressive compiler optimizations that would be
erroneously forbidden by RC11’s original No-Thin-Air axiom.

The chief difficulty is instrumenting our semantics to generate program order, for use in the
various axioms of C11. Using the obvious construction (described in the proof of Lemma 6.2),
program order (po) is a pre-order, which may include cycles due to coalescing. For example:

if(r){x:=1;y:=1}else{y:=1; x:=13} ‘;'.'.’

We solve this by adding phantom events. The function 7 maps phantom events to real events. For
this program, we have the following PwT-po. (We visualize po using a dotted arrow --->, and =

using a double arrow —.)

(r#O]‘le\\. (r#OIWyl\‘ (r=OIWx1\\ J/r=0[Wy1\‘

,,,,,,,,, y S A Climed i | it s
Once the pomset is completed, r will be known, causing all the preconditions to be either tau-
tological or unsatisfiable. We can then extract program order by restricting phantom events to
have tautological preconditions (Def. 6.3). Thus, our strategy for C11 is to first construct a com-
plete PwT-po, then extract top-level program order, then apply the axioms of RC11. We refer to a
PwT-po that survives this filtering as a PwT-C11.

Definition 6.1. APwT-pro is a PwT (Def. 3.4) equipped with relations 7 and po such that
(M8) 7 : (E — E) is an idempotent function capturing merging, such that
let R = {e | 7(e)=e} be real events, let R = (E \ R) be phantom events,
let S = {e | Vd. 7(d)=e = d=e} be simple events, let S = (E \ S) be compound events,
(m8a) Ae) = A((e)), (M8b) if e € S then k(e) E \/{Ceilﬂ(c):e}lc(c).
(M9) po C (S x S) is a partial order capturing program order.
A PwT-po is complete if
(c3) if e € R then x(e) is a tautology, (c5) V is a tautology.
A complete PwT-po is a PwT-C11 if it additionally satisfies the axioms of RC11.

Since 7 is idempotent, we have 7 (7 (e)) = 7 (e). Equivalently, we could require 7 (e) € R.

We use 7 to partition events E in two ways: we distinguish real events R from phantom events
R; we distinguish simple events S from compound events S. From idempotency, it follows that all
phantom events are simple (R C S) and all compound events are real (S C R). In addition, all
phantom events map to compound events (if e € R then 7(e) € S).

LEMMA 6.2. IfP is a PWT then there is a PwT-po P” that conservatively extends it.

Proor. The proof strategy is as follows: We extend the semantics of Fig. 1 with po. The obvious
definition gives us a preorder rather than a partial order. To get a partial order, we replay the
semantics without merging to get an unmerged pomset P’; the construction also produces the
map 7. We then construct P”” as the union of P and P’, using the dependency relation from P.

We extend the semantics with po as follows. For pomsets with at most one event, po is the
identity. For sequential composition, po = po; U po, U Ey X E;. For parallel composition and the
conditional, po = po; U po,. As noted at the beginning of this section, po may contain cycles. To
find an acyclic po’, we replay the construction of P to get P’. When building P’, we require disjoint
unioninsland1l: E’ = E{WE). If and event is unmerged in P (e € E; WE,) then we choose the same

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:20 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

event name for P’. If an event is merged in P (e € E; N E,) then we choose fresh event names—e;
and e;—and extend 7 accordingly: 7 (e]) = 7(e;) = e. In P’, we take <’ = po’.

To arrive at P”, we take (1) E” = EUE’, (2) A" = AU X, (3a) if e € E then «”"(e) = k(e),
(3b)if e € E’ \ E then «”(e) = k’(e), (4) 7'P = D)), (5) v =V,(6) d <" e exactly when
n(d) < n(e), (7) po” = po’, and (8) 7"’ is the constructed merge function. O

Definition 6.3. For a PwT-po, let extract(P) be the projection of P onto the set {¢ € E; |
e is simple and k1 (e) is a tautology}.

By definition, extract(P) includes the simple events of P whose preconditions are tautologies.
These are already in program order, as per item 7 of the proof. The dependency order is derived
from the real events using 7, as per item 6.

The following lemma (immediate from Mm8b) shows that if P is complete, then extract(P) includes
at least one simple event for every compound event in P.

LEMMA 6.4. If P is a complete PWT-Po with compound event e, then there is a phantom event
¢ € 771 (e) such that k(c) is a tautology.

A pomset in the image of extract is a C11 candidate execution. As an example, consider Java
Causality Test Case 6 [Pugh 2004]. Taking w = 0 and v = 1, the PwT-Po on the left below produces
the candidate execution on the right.

y:=w;r:=y; if(r=0){x:=13}; if (r=1){x:=1} y:=0;r:=y; if(r=0){x:=13}; if(r=1){x:=1}

.__7. [(U:r V w=r) = (r=0Vr=1) l le] __7__7

/,A —
o=r=r=0 | Wx1!

................. oo -

We write [-]P° for the semantic function defined by applying the construction of Lemma 6.2 to
the base semantics of 1.

The dependency calculation of [-]P° is sufficient for C11; however, it ignores synchronization
and coherence completely. For example, consider:

if(r){x:=13}; if(s){x:=2}; if(r){x:=1}

d
o

rofwat, (sro[w)e Sro| Wit
Adding a pair of reads to complete the pomset, we can extract the following candidate executions.

re=y;s:=z; if(r){x:=13}; if(s){x:=2}; if(r){x:=1}

It is somewhat surprising that the writes are independent of both reads!
In PwT-Mca, delay stops the merge in ().

if(r){x:=1}; if(s){x:=23}; if(r){x:=1}

[rio | le]_—__:[sio | szh[rzo | le]

It is possible to mimic this in PwT-C11, without introducing extra dependencies: one can filter
executions post-hoc using the relation C, defined as follows:

7(d) C n(e) ifd "% e and A(d) delays A(e).

In (), we have both d C e and e C d. To rule out (%), it suffices to require that C is a partial order.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:21

Table 1. Tool results for supported Java Causality Test Cases [Pugh 2004]. L indicates the tool failed to run
for this test due to a memory overflow. Tests run on an Intel i9-9980HK with 64 GB of memory. For context,
results for the MRD, MRDyyy, and MRD¢17 are also included [Paviotti et al. 2020].

Test PwT-C11 MRD MRDyy MRDcqg

Test PwT-Cll MRD MRDpyy MRDcig

€1 v v v v — ~ —— ~
TC2 v v v v

TCl10 v v v v
Tcs v v v v TC11 L v v v
TC4 v v v v oL / / g
TGS v v v v €13 v v v v
TC6 v v v v

€17 v X v X
cr v v v v TC18 v X v X
TC8 v v v v

Program (i) shows that the definition of semantic dependency is up for debate in C11. The
International Standard Organization’s C++ concurrency subgroup acknowledges that semantic
dependency (sdep) would address the Out-of-Thin-Air problem: “Prohibiting executions that have
cycles in (rf U sdep) can therefore be expected to prohibit Out-of-Thin-Air behaviors” [McKenney
etal. 2016]. PWT-C11 resolves program structure into a dependency relation—not a complex state—
that is precise and easily adjusted. As refinements are made to C11, PwT-C11 can accommodate
these and test them automatically.

7 PwTer: AUTOMATIC LITMUS TEST EVALUATOR

PwTER automatically and exhaustively calculates the allowed outcomes of litmus tests for the PwT,
PwT-ro, and PwT-C11 models, obviating the need for error-prone hand evaluation. It is built in
OCaml, using Z3 [de Moura and Bjerner 2008] to judge the truth of predicates.

PwTER allows several modes of evaluation: it can evaluate the rules of Fig. 1, implementing PwT;
it can generate program order according to §6, implementing PwT-po; and similar to MRD [Paviotti
et al. 2020], it can construct C11-style pre-executions and filter them according to the rules of RC11
as described in §6, implementing PwT-C11. Finally, PWTER also allows us to toggle the complete
check of Def. 3.4, providing an interface for understanding how fragments of code might compose
by exposing preconditions and termination conditions that are not yet tautologies.

We have run PWTER over the Java Causality Tests [Pugh 2004] supported in the input syntax,
and tabulated the results in Table 1. For context, we have included the results of MRD for the Java
Causality tests [Paviotti et al. 2020]. Note that MRD and MRD.;; do not give the correct outcome on
TC17-18—the reason is that local invariant reasoning in MRD is too constrained (see §3.8).

For larger test cases, the tool takes exponentially longer to compute, and for the largest tests the
memory footprint is too large for even a well-equipped computer. The compositional nature of the
semantics makes tool building practical, but it is not enough to make it scalable for large tests. In
combination with the rules for reads and writes, the definitions of SEQ(P;, $,) and IF(¢, P1, P>)
have exponential complexity. This is compounded by the hidden complexity of calculating the pos-
sible merges between pomsets through union in rules s1 and 11. Significant effort has been put into
throwing away spurious merges early in PWTER, so that executing the tool remains manageable
for small examples. Some further optimizations may be possible within the tool to improve the situ-
ation further, such as killing “dead-end” pomsets at each sequence operator, or by doing a directed
search for particular execution outcomes. PWTER is available in the supplementary material.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:22 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

8 REFINEMENTS AND ADDITIONAL FEATURES

In the paper so far, we have assumed that registers are assigned at most once. We have done this
primarily for readability. In the first subsection below, we drop this assumption, instead using
substitution to rename registers. We use a set of registers indexed by event identifier: Sg = {s, |
e € &}. By assumption (§3.1), these registers do not appear in programs: S[N/s.] = S. The resulting
semantics satisfies redundant read elimination.

In the remainder of this section we consider several mostly-orthogonal features: address calcu-
lation, if-introduction, and read-modify-write operations. Address calculation and if-introduction
do have some interaction, and we spell out the combined semantics in §8.5.

It is worth pointing out that address calculation and if-introduction only affect the semantics of
read and write. RMws introduce new infrastructure in order to ensure atomicity while supporting
Arm’s load-exclusive and store-exclusive operations.

These extensions preserve all of the program transformation discussed thus far, and apply equally
to the various semantics we have discussed: PwT, PwT-mcA;, PwT-McaA,, and PwT-C11. The re-
sults discussed in §5 also apply equally, with the exception of Rmws, which are excluded from the
proof of DRF-sc and from the proof of lowering to Arms8.

8.1 Register Recycling and Redundant Read Elimination

jmm Test Case 2 [Pugh 2004] states the following execution should be allowed “since redundant
read elimination could result in simplification of r=s to true, allowing y := 1 to be moved early”

ri=x;s:=x; if(r=s){y:=1} || x:=y
‘") e

Under the semantics of Fig. 1, the precondition of e in the independent case is
(1=r Vv x=r) = (1=s V r=s) = (r=s), (*)

which is equivalent to (x=r) = (1=s) = (r=s), which is not a tautology, and thus Fig. 1 requires
order from d to e in order to complete the pomset.

This execution is allowed, however, if we rename registers using a map from event names to
register names. By using this renaming, coalesced events must choose the same register name. In
the above example, the precondition of e in the independent case becomes

(1=s¢ V x=5.) = (1=5¢ V 5¢=5¢) = (se=5¢), ()

which is a tautology. In (xx), the first read resolves the nondeterminism in both the first and the
second read. Given the choice of event names, the outcome of the second read is predetermined!
In (x), the second read remains nondeterministic, even if the events are destined to coalesce.

Test Cases 17-18 [Pugh 2004] also require coalescing of reads. Contrary to the claim, the seman-
tics of Jagadeesan et al. validates neither redundant load elimination nor these test cases.

Definition 8.1. Let [[-] be defined as in Fig. 1, changing r4 of READ:
(R4a) if e € EN D then 72 (¢) = (x(e) = v=s,) = ¥[se/r],
(r4b) if e € E\ D then 7P (¢) = (x(e) = (v=s, V x=5,)) = ¥[se /7],
(R4c) if E = 0 then 7 (¢) = (Vs) ¢/[s/r].

With this semantics, it is straightforward to see that redundant load elimination is sound:

[r:=xt;s:=xt] 2 [r:=x"; s:=7r]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:23

As a further example, consider Fig. 5 of Sev¢ik and Aspinall [2008], referenced by Paviotti et al.
[2020, §6.4]. Consider the case where the reads are merged, both seeing 1:

r:=y; if(r=1){s:=y; x:=s}yelse{x:=1}

In order to be independent of both reads, we take the precondition ¢ to be:
(1=r vy=r) = [r=1 A ((1=s V y=s) = s=1)] V [r#1]

Then collapsing r and s and substituting the initial value of y (say 0), we have a tautology:
(1=r v 0=r) = [r=1 A ((1=r v 0=r) = r=1)] Vv [r#1]

Support for register recycling requires predicate transformers, which allow substitution, rather
than simple postconditions.

8.2 Read-Modify-Write Operations

To support RMWs, we extend the syntax:
S u= -+ | r:=CAS*V([L],M,N) | r:=FADD*"([L],M) | r:=EXCHG*"([L], M)

We require that r does not occur in L. Semantically, we add a relation ™% C E X E that relates
the read of a successful RMw to the succeeding write.
Definition 8.2. Extend the definition of a pomset as follows.

(M10) rmw : E — E is a partial function capturing read-modify-write atomicity, such that
(M10a) if d "™ e then A(e) blocks A(d),

(M10b) if d ™% e thend < e,

(m10c) if A(c) overlaps A(d) and d ™% e then ¢ < e implies ¢ < d and d < c implies e < c.

Extend the definition of SEQ, IF and PAR to include:

(s10) (110) (P10) rmw = (rmw; U rmws,),

Let READ’ be defined as for READ, adding the constraint:

(r4d) if (E N D) = 0 then 7P (¢) = ¢.

If P € CAS(r, x, M, N, p, v) then P € SEQ(READ'(r, x, u), IF(r=M, WRITE(x, N, v), SKIP)) and
(u10) if A(e) is a write then there is a read A(d) such that k(e) F k(d) and d —% e.

[r:=CAS*" (x, M, N)] = CAS(r, x, M, N, i, v)

FADD and EXCHG are similar. These definitions ensure atomicity and support lowering to Arm
load/store exclusive operations. See Jagadeesan et al. [2020] for examples.

One subtlety of the definition is that we use READ’ rather than READ: for RMws, the independent
case for aread is the same as the empty case. To see why this should be, consider the relaxed variant
of the cprF example from Lee et al. [2020], using READ rather than READ’.

x:20; (r:=FADD™™ (2, 1); iF (I {if (1) {x:= 03} || r:=FADD™™ (x, 1) if (1r){y:= 1))
[— T rmw,
Wro)—(fr0) S (Wet) (Raiy (Fxa) > (@)

A write should only be visible to one FADD instruction, but here the write of 0 is visible to two!
This is allowed because, using READ instead of READ’, no order is required from (Rx0) to (Wy1)
in the last thread.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:24 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

To see why, consider the independent transformers of the last thread and initializer:
x:=0 r:=FADD™™(x, 1) if(r){y:=1}
ylo/x] [(0=r vx=r) = y[1/x]| (Rx0}>(Wx1) yl1/y]| (=0 [Wy1)

After sequencing, the precondition of (Wy1) is a tautology: (0=r V 0=r) = r=0.
By including r4d, READ’ constrains the independent predicate transformer of the FADD:

x:=0 r:=FADD™ "™ (x, 1) if(r){y:=1}
7 (225D

After sequencing, the precondition of (Wy1) is r=0, which is not a tautology. This forces any
top-level pomset to include dependency order from (Rx0) to (Wy1).

8.3 If-Introduction (aka Case Analysis)

In order to model sequential composition, we must allow inconsistent predicates in a single pomset,
unlike PWP [Jagadeesan et al. 2020]. For example, if S = (x :=1), then the semantics Fig. 1 does
not allow:

if(M){x:=1}; S; if(=-M){x:=1}

(o))

However, if S = (if (=M){x:=13}; if (M){x :=1}), then it does allow the execution. Looking at
the initial program:

if(M){x:=13} x:=1 if(=M){x:=1}

Wl

The difficulty is that the middle action can coalesce either with the right action, or the left, but

not both. Thus, we are stuck with some non-tautological precondition. Our solution is to allow a

pomset to contain many events for a single action, as long as the events have disjoint preconditions.
Def. 8.3 allows the execution, by splitting the middle command:

if(M){x:=1} x:=1 if(=M){x:=1}
e M) ()
Coalescing events gives the desired result.
This is not simply a theoretical question; it is observable. For example, the semantics of Fig. 1

does not allow the following, since it must add order in the first thread from the read of y to one
of the writes to x.

ri=y; if(rN{x:=13}; x:=1; if(=r){x:=1}; z:=r
|| if () {x:=0; if(x){y:=13}}

We show the rules for write and read.? The rule for fences requires similar treatment.
8The Coq development uses k rather than = in w4 and 3. Given the quantification over ¢, these are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:25

Definition 8.3. If P € WRITE(x, M, p) then (Fv: E— V) (3¢ : E —> D)

(w1) if ¢g A ¢ is satisfiable then d = e, (w5) P () = Y [M/x][K(E)/Qx],
(W3) A(e) = WHxo,, (w6) v =K(E),
(W4) k(e) = ¢ A M=v,, (W7) ¢e[N/sa]l = Pe.
If P € READ(r, x, i) then (Jo : E—> V) (3¢ : E—> D)
(R1) if pg A ¢ is satisfiable then d = e, (r5a) if p C rlx then v/ = tt,
(r2) A(e) = R¥xu, (r5b) if p 3 acq then v = K(E),
(®3) K(e) = ¢e A Qx, (R6) ¢e[N/sal = ge.
®4) 7°(Y) = Acernp Pe = (k(e) = ve=se) = Y[se/r]

A /\eeE\D Pe = (xk(e) = (ve=s, V x=5,)) = Y[s¢/7]
A Neee =Pe) = (Vs) Y[s/r]
The definition allows multiple events to represent a single action, with disjoint preconditions. The
predicate transformers are derived from those defined for the conditional. w7 and Rr6 require that
the predicates do not mention registers in Sg.
This modification validates Lemma 3.6e, f, and d as equations.
We show how to combine address calculation and if-introduction in §8.5.

8.4 Address Calculation

Inevitably, address calculation complicates the definitions of WRITE and READ. In this section, we
develop a flat memory model, which does not deal with provenance [Lee et al. 2018].

Definition 8.4. Within a pomset P, let K(x) = \/ {x(e) | e € E A A(e) = Wx}.
If P € WRITE(L, M, p) then (3£ € V) (Fv € V)
(w1) if |E] < 1, (w4) 22 () = Ake L=k = ¢ [M/KI][K(TKD)/Qua],
(w2) Ae) = WH (], (w5) v = K(E).
(w3) k(e) = L= A M=o,

If P € READ(r, L, p) then (3¢ € V) (Jv € V)

(r1) if [E] < 1, (R4c) if E = @ then 72 (¢) = (Vs) ¢[s/r],
(r2) A(e) = RV [{]v (r5a) if p C rIx then v/ = tt,
(R3) x(e) = L=t A Qra, (R5b) if 4 I acq then v/ = K(E).

(r4a) if e € EN D then 72 (¢)) = (k(e) = v=s.) = ¥[s./r],

(rdb) if e € E\ D then 7° (¢) = (k(e) = (v=s, V [£1=s.)) = ¢[se/7],

The combination of read-read independency (§3.7) and address calculation is somewhat delicate.
Consider the following program, from Jagadeesan et al. [2020, §5], where initially x=0, y=0, [0]=0,
[11=2, and [2]=1. It should only be possible to read 0, disallowing the attempted execution below:

ri=x;s:=[l;y:=s||r:=y;s:=0]; x:=s

(aooa)

This execution would become possible, however, if we were to remove (L=¢) from rR4—it is included
in k. In this case, (Ry2) would not necessarily be dependency ordered before (Wx1).

8.5 Combining Address Calculation and If-Introduction

Def. 8.4 is naive with respect to merging events. Consider the following example:
[r1:=0; [0]:=!r [r1:=0; [0]:=!r

(r=1{Wri0) d[r:l |Wolo) ‘ (r=0[WE010}>(r=0 [WIa1)

c

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:26 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Merging, we have:
if(M){[r]:=0; [0] :='r}else{[r]:=0; [0] :=!r}
‘(= [Wimo) “(r=ovr=1 [W0y (r=0 [W)

The precondition of W[0] 0 is a tautology; however, this is not possible for ([r] :=0; [0] :=!r) alone.
Def. 8.5 enables this execution using if-introduction. Under this semantics, we have:

[r]1:=0 [ol:=!r
(r=1]Wmo) d[r:o | W00) d[r:1 [Wo10) (r=0[Wo1)

c

Sequencing and merging:
0rl:=0; [0]:=!r
(=1 [Wiio) “(r=ov r=1 [Wiolo}—(r=0 [Wio1)

c

The precondition of (W[0]0) is a tautology, as required.
Def. 8.5 is a mash-up of the Def. 8.3 and Def. 8.4.

Definition 8.5. If P € WRITE(L, M, p) then (3¢ :E—> V) (v :E—>V) () : E— D)

(w1) if ¢pg A P, is satisfiable then d = e, (W4) 2 () = Agey L=k = ¢[M/k] [K(IK])/Qra],
(W2) A(e) = WHL] o,, (w5) v =K(E),
(W3) k(€) = g A L=t A M=v,, (W6) $e[N/5a] = .

If P € READ(r, L, p) then (3¢ :E—> V) (Fvo:E—>V) (¢ : E > D)

(R1) if ¢pg A P, is satisfiable thend = e, (R5a) if p C rIx then v = tt,
(r2) A(e) = RH L]0, (r5b) if g 3 acq then v = K(E),
(R3) K(E) = ¢e A L=te A Q[le]s (Ré) ¢e [N/Sd] = d)e'

(R4) 7°(Y) = Neepnp $e = (k(€) = ve=s.) = Y[s./r]

A /\eeE\D Pe = (k(e) = (ve=se V [le]=s¢c)) = Y[se/r]
A Neer =Pe) = (¥s) Y[s/r],

9 RELATED WORK

Marino et al. [2015] argue that the “silently shifting semicolon” is sufficiently problematic for pro-
grammers that concurrent languages should guarantee sequential abstraction, despite the perfor-
mance penalties (see also Liu et al. [2021]). In this paper, we take the opposite approach. We have
attempted to find the most intellectually tractable model that encompasses all of the messiness of
relaxed memory.

There are two prior studies of relaxed memory that include precise calculation of semantic
dependencies—neither gives the semantics of sequential composition in direct style. First, Paviotti
et al. [2020] defined MrD, which calculates dependencies using event structures rather than logic.
This strategy is brittler than ours, leading to false positives (§3.8). Second, Jagadeesan et al. [2020]
defined PwP, using logical entailment to define dependency. Although PwT is based on PwP, there
are many differences. Some of these are motivated by requirements unique to PwT (see §3.9). Other
differences are stylistic: For example, we use termination conditions rather than termination ac-
tions—our formulation fixes an error in Jagadeesan et al.’s definition of parallel composition. We
also fix an error in their treatment of redundant read elimination (§8.1).

Kavanagh and Brookes [2018] define a semantics using pomsets without preconditions. Instead,
their model uses syntactic dependencies, thus invalidating many compiler optimizations. They also
require a fence after every relaxed read on Arm8. Pichon-Pharabod and Sewell [2016] use event
structures to calculate dependencies, combined with an operational semantics that incorporates
program transformations. This approach seems to require whole-program analysis.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:27

Other studies of relaxed memory can be categorized by their approach to dependency calcula-
tion. Hardware models use syntactic dependencies [Alglave et al. 2014]. Many software models
do not bother with dependencies at all [Batty et al. 2011; Cox 2016; Watt et al. 2020, 2019]. Oth-
ers have strong dependencies that disallow compiler optimizations and efficient implementation,
typically requiring fences for every relaxed read on Arm8 [Boehm and Demsky 2014; Dolan et al.
2018; Jeffrey and Riely 2016; Lahav et al. 2017; Lamport 1979]. Many of the most prominent models
are operational models based on speculative execution [Chakraborty and Vafeiadis 2019; Cho et al.
2021; Jagadeesan et al. 2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005].

Morally, PwT fits between the strong models and the speculative ones. Looking at the details,
however, PWT-McA is incomparable to both RC11 [Lahav et al. 2017] and the promising semantics
[Kang et al. 2017], to take two examples. RC11 allows non-Mca behaviors that PwT-mca disallows.
PwT-mMcA has a weaker notion of coherence than the promising semantics.

Jagadeesan et al. [2020] argue that the speculative models allow too many executions, result-
ing in a failure of temporal reasoning and potentially jeopardizing type safety and other security
properties. In a similar vein, Cho et al. [2021] argue that local DRF guarantees are violated when
read-introduction is followed by if-introduction, branching on the read just introduced. These op-
timizations are validated by the speculative models—Cho et al. manage to avoid the problem by
adopting a sub-optimal lowering for Rmws. PwT does not suffer from this problem, since PwT does
not validate read-introduction. There appears to be a genuine tension between temporal reasoning,
as supported by PwT, and read-introduction, as supported by the speculative models.

Other work in relaxed memory has shown that tooling is especially useful to researchers, ar-
chitects, and language specifiers, enabling them to build intuitions experimentally [Alglave et al.
2014; Batty et al. 2011; Cooksey et al. 2019; Paviotti et al. 2020]. Unfortunately, it is not obvious
that tools can be built for all thin-air-free models: the calculation of Pichon-Pharabod and Sewell
[2016] does not have a termination proof for an arbitrary input; the enormous state space for the
operational models of Kang et al. [2017] and Chakraborty and Vafeiadis [2019] is daunting for a
tool builder—and as yet no tool exists for automatically evaluating these models. We described a
tool for automatically evaluating PwT in §7.

10 LIMITATIONS AND FUTURE WORK

This paper is the first to present a direct denotational semantics for sequential composition that
can be efficiently compiled to modern cpus. We defined two models: PwT-C11 solves the out-of-
thin-air problem for C11, and PwT-mca solves it for safe languages such as Java and Javascript.

Our work has several limitations, providing opportunities for future work:

PwT-C11 can be lowered efficiently to any architecture supported by C11, but inherits the top-
level axioms of RC11, compromising compositionality. PwT-Mca is as a compositional as a model
of concurrent imperative programming can be, but is limited to Mca architectures for optimal
lowering. It would be interesting to explore the middle ground to find a fully compositional model
that supports optimal lowering to all modern architectures.

As mentioned in §9, some safety guarantees may be violated when read-introduction is followed
by if-introduction, branching on the read just introduced. Nonetheless, read-introduction is ubiq-
uitous in some compilers [Lee et al. 2017]. It would be interesting to know the cost of restricting
this optimization. In a similar vein, PwT-Mca; is a simpler model than PwT-mca,, but requires
fences on acquiring reads for Arm3. It would be illuminating to find out what the performance
penalty is for these fences.

We have defined the soundness of compiler optimizations in the model, rather than contextually:
S’ is a sound refinement of S if [S’] € [S]. This approach has several advantages—for example, it
is immediate that a sound optimization is sound in any context. It also has a disadvantage: some

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:28 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

optimizations complicate the semantics. For example, PwT-Mmca does not validate access elimi-
nation, such as store-forwarding and dead-write-removal—consider that complete executions of
[x:=1; r:=x] must include a read action and that complete executions of [x :=1; x :=2] must
include two write actions. As another example, PwT-Mca does not validate the reverse inclusions
for Lemma 3.6g—consider that [if(r){x:=1}else {x :=2}] has an augmented (Lemma 3.7) ex-
ecution with (r=0 | Wx2) — (r#0 | Wx1), whereas [if (r){x:=1}; if(!r){x:=23}}] has no
such execution. We expect that these optimizations can be validated, at the cost of complicating
the semantics. For access elimination, it is likely sufficient to allow events with different actions
to merge. For Lemma 3.6g, it is likely sufficient to encode delay in the logic—the problem in the
execution above is that delay introduces order even when the preconditions are disjoint.

We have not treated loops, although we expect that the usual approach of showing continuity
for all the semantic operations with respect to set inclusion would go through. Paviotti et al. [2020]
use step-indexing to account for loops; perhaps this approach could be adapted.

While we have mechanized some proofs, most of our proofs are informal. In particular, we have
only a pen-and-paper proof showing that PwT-Mca supports optimal lowering to Arm8. The same
is true for local data race-freedom (LDRF-sc)—additionally, our proof sketch for LDRF-sc elides
rRMWS, which have caused complications in other models [Cho et al. 2021].

Supplementary material for this paper is available at https://weakmemory.github.io/pwt.

Acknowledgements

This paper has been greatly improved by the comments of the anonymous reviewers. James Riely
was supported by the National Science Foundation under grant No. CCR-1617175. Mark Batty and
Simon Cooksey were supported by the EPSRC under grant Nos. EP/V000470/1 and EP/R032971/1,
and by VeTSS. Anton Podkopaev was supported by JetBrains Research.

REFERENCES

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal
Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2, Article 8 (July 2021), 54 pages. https:
//doi.org/10.1145/3458926

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining
for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty. 2015. The C11 and C++11 concurrency model. Ph. D. Dissertation. University of Cambridge, UK.

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of Pro-
gramming Language Concurrency Semantics. In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan
Vitek (Ed.). Springer, 283-307. https://doi.org/10.1007/978-3-662-46669-8_12

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas,
USA) (POPL ’11). ACM, New York, NY, USA, 55-66. https://doi.org/10.1145/1926385.1926394

Hans-J. Boehm. 2019. Out-of-thin-air, Revisited, Again (Revision 2). https://wg21.link/p1217.

Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-thin-air Results. In Proceedings of the Work-
shop on Memory Systems Performance and Correctness (Edinburgh, United Kingdom) (MSPC ’14). ACM, New York, NY,
USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996), 145-163.
https://doi.org/10.1006/inc0.1996.0056

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. 2007. The Java Memory Model: Operationally, Denotationally,
Axiomatically. In Programming Languages and Systems, 16th European Symposium on Programming, ESOP 2007, Braga,
Portugal, March 24 - April 1, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.).
Springer, 331-346. https://doi.org/10.1007/978-3-540-71316-6_23

Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the concurrency semantics of an LLVM fragment. In Proceed-
ings of the 2017 International Symposium on Code Generation and Optimization, CGO 2017, Austin, TX, USA, February
4-8, 2017, Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang (Eds.). ACM, 100-110. http://dl.acm.org/citation.cfm?id=

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://weakmemory.github.io/pwt
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
https://wg21.link/p1217
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-540-71316-6_23
http://dl.acm.org/citation.cfm?id=3049844
http://dl.acm.org/citation.cfm?id=3049844

The Leaky Semicolon 54:29

3049844

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with event structures. PACMPL 3, POPL (2019),
70:1-70:28. https://doi.org/10.1145/3290383

Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular data-race-freedom guarantees in the promis-
ing semantics. In PLDI 21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Im-
plementation, Virtual Event, Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 867-882.
https://doi.org/10.1145/3453483.3454082

Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore, and Mikolas Janota. 2019. PrideMM: Second Order Model Check-
ing for Memory Consistency Models. In Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11,
2019, Revised Selected Papers, Part II (Lecture Notes in Computer Science, Vol. 12233), Emil Sekerinski, Nelma Moreira,
José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Campos, Troy
Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas
(Eds.). Springer, 507-525. https://doi.org/10.1007/978-3-030-54997-8_31

Russ Cox. 2016. Go’s Memory Model. http://nil.csail.mit.edu/6.824/2016/notes/gomem.pdf.

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings (Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337-340.
https://doi.org/10.1007/978-3-540-78800-3_24

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18,
8 (1975), 453-457. https://doi.org/10.1145/360933.360975

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA,
USA) (PLDI 2018). ACM, New York, NY, USA, 242-255. https://doi.org/10.1145/3192366.3192421

Brijesh Dongol, Radha Jagadeesan, and James Riely. 2019. Modular transactions: bounding mixed races in space and
time. In Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2019, Washington, DC, USA, February 16-20, 2019, Jeffrey K. Hollingsworth and Idit Keidar (Eds.). ACM, 82-93. https:
//doi.org/10.1145/3293883.3295708

William Ferreira, Matthew Hennessy, and Alan Jeffrey. 1996. A Theory of Weak Bisimulation for Core CML. In Proceedings of
the 1996 ACM SIGPLAN International Conference on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA,
May 24-26, 1996, Robert Harper and Richard L. Wexelblat (Eds.). ACM, 201-212. https://doi.org/10.1145/232627.232649

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.
2016. Modelling the ARMv8 architecture, operationally: concurrency and ISA. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 608-621. https://doi.org/10.1145/2837614.2837615

Jay L. Gischer. 1988. The equational theory of pomsets. Theoretical Computer Science 61, 2 (1988), 199-224. https://doi.org/
10.1016/0304-3975(88)90124-7

C.AR. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576-580. https:
//doi.org/10.1145/363235.363259

Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simple model of relaxed memory.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 194:1-194:30. https://doi.org/10.1145/3428262

Radha Jagadeesan, Corin Pitcher, and James Riely. 2010. Generative Operational Semantics for Relaxed Memory Models.
In Programming Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 307-326. https:
//doi.org/10.1007/978-3-642-11957-6_17

Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 16, New York, NY, USA, July 5-8, 2016,
M. Grohe, E. Koskinen, and N. Shankar (Eds.). ACM, 759-767. https://doi.org/10.1145/2933575.2934536

Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory. Logical
Methods in Computer Science 15, 1 (2019), 25 pages. https://doi.org/10.23638/LMCS-15(1:33)2019

Jeehoon Kang. 2019. Reconciling Low-Level Features of C with Compiler Optimizations. Ph.D. Dissertation. Seoul National
University, Seoul, South Korea. https://sf.snu.ac.kr/jeehoon kang/thesis/

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-
memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 175-189. http:
//dl.acm.org/citation.cfm?id=3009850

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

http://dl.acm.org/citation.cfm?id=3049844
http://dl.acm.org/citation.cfm?id=3049844
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1007/978-3-030-54997-8_31
http://nil.csail.mit.edu/6.824/2016/notes/gomem.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3293883.3295708
https://doi.org/10.1145/3293883.3295708
https://doi.org/10.1145/232627.232649
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-11957-6_17
https://doi.org/10.1007/978-3-642-11957-6_17
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.23638/LMCS-15(1:33)2019
https://sf.snu.ac.kr/jeehoon.kang/thesis/
http://dl.acm.org/citation.cfm?id=3009850
http://dl.acm.org/citation.cfm?id=3009850

54:30 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Ryan Kavanagh and Stephen Brookes. 2018. A denotational account of C11-style memory. CoRR abs/1804.04214 (2018),
13 pages. arXiv:1804.04214 http://arxiv.org/abs/1804.04214

Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent shared memory. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 211-226. https://doi.org/10.1145/3385412.3385966

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 649-662. https://doi.org/10.1145/2837614.
2837643

Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM 2016:
Formal Methods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings (Lecture Notes in
Computer Science, Vol. 9995), John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.).
Springer, 479-495. https://doi.org/10.1007/978-3-319-48989-6_29

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in
C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618-632. https://doi.
org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Comput. 28, 9 (Sept. 1979), 690-691. https://doi.org/10.1109/TC.1979.1675439

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling high-level
optimizations and low-level code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA (2018), 125:1-125:28. https://doi.org/
10.1145/3276495

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.
Lopes. 2017. Taming undefined behavior in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev
(Eds.). ACM, 633-647. https://doi.org/10.1145/3062341.3062343

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.
2020. Promising 2.0: global optimizations in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020,
Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 362-376. https://doi.org/10.1145/3385412.3386010

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2019. Accelerating Sequential Consistency for Java with Speculative
Compilation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 16-30. https://doi.org/10.1145/3314221.3314611

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2021. Safe-by-Default Concurrency for Modern Programming Languages.
ACM Trans. Program. Lang. Syst. 43, 3, Article 10 (Sept. 2021), 50 pages. https://doi.org/10.1145/3462206

Nuno Lopes. 2016. RFC: Killing undef and spreading poison. https://lists.llvm.org/pipermail/llvm-dev/2016-October/
106182.html.

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. SIGPLAN Not. 40, 1 (Jan. 2005), 378-391.
https://doi.org/10.1145/1047659.1040336

Daniel Marino, Todd D. Millstein, Madanlal Musuvathi, Satish Narayanasamy, and Abhayendra Singh. 2015. The Silently
Shifting Semicolon. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, Califor-
nia, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 177-189. https://doi.org/10.4230/LIPIcs.SNAPL.2015.177

Tan A. Mason and Carolyn L. Talcott. 1992. References, Local Variables and Operational Reasoning. In Proceedings of the
Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992. IEEE
Computer Society, 186-197. https://doi.org/10.1109/LICS.1992.185532

Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. 2016. Out-of-Thin-Air Execution is vacuous. http://wg21.link/
p0422.

Robin Milner. 1977. Fully Abstract Models of Typed lambda-Calculi. Theor. Comput. Sci. 4, 1 (1977), 1-22. https://doi.org/
10.1016/0304-3975(77)90053-6

Peter O'Hearn. 2007. Resources, Concurrency, and Local Reasoning. Theor. Comput. Sci. 375, 1-3 (April 2007), 271-307.
https://doi.org/10.1016/].tcs.2006.12.035

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed
Dependencies in Weak Memory Concurrency. In Programming Languages and Systems - 29th European Symposium on
Programming, ESOP 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),
Peter Miiller (Ed.). Springer, 599-625. https://doi.org/10.1007/978-3-030-44914-8_22

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://arxiv.org/abs/1804.04214
http://arxiv.org/abs/1804.04214
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3314221.3314611
https://doi.org/10.1145/3462206
https://lists.llvm.org/pipermail/llvm-dev/2016-October/106182.html
https://lists.llvm.org/pipermail/llvm-dev/2016-October/106182.html
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.4230/LIPIcs.SNAPL.2015.177
https://doi.org/10.1109/LICS.1992.185532
http://wg21.link/p0422
http://wg21.link/p0422
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/978-3-030-44914-8_22

The Leaky Semicolon 54:31

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation
and Avoids Thin-air Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 622-633. https://doi.org/10.
1145/2837614.2837616

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223-255. https:
//doi.org/10.1016/0304-3975(77)90044-5

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the gap between programming languages and hardware
weak memory models. Proc. ACM Program. Lang. 3, POPL (2019), 69:1-69:31. https://doi.org/10.1145/3290382

Vaughan R. Pratt. 1985. Some Constructions for Order-Theoretic Models of Concurrency. In Logics of Programs, Conference,
Brooklyn College, New York, NY, USA, June 17-19, 1985, Proceedings (Lecture Notes in Computer Science, Vol. 193), Rohit
Parikh (Ed.). Springer, 269-283. https://doi.org/10.1007/3-540-15648-8_22

William Pugh. 1999. Fixing the Java Memory Model. In Proceedings of the ACM 1999 Conference on Java Grande, JAVA
’99, San Francisco, CA, USA, June 12-14, 1999, Geoftrey C. Fox, Klaus E. Schauser, and Marc Snir (Eds.). ACM, 89-98.
https://doi.org/10.1145/304065.304106

William Pugh. 2004. Causality Test Cases. https://perma.cc/PJT9-XS8Z

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. PACMPL 2, POPL (2018), 19:1-19:29.
https://doi.org/10.1145/3158107

Jaroslav Sev¢ik. 2008. Program Transformations in Weak Memory Models. PhD thesis. Laboratory for Foundations of
Computer Science, University of Edinburgh.

Jaroslav Sev¢ik and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In ECOOP
2008 - Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings (Lecture
Notes in Computer Science, Vol. 5142), Jan Vitek (Ed.). Springer, 27-51. https://doi.org/10.1007/978-3-540-70592-5_3

Joel Spolsky. 2002. The Law of Leaky Abstractions. https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-
abstractions/.

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. 2018. A Separation Logic for a
Promising Semantics. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801). Springer, 357-384.
https://doi.org/10.1007/978-3-319-89884-1_13

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th. Eugster,
and Cristina V. Lopes (Eds.). ACM, 867-884. https://doi.org/10.1145/2509136.2509532

Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod,
and Shu-yu Guo. 2020. Repairing and mechanising the JavaScript relaxed memory model. In Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 346-361. https://doi.org/10.1145/3385412.3385973

Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. 2019. Weakening WebAssembly. Proc. ACM Program. Lang. 3,
OOPSLA (2019), 133:1-133:28. https://doi.org/10.1145/3360559

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1145/3290382
https://doi.org/10.1007/3-540-15648-8_22
https://doi.org/10.1145/304065.304106
https://perma.cc/PJT9-XS8Z
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-540-70592-5_3
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3360559

54:32 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

A COMPLETE SEMANTICS FOR PWT-MCAT1

Here we combine the features of §§3.3, 3.7, 4.1, 8.1, 8.2, 8.3, and C.5. Address calculation can be
added by using the definition of WRITE and READ from §8.5.
The semantics is built from the following.

e a set of events &, ranged over by e, d, c, and subsets ranged over by E, D, C,
e a set of logical formulae ®, ranged over by ¢, ¢, 6,
e a set of actions A, ranged over by a, b,
o a family of quiescence symbols Q,, indexed by location.
We require that
e registers include Sg = {s, | e € &} which do not appear in commands: S[N/s.] = S,
o formulae include tt, ff, Qy, and the equalities (M=N) and (x=M),
o formulae are closed under —, A, V, =, and substitutions [M/r], [M/x], [#/Qx],
there is a relation k between formulae, capturing entailment,
E has the expected semantics for =, =, A, V, = and substitutions [M/r], [M/x], [¢/Qx],
there is a subset of A, distinguishing read actions,
o there are four binary relations over A X A: delays and matches C blocks C overlaps.
Let EC & and A : E — A. Define 9,1 = /\{(e,u)e(EXV)M(e):(RU)}(sé‘:v)'
We say that ¢ is A-inconsistent if ¢ A 0, is unsatisfiable.
A A-predicate transformer is a function 7 : & — & such that

x1) T(Y1 A) = (Y1) A (),
(x2) (Y1 V ¥2) = (Y1) V 7 (¥),
(x3) if ¢ E ¢, then 7(¢) E 7(¥),
)

(x4) if ¥ is A-inconsistent then 7 (i) is A-inconsistent.

A family of A-predicate transformers consists of a A-predicate transformer 7 for each D C &, such
that if C N E C D then 7€(¢) £ 72 (¢)).

A pomset with predicate transformers (PwT) is a tuple (E, A, k, 7, v, <, rf, rmw) where
(M1) E C & is a set of events,
(M2) A : E —> A defines an action for each event,
(M3) x : & — @ defines a precondition for each event, such that
(M3a) e ¢ E implies x(e) = ff,
(M4) 7 : 26 — & — @ is a family of A-predicate transformers over E,
(M5) V' : @ is a termination condition, such that
(M5a) v E 7E(tt),
(M6) < C E X E, is a strict partial order capturing causality.
(m7) rf € E X E is an injective relation capturing reads-from, such that
(m7a) if d - e then A(d) matches A(e),
(M7b) if d 3 e and A(c) blocks A(e) then eitherc < dore < c,
(m7c) ifd 3y e thend < e,
(M10) rmw : E — E is a partial function capturing read-modify-write atomicity, such that
(M10a) if d —% e then A(e) blocks A(d), and d < e,
(M10b) if d "™ e and A(c) overlaps A(d) then ¢ < e implies ¢ < d and d < ¢ implies e < c.

A PwT is complete if
(c3) k(e) is a tautology (for every e € E), (c7) if A(e) is a read then there is some d 3 e.
(c5) v is a tautology,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:33

If P € SKIP then E = 0 and 7°(¢/) = ¢/ and v/ = tt.

If P € ASSIGN(r, M) then E = 0 and 7°(¢) = ¢/[M/r] and v/ = tt.

Suppose R; is a relation in E; X E;. We say R respects R; if RN (E; X E;) = R;.
If P € PAR(P,, P») then (3P, € Py) (3P, € P»)

(Pl) EZ(ElLﬂEz), (PS) \/E\/]/\\/z,

(r2) 1= (A1 U Ay), (p6) < respects <1 and <s,

(p3) k(e) = Kl(e) V ks (e), (p7) rf respects rf; and rf,

(®4) P (y) = L), (p10) rmw = (rmwy U rmwy).
If P € IF(p, P1, P2) then (3P, € Py) (TP, € P,)

(11) E = (E, U Ey), (15) V' = (P AV V(=g A V2),

(12) A = (A UAy), (16) < respects <; and <y,

(13) k(e) = (¢ Ak1(e)) V (=d A Kka(e)), (17) rf respects rf; and rf,

4) P = (P AWV (=g AT (), (110) rmw = (rmwy U rmwsy).
If P € SEQ(P1, P>) then (3P; € Py) (3P, € P»)

(s1) E = (E; U Ey), (85) v = Vi AT (Va),

(s2) 1= (A1 Uy, (s6) < respects <; and <,

(s3) k(e) = Kk1(e) V Ky (e), (s6a) if A;(d) delays A,(e) thend < e,

(s4) TP (y) = P(rlz)(lﬁ)), (s7) rf respects rf; and rf,,

(s10) rmw = (rmwj; U rmwy).

K (e) = {rfl(lcg(e)) if A(e) is a read

where

TlC(Kg(e)) otherwise, where C = {c | ¢ < e}
Let K(D) = V4epk(d). Note that K(0) = ff.
Letds, ={p €D |Veec E. VoeV. p=¢lv/s.]}.
If P € FENCE(p) then (3¢ : E — ®gs;)

(F1) if dg A ¢, is satisfiable then d = e, (F4) P (¥) = ¢,

(F2) A(e) = FH, (®5) v = K(E).

(F3) x(e) = ¢,
If P € WRITE(x, M,) then (Fv: E— V) (3¢ : E - Ds,.)

(w1) if ¢g A Pe is satisfiable then d =e, (w4) P(y) = y[M/x][K(E)/Qx],
(w2) A(e) = WHxo,, (w5) v = K(E).

(W3) k(e) = ¢ A M=v,,

If P € READ(r, x,) then (Jv: E— V) (3¢ : E — Dgs,)

(r1) if ¢pg A ¢ is satisfiable then d = e, (r5a) if u C rix then v/ = tt,
(r2) Ae) = R¥x0, (r5b) if g 3 acq then v = K(E).
(R3) k(e) = ¢e A Qy,

(®4) 72 (Y) = Aeepnp fe = (k(e) = ve=s.) = Y[se/7]
A Neep\p Pe = (k(€) = (ve=se V x=5.)) = Y[se/7]
A Neer =pe) = (Vs) Y[s/r]
If P € READ'(r, x, p) then (v : E — V) (3¢ : E — ®s,,) as for READ except

(®R4) °(Y) = Aecpnp $e = (x(€) = ve=s.) = Y[s./r]

A Neep\p Pe = (Vs) Y[s/r]
A(Neeg ~9e) = (¥s) Y s/r]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:34 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

If P € CAS(r, x, M, N, p, v) then (3P € SEQ(READ'(r, x, p), IF(r=M, WRITE(x, N, v), SKIP)))
(u10) if A(e) is a write then there is a read A(d) such that x(e) F k(d) and d ™% e.

If P € FADD(r, x, M, p, v) then (3P € SEQ(READ' (r, x, u), WRITE(x, r+M, v)))
(u10) if A(e) is a write then there is a read A(d) such that k(e) F k(d) and d —% e.

If P € EXCHG(r, x, M, u, v) then (3P € SEQ(READ'(r, x,), WRITE(x, M, v)))
(u10) if A(e) is a write then there is a read A(d) such that x(e) F k(d) and d ™% e.

IIVZ=M]] = ASSIGN(}’, M) [[F”]] = FENCE(/I) [[51-H'> Szﬂ = PAR([[Sl]], [[52]])
[x* := M] = WRITE(x, M, p) [skip] = SKIP [S15 So] = SEQ([Si], [S2])
[r:=x*] = READ(r, x, p) [if(M){S1}else{S:}] = IF(M#0, [S1], [Sz])

[r:=CAS""(x,M,N)] = CAS(r, x, M, N, p1, v)
[:= FADD*Y (x, M)] = FADD(r, x, M, 1, v)
[r := EXCHG"Y (x, M)]| = EXCHG(r, x, M, 1, v)

B LOWERING PwT-MCA TO ARM

For simplicity, we restrict to top-level parallel composition.

B.1 Arm executions
Our description of Arms8 follows Alglave et al. [2021], adapting the notation to our setting.

Definition B.1. An Arm8 execution graph, G, is tuple (E, A, poloc, lob) such that
(al1) E C & is a set of events,
(a2) A : E — A defines a label for each event,
(a3) poloc € EXE, is a per-thread, per-location total order, capturing per-location program order,
(a4) lob € E X E, is a per-thread partial order capturing locally-ordered-before, such that
(ad4a) poloc U lob is acyclic.

The definition of lob is complex. Comparing with our definition of sequential composition, it is

sufficient to note that lob includes

(r1) read-write dependencies, required by s3,

(12) synchronization delay of =gy, required by s6a,

(r3) sc access delay of >, required by sé6a,

(z4) write-write and read-to-write coherence delay of <., required by sé6a,
and that lob does not include

(L5) read-read control dependencies, required by s3,

(L6) write-to-read order of rf, required by m7c,

(L7) write-to-read coherence delay of s, required by s6a.

Definition B.2. Execution G is (co, rf, gcb)-valid, under External Global Consistency (EGc) if
(a5) co C E X E, is a per-location total order on writes, capturing coherence,
(a6) rf C E X E, is a relation, capturing reads-from, such that

(a6a) rf is surjective and injective relation on {e € E | A(e) isa read},

(a6b) if d 3 e then A(d) matches A(e),

(a6¢) poloc U co U rf U fr is acyclic, where e Iy cife ¢f d <% ¢ for some d,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:35

(A7) gcb 2 (co U rf) is a linear order such that
(a7a) if d -5 e and A(c) blocks A(e) then either ¢ 5 d or e 25 ¢,
(a7b) if e 1°% ¢ then either e £ cor (3d) d 5 e and d %S e but not d 1% ¢.

Execution G is (co, rf, cb)-valid under External Consistency (Ec) if

(a5) and (a6), as for EGc,
(a8) cb D (co U lob) is a linear order such that if d -5 e then either
(a8a) d <8 e and if A(c) blocks A(e) then either ¢ -3 d or e <& ¢, or
(a8b) d <2 ¢ and d %% ¢ and (Ac) A(c) blocks A(e) and d _polog o polog

Alglave et al. [2021] show that EGc and Ec are both equivalent to the standard definition of Arms8.
They explain EGc and Ec using the following example, which is allowed by Arm8.’

x:=l;ri=x;y:=r| 1:=y*%; s:=x

r

EGC drops lob-order in the first thread using A7b, since (Wx1) is not lob-ordered before (Wy1).

(gcb)

EC drops rf-order in the first thread using A8b.

(ch)

B.2 Lowering PWT-MCAT1 to Arm

The optimal lowering for Arm8 is unsound for PwT-McaA;. The optimal lowering maps relaxed
access to 1dr/str and non-relaxed access to 1dar/stlr [Podkopaev et al. 2019]. In this section, we
consider a suboptimal strategy, which lowers non-relaxed reads to (dmb.sy; ldar). Significantly,
we retain the optimal lowering for relaxed access. In the next section we recover the optimal
lowering by adopting an alternative semantics for m7c and s6a.

To see why the optimal lowering fails, consider the following attempted execution, where the
final values of both x and y are 2.

x:=2;r:=x% yi=r-1| y:=2;xrel:=1

Wxz (Wt} —(Wgz) (W) (gcb)
(Wazj{R==x2) Wiz (<)

This attempted execution is allowed by Arm3, but disallowed by our semantics.

If the read of x in the execution above is changed from acquiring to relaxed, then our semantics
allows the gcb execution, using the independent case for the read and satisfying the precondition
of (Wy1) by prepending (Wx2). It may be tempting, therefore, to adopt a strategy of downgrading
acquires in certain cases. Unfortunately, it is not possible to do this locally without invalidating

9We have changed an address dependency in the first thread to a data dependency.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:36 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

important idioms such as publication. For example, consider that (R™x1) is not possible for the
second thread in the following attempted execution, due to publication of (Wx2) via y:

x:=x+1; y'eI =1 x:=1; if(y*9&x*N{s:=2z} || z:=1; x=1

Wy (Wet) (R 1) (e (Re0) W) o (W)
‘_/

Instead, if the read of x is relaxed, then the publication via y fails, and (Rx1) in the second thread
is possible.

@D

Using the suboptimal lowering for acquiring reads, our semantics is sound for Arm. The proof
uses the characterization of Arm using EGcC.

THEOREM B.3. Suppose G; is (cos, rf1, gcby)-valid for S under the suboptimal lowering that maps
non-relaxed reads to (dmb.sy; 1dar). Then there is a top-level pomset P, € [S] such that E; = E,
/12 = /11, rfg = I’fl, and <y = ngl'

Proor. First, we establish some lemmas about Arms.

LeEMMA B.4. Suppose G is (co, rf, gcb)-valid. Then gcb 2 fr.

Proor. Using the definition of fr from a6c, we have e &f g <o ¢ and therefore A(c) blocks
A(e). Applying A7a, we have that either ¢ £ dore 25 ¢ Since geb includes co, we have

d 25 ¢, and therefore it must be that e 8 . O
LEmMMA B.5. Suppose G is (co, rf, gcb)-valid and c —— polog —— ¢, where A(c) blocks A(e). Thenc £ .
Proor. By way of contradiction, assume e £ o Ife —f ¢ then by A7 we must also have
5 = ¢, contradicting the assumptlon that gcb is a total order. Otherwise that there is some d # ¢

such that d - ¢, and therefore d &b e. B?r transitivity, d &b c. By the definition of fr, we have

oloc

e - ¢. But this contradicts A6c, since ¢ 2225 e. m]

We show that all the order required in the pomset is also required by Arm8. m7b holds since cb;
is consistent with co; and fr;. As noted above, lob includes the order required by s3 and s6a. We
need only show that the order removed from A7b can also be removed from the pomset. In order
for A7b to remove order from e to ¢, we must have d Lf) eandd —— olo POOC e but notd 2% ¢. Because
of our suboptimal lowering, it must be that e is a relaxed read; otherwise the dmb.sy would require
d °% ¢. Thus we know that s6a does not require order from e to c. By chaining r4b and w4, any
dependence on the read can by satisfied without introducing order in s3. O

B.3 Lowering PWT-MCA2 to Arm

We can achieve optimal lowering for Arm by weakening the semantics of sequential composition
slightly. In particular, we must lose M7c, which states that d -3 e implies d < e. Revisiting the
example in the last subsection, we essentially mimic the Ec characterization:

x:=2;r:=x% yi=r-1|y:=2; x®:=1

WG @
Here the rf relation contradicts order! We have both (Wx2) -3 (R%9x2) and (Wx2) <2 (R29x2).

We first show that Ec-validity is unchanged if we assume cb 2 fr:

LeEMMA B.6. Suppose G is Ec-valid via (co, rf, cb). Then there a permutation cb’ of cb such that G
is ECc-valid via (co, rf, cb”) and cb’” 2 fr, where fr is defined in Aé6c.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:37

ProoOF. Suppose e try e, By definition of fr, e &P g < ¢ for some d. We show that either (1)
e -8 ¢, or (2) c <3 e and we can reverse the order in cb’ to satisfy the requirements.

If A8a applies to d Lf) e, thene <R ¢, since it cannot be that ¢ =% d.

Suppose A8b applies to d - e and ¢ is from a different thread than e. Because it is a different
thread, we cannot have e 23 ¢, and therefore we can choose ¢ <8 einch’.

Suppose A8b applies to d -3 e and ¢ is from the same thread as e. Applying a6c to e % ¢, it

cannot be that ¢ "2 e, Since poloc is a per-thread-and-per-location total order, it must be that

| . .
e 225 ¢, Applying a4a, we cannot have e -3 ¢, and therefore we can choose ¢ <% einch’. O

Here is a contradictory non-example illustrating the last case of the proof:

x:=2;r:=x | x:=1

THEOREM B.7. Suppose G, is Ec-valid for S via (coy, rf1, cby) and that cb; 2 fry. Then there is a
top-level pomset P, € [S] such that E; = E1, Ay = Ay, rfy = rfy, and <, = cb;.

Proor. We show that all the order required in the pomset is also required by Arm8. m7b holds
since cby is consistent with co; and fry. As noted above, lob includes the order required by s3 and
s6a’.]

C DISCUSSION
C.1 Read-Read Dependencies, If-Introduction, and Java Final Field Semantics

One might worry that the lack of read-read dependencies could cause DRF-sc to fail. For example,
the following execution has a control dependency between the reads of the last thread, but this
order is not enforced, neither by our model, nor Arms8.

z:=1; 4 =1 | ri=g®9; X =1 || if (x){s:=2)

If the first read of the last thread is acquiring, then the execution is disallowed, since acquiring
reads are ordered with respect to the reads that follow.

z:=1; yrel =1 r:=y?9; x"® =1 || if (x9N {s:=z2}

Wwrely1 R 1 }»(Wrelx1 R3“9x1 Rz0

Arm8 enforces address dependencies between reads, but not control dependencies. To support if-
introduction (AkA case-analysis), we drop all dependencies between reads. This, in turn, invalidates
Java’s final field semantics.

(r:=1; [r1:=0; [rl:=1; x™ :=7) || (r:=x%9; s:=[r])

| (ADDR2)
M—)W[l]l Wrelx1 R2x1 (R [1]0

The acquire annotation is required to ensure publication. If address dependencies were enforced
between reads then the acquire annotation could be dropped. However, the compiler would need to
track address dependencies in order to ensure that if-introduction did not convert them to control
dependencies.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:38 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

C.2 Further Comparison to “Promising Semantics” [POPL 2017]

Recently, Cho et al. [2021] showed that certain combinations of compiler optimizations are incon-
sistent with local DRF guarantees. All of the examples that prove inconsistency have the same
shape: they combine read-introduction and if-introduction (aka, case analysis). Effectively, this
turns one read into two, where different conditional branches can be taken for the two copies of the
read. This is reminiscent of the type of bait and switch behavior noted by Jagadeesan et al. [2020]:
the promising semantics (ps) [Kang et al. 2017] and related models [Chakraborty and Vafeiadis
2019; Jagadeesan et al. 2010; Manson et al. 2005], fail to validate compositional reasoning of tem-
poral properties. Consider example ooTa4 from [Jagadeesan et al. 2020]:

y:=x || r:=y; if(b){x:=r;z:=r}yelse{x:=1} || b:=1

ED S D il L P =) (oo

Under all variants of PwT, this outcome is disallowed, due to the cycle involving x and y.!° Under
ps, this outcome is allowed by baiting with the else branch, then switching to the then branch,
based on a coin flip (b).

Cho et al. [2021] introduce more complex examples to show that the promising semantics fails
LDRF-sC.!! Here is one, dubbed LDRF-FAIL-PS.

if(x){FADD(w,1);y:=1;z:=1} || if (2){if ({FADD (w, 1)){x:=y}}else{x:=1}

Again, all variants of PwWT disallow the outcome due to the cycle involving x and y. It is allowed by
ps by baiting the second thread with x := 1 in the else branch, then switching to the then branch.
This shows some some structural resemblance to ooTa4, with z replacing b.

Cho et al. argue that the outcome of LDRF-FAIL-Ps is inevitable due to compiler optimizations.
The examples crucially involve the following sequence of operations:

e read-introduction,
e if-introduction, branching on the read just introduced.

We believe this combination of optimizations is unsound. This is obviously the case in C11: read-
introduction may cause undefined behavior (uB), due to the possible introduction of a data race.

The situation is more delicate in LLvm. The short version of the story is that load-hoisting fol-
lowed by case analysis is unsound in LLvM, without freeze. This happens because:

e read-introduction may result in the undefined value undef, due to the possible introduction
of a data race [Chakraborty and Vafeiadis 2017], and
e branching on an undefined value in LLvM results in UB.

LLvM delays UB using the undefined value. This allows LLvM to perform optimizations such as
load hoisting, where if (C){r:=x} is rewritten to s :=x; r :=C?s:r. Despite this, other optimiza-
tions regularly performed by LLvM are unsound [Lee et al. 2017]. An example is loop switching,
where while(C){if (Cy){S:}else {S,}} is rewritten to if(Cy){while(C;){S:}}else{while
(C1){S21}}. Freeze was introduced in 1LvM in order to make such optimizations sound by allow-
ing branch on frozen undef to give nondeterministic choice rather than us. In the RFC for freeze,

10All of the reads in 0oTa4 are cross-thread, so there is no difference between PwT-Mca; and PwT-Mmca,. For PwT-Cl11,
there is a cycle in rf U <.

11Cho et al. [2021] show that by restricting RMw-store reorderings, one can establish LDRF-sc for ps. We speculate that no
such restriction is required for PwT. (We did not treat RMws in our proof of LDRF-sC.)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:39

Lopes [2016] says: “Note that having branch on poison not trigger UB has its own problems. We be-
lieve this is a good tradeoff.” LDRF-FAIL-Ps demonstrates a concrete problem with this tradeoff. Other
compilers, such as Compcert, are more conservative [Lee et al. 2017, §9].

Thus, the difference between ps and PwT can be understood in terms of the valid program
transformations. ps allows reads to be introduced, with subsequent case analysis on the value
read. PwT validates case analysis, but invalidates read-introduction.

Allowing executions such as 0oTa4 and LDRF-FAIL-Ps also invalidates compositional reasoning
for temporal safety properties (see §5).

These differences highlight the subtle tensions between compiler optimizations and program
logics that are revealed by relaxed memory models. It is not possible to have everything one wants.
Thus, one is forced to choose which optimizations and reasoning principles are most important.'?

Finally, we note that it is possible that ps is properly weaker than PwT.

C.3 Further Comparison to “Pomsets with Preconditions” [OOPSLA 2020]

PwT-Mmca is closely related to PwP model of [Jagadeesan et al. 2020]. The major difference is that
PwT-Mca supports sequential composition. In the remainder of this section, we discuss other differ-
ences. We also point out some errors in [Jagadeesan et al. 2020], all of which have been confirmed
by the authors.

SussTITUTION. PWP uses substitution rather than Skolemizing. Indeed our use of Skolemization is
motivated by disjunction closure for predicate transformers, which do not appear in PwP. In Fig. 1,
we gave the semantics of read for nonempty pomsets as:
(r4a) if (EN D) # 0 then 7P () = v=r = ¢,
(rdb) if (E N D) = 0 then 7P (y) = (v=r V x=r) = ¥.
In PwP, the definition is roughly as follows:
(r4a’) if (EN D) # 0 then 72 () = y[o/r][v/x],
(r4b") if (EN D) = 0 then 7P () = ¢[v/r][v/x] A Y[x/r]
The use of conjunction in r4b’ causes disjunction closure to fail because the predicate transformer
() = ¢ A" does not distribute through disjunction, even assuming that the prime operations
do: (Y V) = (W VU0 A (W VL) £ (W AV (0 A) = T(Y) V T(12). See also §3.9.
The substitutions collapse x and r, allowing local invariant reasoning (LIR), as required by jMm
causality test case 1, discussed in §3.8. Without Skolemizing it is necessary to substitute [x/r],
since the reverse substitution [r/x] is useless when r is bound—compare with §C.8. As discussed
below (C.3), including this substitution affects the interaction of LIrR and downset closure.
Removing the substitution of [x/r] in the independent case has a technical advantage: we no
longer require extended expressions (which include memory references), since substitutions no
longer introduce memory references.
The substitution [x/r] does not work with Skolemization, even for the dependent case, since we
lose the unique marker for each read. In effect, this forces all reads of a location to see the same
values. Using this definition, consider the following:

ri=x;s:=x; if(r<s){y:=1%}

/_\
[1=x = 2=x = x<x | Wyl]

Although the execution seems reasonable, the precondition on the write is not a tautology.

12 Another example is the tension between load hoisting—forbidden in C11 but allowed by LrvM—and common subexpres-
sion elimination over an acquiring lock—allowed by C11 but forbidden by LLvm [Chakraborty and Vafeiadis 2017].

P vp) = @V s) and (%1 V)" = (9] VY.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://www.wolframalpha.com/input/?i=%28a+or+b%29+and+%28c+or+d%29
https://www.wolframalpha.com/input/?i=%28a+and+c%29+or+%28b+and+d%29

54:40 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

DownsET cLosURE. PWP enforces downset closure in the prefixing rule. Even without this, downset
closure would be different for the two semantics, due to the use of substitution in PwP. Consider
the final pomset in the last example of §C.9 under the semantics of this paper, which elides the
middle read event:

x:=0;r:=x; if(r>0){y:=1}

In PwP, the substitution [x/r] is performed by the middle read regardless of whether it is in-
cluded in the pomset, with the subsequent substitution of [0/x] by the preceding write, we have
[x/r][0/x], which is [0/r] [0/x], resulting in:

ConsisTENCY. PWP imposes consistency, which requires that for every pomset P, A, k(e) is satis-
fiable. Associativity requires that we allow pomsets with inconsistent preconditions. Consider a
variant of the example from §8.3.

if(M){x:=13} if(M){x:=1} if(M){y:=1} if(M){y:=1}
Associating left and right, we have:
if(M){x:=1}; if (M) {x:=1} if(M){y:=1}; if(M){y:=1}
Wx1 Wy1

Associating into the middle, instead, we require:
PF(M){x:=1} IFQOM){x:=1}; if (M){y:=1} if(M){y:=1}
@[(WD)
Joining left and right, we have:
If(M){x:=1}; if((M){x:=1}; if (M){y:=1}; if((M){y:=1}

CAUSAL STRENGTHENING. PWP imposes causal strengthening, which requires for every pomset P, if
d < ethen k(e) F x(d). Associativity requires that we allow pomsets without causal strengthening.
Consider the following,.

if(M){r:=x} y:=r ifQM){s:=x}
r=1|Wy1
Associating left, with causal strengthening:
if(M){r:=x};y:=r if(M){s:=x3}

(o (W)

Finally, merging:
if(M){r:=x};y:=r; if((M){s:=x}

Instead, associating right:
if(M){r:=x} y:=r; if(IM){s:=x}

(= [Ws1) (G]RxD)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:41

Merging:
if(M){r:=x};y:=r; if(CM){s:=x}

With causal strengthening, the precondition of Wy1 depends upon how we associate. This is not
an issue in PwP, which always associates to the right.

One use of causal strengthening is to ensure that address dependencies do not introduce thin-air
reads. Associating to the right, the intermediate state of ADDR2 (§8.4) is:

s:=[r]; x:=s

[r=2 I R[2] 1]—»[(r:2 = 1=s) = s=1 | le]

In PwP, we have, instead:

s:=[r]; x:=s

[r:z [R[2] 1]-»@:2 A [2]=1 | Wx1]

Without causal strengthening, the precondition of (Wx1) would be simply [2]=1. The treatment
in this paper, using implication rather than conjunction, is more precise.

Internal Acquiring Reads. The proof of compilation to Arm in PwP assumes that all internal reads
can be eliminated. However, this is not the case for acquiring reads. For example, PwWP disallows
the following execution, where the final values of x is 2 and the final value of y is 2. This execution
is allowed by Arm8 and Tso.

x:=2;r:=x79; 5=y || y:=2; 2™ =1

D G Crn ST

We discuss two approaches to this problem in §B.

Redundant Read Elimination. Contrary to the claim, redundant read elimination fails for PwP. We
discuss redundant read elimination in §8.1. Consider JMM Causality Test Case 2, which we describe
there.

ri=x;s:=x; if(r=s){y:=1} || x:=y
(E [y
o X 2
Under the semantics of PwP, we have
ri=x;s:=x; if(r=s){y:=1%}

[1:1A1:x/\x:1/\x:x|Wy1]

The precondition of (Wy1) is not a tautology, and therefore redundant read elimination fails. (It is
a tautology in r:=x; s:=r; if (r=s){y :=13}.) PwP(§3.1) incorrectly stated that the precondition
of (Wy1) was 1=1 A x=x.

Termination Conditions and Parallel Composition. In PwP(§2.4), parallel composition is defined
allowing coalescing of events. Here we have forbidden coalescing. This difference appears to be
arbitrary. In PwP, however, there is a mistake in the handling of termination actions. The predicates
should be joined using A, not V. Here we have used termination conditions rather than termination
actions so that termination is handled separately.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:42 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Read-Modify-Write Actions. In PwP, the atomicity axioms M10c erroneously applies only to over-
lapping writes, not overlapping reads. The difficulty can be seen in Example D.2.

In addition, PWP uses READ instead of READ’ when calculating of dependency for RMws. For a
discussion, see the example at the end of §8.2.

Data Race Freedom. The definition of data race is wrong in PwP. It should require that that at least
one action is relaxed.

Note that the definition of L-stable applies in the case that conflicting writes are totally ordered.
This gives a result more in the spirit of [Dolan et al. 2018]. In particular, this special case of the
theorem clarifies the discussion of the PAsT example in PwP;

AUGMENTATION OF PRECONDITIONS. PWP allows arbitrary augmentation of preconditions. Here we
are more conservative, only allowing augmentation of preconditions in the semantics of primitive
actions, as in §8.3. As discussed in §C.10, allowing arbitrary augmentation causes associativity to
fail when encoding delay logically.

C.4 Further Comparison with Sequential Predicate Transformers

We compare traditional transformers to the dependent-case transformers of Fig. 1.
All programs in our language are strongly normalizing, so we need not distinguish strong and
weak correctness. In this setting, the Hoare triple {¢} S {1/} holds exactly when ¢ = wp¢(¥).
Hoare triples do not distinguish thread-local variables from shared variables. Thus, the assign-
ment rule applies to all types of storage. The rules can be written as on the left below:

wpy .= (¥) = Y [M/x] Tx:=m(Y) = Y[M/x]
wp, .- (¥) = Y [M]/r] tr=m () = Y [M/r]
wp, . (V) =x=r =1y Tr.=x () =v=r =1 where A(e) = Rxv

Here we have chosen an alternative formulation for the read rule, which is equivalent to the more
traditional ¢/[x/r], as long as registers are assigned at most once in a program. Our predicate
transformers for the dependent case are shown on the right above. Only the read rule differs from
the traditional one.

For programs where every register is bound and every read is fulfilled, our dependent trans-
formers are the same as the traditional ones. Thus, when comparing to weakest preconditions, let
us only consider totally-ordered executions of our semantics where every read could be fulfilled
by prepending some writes. For example, we ignore pomsets of x :=2; r :=x that read 1 for x.

For example, let S; be defined:

S1=8:=x; x:=s+r Sy =x:=1t; 5 S3=t:=2;r:=5; 8,

The following pomset appears in the semantics of S;. A pomset for S5 can be derived by substituting
[2/t,5/r]. A pomset for S; can be derived by eliminating the initial write.

X:=t;$:=X; X =547

(=2 Wed)Rxd) (2= = 6= [Wa)of 20 =yl

The predicate transformers are:

wps, (¥) = x=s = Y[s+r/x] 75, () = 2=s = Y[s+r/x]
wps, (Y) =t=s= Y[s+r/x] 75, () = 2=s = Y[s+r/x]
wps, (9) = 2=5 = P[s+5/x] r5,(§) = 2=5 = Y[s+5/x]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:43

C.5 Register Consistency
In addition to the three criteria of Def. 3.2 Dijkstra [1975] requires
(x4") 7 (ff) = ff.
Unfortunately, our transformer for read actions (r4a) does not obey x4, since ff is not equivalent
to v=r = ff.

In this subsection, we refine this requirement to one that does hold. The main insight is to pull
values for registers from the actions of pomset itself. Thus, we define 8, to capture the register state
of a pomset.

Definition C.1. Let 0) = A ((c0)c(ExV)|A(e)=(Ro)} (Se=0) Where E = dom(4).
We say that ¢ is A-consistent if ¢ A 0, is satisfiable. We say that it is A-inconsistent otherwise.

Using this, we define the constraint on predicate transformers that we want. We also need to
update the definition of predicate transformer families to carry the labeling.

Definition C.2. A A-predicate transformer is a function 7 : & — ® such that

(x1) (x2) (x3) asin Def. 3.2,
(x4) if ¥ is A-inconsistent then 7 (i) is A-inconsistent.

A family of A-predicate transformers over consists of a A-predicate transformer 7 for each D C
&, such that if C N E C D then 7€ () £ 2 (y)).

(M4) 7 :2% — & — @ is a family of A-predicate transformers,

It would seem reasonable to require that k(e) be A-consistent. However, this breaks associativity.
Compare the following, where s, = r:

r:=y; if(nN{x:=13 ifr){x:=1}

‘&

and

r:=y if(r){x:=1}; if(r){x:=13}

8 Wx1

It would also seem reasonable to require that v' be A-consistent in all pomsets. However, doing
so is incompatible with our approach to untaken conditionals. Consider that the empty pomset is
in the semantics of if (ff){x :=13}. In order to construct the final pomset with v = tt, we must
allow the intermediate pomset with v' = ff.

C.6 The Need for Respect

In Fig. 1, we choose the weakest precondition. Because of this, associativity requires that s6 is
(< respects <; and <j) rather than (< 2 (<;U<3)). Consider (r:=x; y := M; skip). Associating
to the left, we might have:

Pu =) G[W) Pi=0 P~ F W)

When building P;,, the dependent set of e would be the empty set, and thus ¢ must have been
constructed using the independent transformer r4b. Attempting to repeat this, associating to the

right:
P Po - @[Wy) N OaaLDy

In P’, however, now the dependent set of e is the singleton {d}; thus ¢’ must be constructed using
the dependent transformer r4a. Since ((v=r V x=r) =) # (v=r = ¥), associativity fails.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:44 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

If we allow stronger preconditions, as in [Jagadeesan et al. 2020], then we could use inclusion
rather than respects. To arrive at this semantics, one would replace every occurrence of = in Fig. 1
with k. Then (< respects <; and <3) can be replaced by (< 2 (<1 U <3)).

C.7 Write Substitutions

In the predicate transformer for x := M, we substitute M for x. In an alternative semantics, one
could substitute the value chosen for the action. This alternative semantics looses dependencies.
Consider:

S:=X;Z:=S$

[(1:3 V x=s) = s=1 I Wzl]

Prepending a write and then a read, our semantics gives the following:

X:=r;S:=X;Z:=S Fri=y;X:=r;S$:=Xx;z2:=S

(v v

With the alternative semantics, instead, we would have:

riTy;X:=r;Ss:=Xx;2z:=S

[(1:sV1:s):>s:1|Wzl]

The dependency from Ry1 to Wz1 has been lost.

C.8 Read Substitutions

In READ, it is also possible to collapse x and r via substitution:
(r4a’) if (E N D) # 0 then 72 (¢) = v=r = ¢¥[r/x],
(r4b") if E # 0 and (E N D) = 0 then 7°(y) = (v=r V x=r) = ¢[r/x],
(R4c’) if E = 0 then 7P (¢) = ¢/[r/x],
Perhaps surprisingly, this semantics is incomparable with that of Fig. 1. Consider the following:
if(r Aseven){y:=1}; if(r As){z:=1}
[r A s even l Wyl] [r As l Wzl]

Prepending (s:=x), we get the same result regardless of whether we substitute [s/x], since x does
not occur in either precondition. Here we show the independent case:

s:=x; if(r Aseven){y:=1}; if(r As){z:=1}

[(2:5 V x=s) = (r A s even) IWyl] [(2:5 Vx=s) = (rAs) lel]

Since the preconditions mention x, prepending (r := x), we now get different results depending on
whether we perform the substitution. Without any substitution, we have:

ri=x;s:=x; if(r Aseven){y:=13}; if(r As){z:=1}

[lzr = (2=s V x=s) = (r A s even) l Wylj [1:r = (2=s Vx=s) = (rAs) | Wzlj

Prepending (x :=0), which substitutes [0/x], the precondition of (Wy1) becomes (1=r = (2=s V
0=s) = (r A s even)), which is a tautology, whereas the precondition of Wz1 becomes (1=r =
(2=s V 0=s) = (r A's)), which is not. In order to be top-level, (Wz1) must be dependency ordered
after (Rx2); in this case the precondition becomes (1=r = 2=s = (r A s)), which is a tautology.

A\
~——— 7

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:45

The situation reverses with the substitution [r/x]:

r:=x;s:=x; if(r Aseven){y:=1}; if(r As){z:=1}

i [1:r = (2=s V r=s) = (r A s even) l Wyl] [1:r = (2=sVr=s) = (rAs) I Wzl]

Prepending (x :=0):

A\

The dependency has changed from (Rx2) — (Wz1) to (Rx2) — (Wy1). The resulting sets of
pomsets are incomparable.

Thinking in terms of hardware, the difference is whether reads update the cache, thus clobbering
preceding writes. With [r/x], reads clobber the cache, whereas without the substitution, they
do not. Since most caches work this way, the model with [r/x] is likely preferred for modeling
hardware. However, this substitution only makes sense in a model with read-read coherence and
read-read dependencies, which is not the case for Arms.

C.9 Downset Closure

We would like the semantics to be closed with respect to downsets. Downsets include a subset of
initial events, similar to prefixes for strings.

Definition C.3. P, is an downset of P, if

(1) Ez2 C Ey, (5) v2 E V1,

(2) (Ve € Ey) A3(e) = As(e), (6a) (Vd € E;) (Ve € E;)d <, eiffd <; e,

(3) (Ve € Ey) k2(e) = k1 (e), (6b) (Vd € E) (Ve € E;) ifd <1 e then d € E,
(4) (Ve € E3) 2(e) = tP(e), (7) (Vd € E3) (Ve € E;)d rfyeiff d rfy e.

Downset closure fails due to for two reasons. The key property is that the empty set transformer
should behave the same as the independent transformer.
First, downset closure fails for read-read independency §3.7. Consider

re=x; if(r){s:=y}

The semantics of this program includes the singleton pomset (Rx0), but not the singleton pomset
(Ry0). To get (Rx0), we combine:

r:i=x ifr){s:=y3
Rx0 0

Attempting to get (Ry0), we instead get:

ri=x ifdr){s:=y}
:

Since r appears only once in the program, this pomset cannot contribute to a top-level pomset.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:46 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Second, the semantics is not downset closed because the independency reasoning of r4b is only
applicable for pomsets where the ignored read is present! Revisiting jMM causality test case 1 from
the end of §3.6:

x:=0 r:i=x if(r>0){y:=13}; z:=r
Wx0 Rx1 [r?O l Wyl] [rzl |Wzl]

yior

x:=0;r:=x; if(r>0){y:=1}; z:=r

—
—>[(1=r V0=r) = r>0 I Wyl] [I:r = r=1 l Wzl]

The precondition of (Wy1) is a tautology.
Taking the empty set for the read, however, the precondition of (Wy1) is not a tautology:

x:=0;r:=x; if(r>0){y:=13}; z:=r

Wx0 (r=0[wy1) (r=1]Wz1)

One way to deal with the second issue would be to allow general access elimination to merge

(Wx0) and (Rx0):

x:=0;r:=x; if(r>0){y:=1}; z:=r

Wx0 [(O:r vV 0=r) =r=0 I Wyl] [r:l | Wzl]

We leave the elaboration of this idea to future work.

C.10 Logical Encoding of Delay for PWT-MCA

In this subsection, we develop a logical encoding of delay, which can replace s6a in PwT-mca;.
It is not obvious how to repeat this trick for PwT-McaA;, due to thread-local reads-from (s6a’ in
Def. 4.2).

As motivation, recall that we stated Lemma 3.6(g) using inclusions:

() [if(=g){S2}; if (#){S13] S [if($){Si1}else{S:}] 2 [if($){S1}; if (=$){S2}].
PwT-Mca does not satisfy the reverse inclusion. The culprit is delay, which introduces order re-
gardless of whether preconditions are disjoint. As an example, [if(r){x :=1} else {x :=2}] has
an execution with (r=0 | Wx2) — (r#0 | Wx1), (using augmentation), whereas [if (r){x:=13};
if ('r){x :=23}}] has no such execution.

In order to validate the reverse inclusions, we could require that s6a not impose order when
k1(d) A x2(e) is unsatisfiable. Thus, following on §C.5, we would also like this:

(s6b”) if A1(d) delays A;(e) and x4 (d) A k5 (e) is A-consistent then d < e.
However, (s6b”) fails associativity. Example where 6, = (r=0)
r:=y if(r || s){x:=1} if(s){x:=2}
Associating right, order is required since ((r#0 V s#0) A s=0) is satisfiable (take r=1 and s=0):
r:=y if(r |l){x:=13}; if(s){x:=2}
Ry0 [r;to V s20 | le]—»[s:O | szj

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:47

re=y; if(r | s){x:=1}; if(s){x:=2}

(Ryo}—>(r=0= (r#0 v s#0) [Wx1}>(s=0 | Wx2)

Associating left, order is not required between the writes since (s#0 A s=0) is unsatisfiable:
ri=y; if(r | s){x:=13 if(s){x:=2}

(Ryo}—>(r=0= (r#0 v s#0) [Wx1]
re=y; if(r | s){x:=1}; if(ts){x:=2}

[r:O = (r#0 V s#0) l Wx 1] [5:0 l szj

This motivates the logic-based presentation of delay. We make the following changes to the data
model:

e actions need not include access modes—for readability, we color synchronizing events in
example diagrams throughout this section,

e there exists a symbol W, indicating a write action—this is needed to handle read-read inde-
pendency (§3.7),

e there exist symbols Q°¢, QR, and QY —we refer to these collectively as quiescence symbols.
Roughly, the old Qy correspond to QXV.

We define some shorthand, using the symbols S for stores (aka writes) and L for loads (aka reads).

Definition C.4. Let QR = Ay QR and similarly for Q. Let QF = QR A QW A Q5C.
Let [¢/QR] substitute ¢ for every QR and similarly for QW. Let [¢/Q?] = [¢/QR1[¢/QY]1[¢/Q5C].
Let formulae QF#, QS” and QL” be deﬁned

QFreI QR A QW QSrlx _ QR A QW Q)I;rlx — QXV
QFaca = QR QSreI QR A QW QLacq QW
Q™ =q: QT =Q: Qe = QY A Q€
Let substitutions [¢/Q"], [¢/Q3*], and [¢/QL¥] be defined:
[6/Q7] = [¢/QV] [$/QS™] = [4/Q] [$/Q™] = [4/QR]
[¢/QP9] = [¢/QR.¢/QNT [4/Q"] = [¢/QY] [$/Q52<9] = [¢/QR, ¢/QV]
[¢/Q7] = [¢/Q:] [$/Q3%] = [$/QV. $/Q>] [¢/QE] = [¢/Q}]

With these notations in hand, we can modify the semantics of §3 as follows. (We leave the
generalization to the semantics of §8 as future work.)

Definition C.5. Update the following rules from Fig. 1.
(¥3) k(e) = Q7
(F4a) if END # 0 then 7P () = ¢,
(r4b) if EN D = 0 then 7° () = ¢[ff/Q¥].
(w3) Kk(e) = QH A M=v,

(Wda) if EN D # 0 then 72 () = ¢[M/x][(QW A M=0)/Q"],
(w4b) if EN D = 0 then 7° () = [M/x][ff/Q*].
(R3) x(e) = QF,
(R4a) if e € EN D then 7P () = (QVY = v=r) = ¢,
(rdb) if e € E\ D then t2(y) = (QY = (v=r v x=r v W)) = y[ff/QL],
(R4c) if E = 0 then 7 () = y[ff/QL].

A PwT is complete if
(c3a) if A(e) is a write then k(e)[tt/W][tt/Q}] is a tautology,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:48 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Frel x:=M ri=x
yIM/x][ff/QY] [(QY = (v=r v x=r) vW) = y[ff/QF]|
@@, (W R
[YIM/x][(M=0 A Q¥)/QW] |« (@ = o) =)<
Facd xrel =M ro=x2<d

<

W) = y[fF/QRI[fF/QV] |

YL /QRIF/QY] yIM/x][fF/QY] (@ = (orveen
. (M= A QF A QY [Wx0)..

[y IM/x1[(M=0 A QY)/QV] |«

2

2
v[=
(=)
1
U5
< -
AL

FSC xs(;.:M r::xsc
yIff/Qz] [y [M/x][fF/ QY] [£F/Q5] | QY = (v=r v x=r) VW) = y[ff/Q:]

(‘w[M/x][(M:UAQXV)/QXV] ‘(QY = v=r) ﬁ%(

Fig. 2. The Effect of Quiescence for Each Access Mode

(c3b) if A(e) is a read then x(e) [ff/W][tt/Q}] is a tautology,
(c5) V/[tt/Q}] is a tautology.

The preconditions and the independent transformers have changed. With the exception of write,
the dependent transformers are unchanged. For writes, the interpretation of Q)" of subtly different
from that of the old Q,—the transformer strengthens QY to (QYY A M=0) rather than replacing it
by M=v. In order to ensure coherence, we have given up on initialization.

The precondition indicates which sequentially preceding events must be ordered before. For
example, all preceding accesses must be ordered before a releasing write, whereas only writes to
the same location must be ordered before a acquiring read—the latter is due to coherence.

Symmetrically, the transformer indicates which sequentially following must be ordered after. For
example, all following accesses must be ordered after an acquiring read, whereas only writes to the
same location must be ordered after a releasing write read—again, the latter is due to coherence.

Fig. 2 shows the effect of quiescence for each access mode.

Example C.6. The definition enforces publication. Consider:

x:=1 yeli=1
y[1/x][fF/QY] y[1/yl[ff/QY]
Cre e

[v[1/x11(=0 A Q¥)/QF] | [V[1/y1(=u A Q) /QWT|<
Since QY [ff/QY] is ff, we must introduce order to get a satisfiable precondition for (Wyu).

Example C.7. The definition enforces subscription. Consider:

ri=y* ri=x

QY = (o=r v x=r) VW) = ¢[ff/QR][ff/Q"]] [(QY = (v=r v x=r) VW) = y[ff/QR]]
QY = v=r) =y < Q= u=r) =y <

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:49

Since QW [ff/QW] is ff, we must introduce order to get a satisfiable precondition for (Rxu).

Example C.8. Even in its logical form, s6b’ is incompatible with the ability to strengthen precon-
ditions using augment closure, which is allowed in [Jagadeesan et al. 2020]. Consider the following.

if(r){x:=23 x:=1 x:=2 if(r){x:=13}

r#0 | Wx2 Wx1 Wx2 r=0 | Wx1
(re0 [Wx2) (=0 W)

If r=0 then x is 1, 2, 1. If r#0 then x is 2, 1, 2. Augmenting the middle preconditions and then using
sequential composition, we have:

if(r){x:=2} x:=1;x:=2 if(r){x:=1}

(ol WD) (=W

Note that s6b” does not require any order between the two writes of the middle pomset. Merging
left and right, we have:

if(r){x:=2}; x:=1; x:=2; if(r){x:=1}

()@

As shown by the following single-threaded code, allowing this outcome would violate DRF-scC.
y:=1;r:=y; if(r{x:=2}; x:=1; x:=2; if(lr){x:=1}

(2 @)

This is one reason that we use weakest preconditions, rather than preconditions.

The same problem does not occur due to if-introduction, since complete pomsets require that
the termination condition is a tautology; therefore we cannot arbitrarily strengthen preconditions
without introducing a second event to cover.

if(r){x:=2} x:=1;x:=2 if(r){x:=1}

r#0 | Wx2 r#0 | Wx1 r=0 | Wx2 r=0 | Wx1
(re0 [Wx2) Ei D (=0 W1

[r:O | le] [rio | Wx2]

Merging left and right, we have
if(r){x:=2}; x:=1; x:=2; if(r){x:=1}
D]) (2] D)

C.11 Optimizations Not Considered

We have not considered the following optimizations advocated by Manson et al. [2005]:

e synchronization on thread local objects can be ignored or removed altogether (the caveat
to this is the fact that invocations of methods like wait and notify have to obey the correct
semantics — for example, even if the lock is thread local, it must be acquired when perform-
ing a wait),

e volatile fields of thread local objects can be treated as normal fields,

e redundant synchronization (e.g., when a synchronized method is called from another syn-
chronized method on the same object) can be ignored or removed.

Nor have we attempted to capture the following:

e read introduction,
e monotonicity, which allows the access mode to strength, for example from rlx to acq to sc,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:50 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

e access elimination, such as store forwarding, dead-write-removal, redundant write after read
elimination [Sevc¢ik and Aspinall 2008, §4.1].

One approach to elimination would be to allow merging of actions with different labels. A list
of safe merges can be found in [Chakraborty and Vafeiadis 2017, §E] and [Kang 2019, §7.1]. For
examples of unsafe merges and reorderings, see [Chakraborty and Vafeiadis 2017, §D]. See also
[Chakraborty and Vafeiadis 2019, §6.2]

Certain combinations of optimizations are quite delicate. For example, consider if-introduction
and dead-write-removal. With if-introduction, the following equation should hold:

[if(r){x:=2};x:=1; x:=2; if(Ir){x:=1}; x:=3]
= [if(r){x:=1}; x:=2; x:=1; if (r){x:=2}; x:=3]
Using dead write removal naively, these could be refined, respectively, to:
[x:=1; x:=2; x:=3]
)
=[x:=2;x:=1; x:=3]

Depending upon the details of the model, these may be observably different.
What has become of coherence?

C.12 The State of the Art Circa 2021

Pugh [1999] noticed that the semantics of Java 1.0 disabled common subexpression elimination.
This lead to a repaired model five years later [Manson et al. 2005]. Shortly thereafter, Cenciarelli
et al. [2007, §7] noticed that the repaired model disabled the reordering of independent statements.
Here is the example:

if(x Ay){z:=1} || if(2){x:=1;y:=1}else{y:=1; x:=1}
R ()

Quoting Cenciarelli et al. [2007, §7]:

After reordering the independent statements in the else branch, a compiler may exe-
cute assignments x :=1 and y := 1 early, so that [the execution is allowed]. However,
such a behaviour is not legal according to the current JMM, as it violates the condition
that the happens-before orders during validation be consistent with the final happens-
before on the committed actions. In fact, the latter will have the write to x before the
write to y, but during validation the write to y happens before the write to x.

Since then, several models have been proposed. Many have been revised repeatedly to repair
bugs. (For example, this paper fixes several errors of Jagadeesan et al. [2020].)

In this subsection, we provide series of quotations from a discussion on the OpenJDK mailing
lists, which provides an excellent summary of the state of the art in 2021, when this paper was
written. (The quotes are ordered for readability, with hyperlinks to the original discussion.)

Raffaello Giulietti: “JEP 188: Java Memory Model Update” [1], the JMM wiki [2]
and the jmm-dev mailing list [3] seem quite inactive. (The latter point explains
why I’'m posting to this list instead.)

The introduction of j.1.1i.VarHandle [4] brought more access modes to Java,
but in a narrative and informal way. A paper by Bender & Palsberg [5], address-
ing the formalization of the concurrent access modes, has been published in 2019
but 'm not sure if it caught the attention of the OpenJDK community.

So what is the current thinking for progressing the JMM spec?

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://mail.openjdk.java.net/pipermail/jdk-dev/2021-August/005904.html
https://openjdk.java.net/jeps/188
https://wiki.openjdk.java.net/display/jmm/Main
https://mail.openjdk.java.net/pipermail/jmm-dev/
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/invoke/VarHandle.html
https://dl.acm.org/doi/10.1145/3360568

The Leaky Semicolon 54:51

Hans Boehm: I think it’s safe to say that it has been slow going, not just for
Java, but for other languages as well.

In my view, the core problem, shared by pretty much all of them, is that
we don’t have an established way to give well-defined semantics to potentially
racing unordered accesses, like ordinary variable accesses in Java, or memory_-
order_relaxed accesses in C and C++. That’s particularly essential with the
traditional Java language-based-security model, since we can’t just give up on
racing accesses to ordinary variables.

I'm aware of a number of proposed solutions. But I don’t think we currently
have enough confidence that they

(a) Are correct, and don’t have issues similar to the older models,

(b) Don’t have unintended consequences, particularly for compilation, and

(c) Are sufficiently comprehensible by programmers to actually be useful.
(a) is hard because the models have gotten complex enough that reviewers are
scarce. (A problem that I gather you’re familiar with.) The authors are commonly
experts at formally analyzing the models, but it’s hard to analyze whether the
model conflicts with some well-known, but perhaps not well-written-down com-
pilation technique.

Probably even more controversially, I think we’ve realized that existing com-
piler technology can compile such racing code in ways that some of us are not
100% sure should really be allowed. Demonstrably unexecuted code can affect
the semantics in ways that strike me as scary. (See https://wg21.link/p1217 for a
down-to-assembly C++ version; [if I understand correctly], Lochbihler and oth-
ers earlier came up with some closely related observations for Java.)

It might be possible to do what we’ve involuntarily done for C++: Punt the
hard cases for now, and define what the model is for programs without racing
ordinary accesses.

Andrew Haley:
(Quoting Hans Boehm) Probably even more controversially, I think we’ve
realized that existing compiler technology can compile such racing code in
ways that some of us are not 100% sure should really be allowed.
This implies, does it not, that the problem is not formalization as such, but that we
don’t really understand what the language is supposed to mean? That’s always
been my problem with OOTA: 'm unsure whether the problem is due to the
inadequacy of formal models, in which case the formalists can fix their own
problem, or something we all have to pay attention to.

Hans Boehm: In some sense, I'm not sure either. The p1217 examples [formal-
ized below as RFUB and RFUB-NC] bother me in that they seem to violate some
global programming rules (“if x is only ever null or refers to an object properly
constructed by the same thread, then x should never appear to refer to an incom-
pletely constructed object”). And there seems to be disagreement about whether
the currently allowed behavior is “correct.”

On the other hand, in practice the weirdness doesn’t seem to break things.
If you ask people advocating the current behavior, the answer will be that it
doesn’t matter because nobody writes code that way. If you ask people trying to
analyzer or verify code, they’ll probably be unhappy. And I haven’t been able to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://mail.openjdk.java.net/pipermail/jdk-dev/2021-August/005909.html
https://wg21.link/p1217
https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000447.html
https://mail.openjdk.java.net/pipermail/jdk-dev/2021-August/005909.html
https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000450.html

54:52 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

convince myself that you cannot get yourself into these situations just by linking
components together, each of which does something perfectly reasonable.

And there are very common code patterns (like the standard implementation
of reentrant locks used by all Java implementations) that break if you allow gen-
eral OOTA behavior. Which at least means that you can’t currently formally
verify such code. The theorem you’d be trying to prove is false with respect to
the part of the language spec we know how to formalize.

It’s a mess.

Andrew Haley:

(Quoting Hans Boehm) Demonstrably unexecuted code can affect the se-

mantics in ways that strike me as scary. (See wg21.link/p1217 for a down-

to-assembly C++ version; [if I understand correctly], Lochbihler and others

earlier came up with some closely related observations for Java.)
Looking again at p1217, it seems to me that enforcing load-store ordering would
have severe effects on compilers, at least without new optimization techniques.
We hoist loads before loops and sink stores after them. When it all works out,
there are no memory accesses in the loop. A load-store barrier in a loop would
have the effect of forcing succeeding stores out to memory, and forcing preceding
loads to reload from memory. It’s not hard to imagine that this would cause an
order-of-margnitude performance reduction in common cases.

I suppose one could argue that such optimizations would continue to be valid,
so only those stores which would have been emitted anyway would be affected.
But that’s not how compilers work, as far as I know. In our IR for C2, memory
accesses are not pinned in any way, so the only way to make unrelated accesses
execute in any particular order is to add a dependency between all loads and
stores.

Hans Boehm: I think it would be a fairly pervasive change to optimizers. It
has also become clear in WG21, the C++ committee, that there is not enough
support for requiring this. In that case, Ou and Demsky have a paper saying that
the overhead is likely to be on the order of 1% or less. For Java if it were applied
everywhere, it would probably be appreciably higher.

On the other hand, it’s a bit harder than that to come up with examples where
the generated x86 code has to be worse. Moving loads earlier in the code, or
delaying stores, as you suggest, would still be fine. The only issue is with delaying
loads past stores, which seems less common, though it can certainly be beneficial
for reducing live ranges, probably some vectorization etc.

But it seems unlikely that such a restriction will be applied even to C++ memory_-
order_relaxed, much less Java ordinary variables.

Doug Lea: My stance in the less formal account (http://gee.cs.oswego.edu/dl/
html/j9mm.html) as well as Shuyang Liu et al’s ongoing formalization (see links
from http://compilers.cs.ucla.edu/people/) is that the most you want to say about
racy Java programs is that they are typesafe. As in: you can’t see a String when
expecting an int. Even this looser constraint is challenging to specify, prove, and
extend. But it is a path for Java that might not apply to languages like C that are
not guaranteed typesafe anyway, and so enter Undefined Behavior territory (as
opposed to possibly-unexpected but still typesafe behavior).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000447.html
https://mail.openjdk.java.net/pipermail/jdk-dev/2021-August/005909.html
https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000450.html
https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000449.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://compilers.cs.ucla.edu/people/

The Leaky Semicolon 54:53

Han Boehm: But this now breaks some common idioms, right? In particular, I
think a bunch of code assumes that racing assignments of equivalent primitive
values or immutable objects to the same field are OK.

If, in 2004, our view of language-based security had been the same as it is now,
then I completely agree that this would have been the right approach. But I think
doing it now would require significant user code changes. Which might still be
the best way forward ...

D ADDITIONAL EXAMPLES (PwWT-MCA)

This appendix includes additional examples. They all apply equally to PwT-mca; and PwT-mcA;.
Many of these are taken directly from [Jagadeesan et al. 2020]; see there for further discussion.

D.1 Buffering
Store buffering is allowed, as required by Tso.

x:=0;y:=0; (x:=1;r:=y ||y:=1; r:=x)

Wx0 W, Wx1|/{Ry0 VyT 2 Rx0
WyoJ ™ (WatJZ(Ry0}—{WyT(Rx0)

(sB)

Load buffering is allowed, as required by Arms8.

re=y;x:=1|r:=x;y:=1

o)

D.2 Thin-Air
Thin air is disallowed. [Pugh 2004, TC4]:
y:=x || r:=y;x:=r
oot
The control variant ([Pugh 2004, TC13]) is also disallowed:
ifGo{y:=1} | if (P {x:=1})
oom?)
[Jagadeesan et al. 2020, §2]
y:=x || r:=y; if(r{x:=r; z:=r}else{x:=2}

(Rx1k (00TA3)

[Jeffrey and Riely 2019, §8] and [Jagadeesan et al. 2020, §6]:
y:=x | r:=y; if(b){x:=r; z:=r}else{x:=1} | b:=1
4
ED SO =D == oo
[Svendsen et al. 2018, RNG] is disallowed since there is no write to fulfill (Ry1).

(y:=x+1 | x:=y)

(00TA6)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://mail.openjdk.java.net/pipermail/jmm-dev/2021-August/000451.html

54:54 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

00TA7 is allowed by ps, but not WEAKEsTMO [Chakraborty and Vafeiadis 2019, Fig. 3]:

x:=2; if(x#£2){y:=1} || x:=1; r:=x; if (y){x:=3}
D O GO R GTD=

00TA4 is similar to Tc5 [Pugh 2004]:

(ooTA7)

y:=x||x:=y||z:=0;z:=1| x:=z2
— TC5
FxDeeWa1}—Fa) (re?)
The justification for forbidding this execution states:

values are not allowed to come out of thin air, even if there are other executions in
which the thin-air value would have been written to that variable by some not out-of-
thin-air means.

00TA4 is an interesting border case, since it is allowed by speculative models (§C.2).
We presented a thin-air behavior involving address calculation in §8.4. Tc12 provides another
example—eliding initializing writes, all 0:

ri=y; [r1:=1;s:=[0]; x:=!s || y:=x

Wiy (REo}-+{¢ | Wat)—(Ra1) (retz)

Building the precondition ¢ from right to left:

¢1 =5=0 (x:=1s)
$2 = (Quoy = 0=s) = 5=0 (Prepending s := [0])
¢3 = (r=1= ¢ [1/[1][tt/Qra]) A (r=0= ¢>[1/[0]] [ff/Qr]) (Prepending if)

(r=1= (Qpg; = 0=s) = 5=0) A (r=0 = s=0)
Dependent case:
$s=(Qy=1=r) = ¢ (Prepending r:=y)
¢5 = 1=r = (r=1 = (0=s = s=0)) A (r=0 = s=0) (Prepending Initializers)
Independent case:
¢y = (Qy=1=r Vy=r) = ¢s (Prepending r:=y)
$s = (1=r V 0=r) = (r=1= (0=s = s=0)) A (r=0 = 5=0) (Prepending Initializers)
The justification for forbidding Tc12 states:

Since no other thread accesses [either [0] or [1]], the code for thread one should
be equivalent to:

re=y; [r]1:=1; if(r=0){s:=1}else{s:=0}; x:=!s

With this code, it is clear that this is the same situation as [ooTAl].

Here is the same example with control dependencies—again eliding initializing writes, all 0:
r:=y; if(r){a:=1}Yelse{b:=1};s:=b; x:=ls || y:=x

() (re12)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:55

Building the precondition ¢ from right to left:

¢1 = 5=0 (x:=1s)
¢2 = (Qp = 0=5) = s=0 (Prepending s :=b)
$3 = (r£0 A §2[1/a] [tt/Qal) V (r=0 A $2[1/b][fF/Qs]) (Prepending if)

= (r#£0 A ((Qp = 0=s) = s=0)) V (r=0 A s=0)
Dependent case:
P1=(Qy=1=r)=¢s (Prepending r :=y)
¢s = 1=r = (r#0 A (0=s = s=0)) V (r=0 A s=0) (Prepending Initializers)
Independent case:
¢y = (Qy=1=rvy=r) = ¢ (Prepending r:=y)
¢ = (1=r v 0=r) = (r#0 A (0=s = 5s=0)) V (r=0 A s=0) (Prepending Initializers)
Jagadeesan et al. [2020, §6] provide the following analysis of RFUB:
Boehm’s [2019] rRFUB example presents another potential form of ooTa behavior. Our
analysis shows that there is no ooTa behavior in RFUB, only a false dependency:
[ri=y;x:=r] 2 [r:=y; if(r#1){z:=1; r:=1}; x:=7r] (RFUB)

The left command is half of oota3 (y :=x). The right command is dubbed rruUB, for
Register assignment From an Unexecuted Branch. Boehm observes that in the context
x:=y || [-], these programs have different behaviors. Yet the ooTA example on the
left never writes 1. Why should the unexecuted branch change that? Because of the
conditional, the write to x in RFUB is independent of the read from y. It useful to
considering the Hoare logic formulas satisfied by the two threads above: we have {tt}
RFUB {x = 1} for the right thread of RFUB, but not {tt} oota3 {x = 1} for the right
thread of oota3. The change in the thread from 0ota3 to RFUB is not a valid refinement
under Hoare logic; thus, it is expected that RFUB may have additional behaviors.

RFUB New Constructor:
y:=x || r:=y; if (r=null){r:=newCQ3}; x:=r; r.fQ (RFUB-NC)
This is similar to:
y:=x || r:=y; if (r=0){r:=random()}; x:=r; if (r){z:=1}
And different from the following, which is similar to Tc18:
y:=x || r:=y; if(r=0){r:=1}; x:=r; if (r){z:=1}

D.3 Coherence

The following execution is disallowed by fulfillment (m7a and m7b). It is also disallowed by C11
and Java.

x:=1;r:=x || x:=2;s:=x

M7b requires that we order one write with respect to the other, either before the write or after
the read (and therefore after the write). Suppose we pick 1 before 2, as shown. This satisfies m7b

(con)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:56 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

for (Rx2). But to satisfy the requirement for (Rx1) we must have either (Wx2) < (Wx1) or
(Rx1) < (Wx2). Either way, we have a cycle.
Our model is more coherent than Java, which permits the following:

ri=x;x:=1]|s:=x;x:=2
(re1e

We also forbid the following, which Java allows:

x:=1; yre':=1 | x:=2; 2 =1 || r:=2%9; ri=y*%;ri=x;r:=x

The following outcome is allowed by the promising semantics [Kang et al. 2017], but not in
WEAKESTMO [Chakraborty and Vafeiadis 2019, Fig. 3]. We disallow it:

(co3)

x:=2; if(x#2){y:=1} || x:=1; r:=x; if () {x :=3}

(coH-CYC)

C11 includes read-read coherence between relaxed atomics in order to forbid the following. We
do not order reads by intra-thread coherence, and this allow the following:

x:=1;x:=2||y:=x; z:=x

(co?
Here, the reader sees 2 then 1, although they are written in the reverse order.

We also allow the following, similar execution:

x:=1;x:=2 || ri:=x;ry:=x; r3:=x;

D == GO)

Pugh [1999, §2.3] presented the following example to show that Java’s original memory model
required alias analysis to validate common subexpression elimination (CsSE).
rii=x;ri=z;rsi=x; if(3<1){y = rz}
(R=2)

Coalescing the two read of x is obviously allowed if z#x. But if z=x, coalescing is only permitted
because we do not include read-read pairs in >, (§3.2):

<o = {(Wx, Wx), (Rx, Wx), (Wx,Rx)}

C11 has read-read coherence, and therefore csE is only valid up to alias analysis in C11.

D.4 RA

Our model is closer to strong RA (SRA) [Lahav and Boker 2020; Lahav et al. 2016], than RA, as in
C11 and RC11. For example, RC11 allows the following, which we disallow:

x:=2;yre':=1;r:=y I y:=2;xre':=1;s:=x

(sra)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:57

D.5 MCA

Here are a few litmus tests that distinguish mca architectures from non-mca architectures. mcal
is an example of write subsumption [Pulte et al. 2018, §3]:

if(@){x:=0}; x:=1 | if(x){y:=0}; y:=1| if(y){z:=0}; z:=1

e

Two thread variant:

if(){y:=0}; y:=1] if () {x:=0}; x:=1

(R S} (W) (T} (W (W)

rRIw is allowed if all accesses are relaxed, but not if the initial reads are acquiring:

x:=1]r:=x*% s:=y |y:=1| s:=¢%9; r:=x

(raw)

MCA?2 is a simplified version of IRTw

x:=0;x:=1||y:=x || r:=¢y®9; s:=x

(Wax0)—(Wx Te—R1) (Mca2)

[Flur et al. 2016] and [Lahav and Vafeiadis 2016, Fig. 4] discuss the following, which is not valid
in Arm38, although it was valid under some earlier sketches of the model:

re=x;x:=1|y:=x||x:=y

(Rt (s

These candidate executions are invalid, due to cycles.

D.6 Detour

The following example [Podkopaev et al. 2019, Ex. 3.7] is disallowed by 1mm by including a detour
relation. It is also disallowed by ps.

D.7 Local Invariant Reasoning and Value Range Analysis

We have already seen Tc1 in §3.8, Tc2 in §8.1 and Tc6 in §6. Here is the complete program for Tcé6:

y:=0; (ri=y; if(r=0){x:=1}; if (r=1){x:=1}) || (if (x=1){y:=1})

DD (xce)

¢ =(1=r v o=r) = (r=0V r=1)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:58 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

Here are some additional examples from [Jagadeesan et al. 2020]:

y:=0; (r:=y; x:=1+rsr—-r) || (y:=x)
Wi (res)
¢ =(1=rVvo=r) = l+rsr—-r =1

x:=0; (r:=x; if(r>0){y:=1} || x:=y || x:=-2)

D e DI D=0 (re0)
¢ = (1=r v 0=r) = r>0
Java Causality Test Case 18 asks that we justify the following execution:
x:=0; (x:=y || r:=x; if (r=0){x:=13}; s:=x; y:=s)

(rers

Before we prefix x := 0, the precondition of Wy1 is:
¢ =(1=rvx=r)= ([r=0 A ((1=s V 1=5s) = s=1)] V [r£0 A ((1=s V x=5) = s=1)])

Simplifying:

¢=1=rvx=r)= (r=0V [r#£0 A ((1=s V x=5) = s=1)])
Prefixing x :=0:

¢ =(1=rvo=r)= (r=0V [r#£0 A ((1=s V 0=s) = s=1)])
Drilling into the interesting part:

¢ = 1=r = ((1=s V 0=s) = s=1)

This is not a tautology. But we get one by coalescing s and r:
@D

¢ =1=r= ((1=r v 0=r) = r=1)
TC20 splits the first thread of Tc18:
x:=0; (x:=y4p r:=x; if (r=0){x:=1}); s:=x; y:=s

Ruk (rez0)

Because we take register state from the right, the example is the same as for Tc18 above.
TC17 replaces the condition r=0 by r#1 in Tc18:

¢ =(=rvx=r)= ([r£l1 A ((1=s V 1=s) = s=1)] V [r=1 A ((1=s V x=5) = s=1)])
Simplifying and prefixing x :=0:
¢ =(1=rvo=r)= (r#1V [r=1 A ((1=s V 0=s) = s=1)])

Again, we have:
¢ = 1=r = ((1=s vV 0=s) = s=1)

which is not a tautology. But we get one by coalescing s and r.
TC19 makes the same change for TC20, and follows for the same reason.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:59

D.8 Release/Acquire and Internal Reads
From [Jagadeesan et al. 2020]:

x:=1;a® :=1; if (22N {r:=x} || if (a®9){x:=2; "™ ::1}

(Rez1) (INTERNAL1)

ri=x; yre':=1; s:=y;z:=s || x:=z

(INTERNAL2)

D.9 Roach Motel: Commuting Release and Acquire

The following is impossible, since Rx1 unfulfilled.

x:=1;a® :=1; ri=b®9; si=x; yi=ras | ri=a®9; x:=2; b= 10

If you swap the release and acquire, then it is impossible for the second thread to get in the middle.

x:=1;r:=b%% @™ =15 || ri=a®9; x:=2; b =10

Wx1

In this case, the following execution is possible:

x:=1;r:=b9; " :=1; s:=x; y:=r+s || r:=a®9; x:=2; b =10

But not:
X:= x;y:=r+s || ri=a®9; x:=2; b =10
D.10. RMWs

If RMws simply use the same semantics as read and write, then we allow LDRF-PF-FAIL, which is
used to show failure of LDRF-sc for the promising semantics in [Cho et al. 2021].

y:=0; if () {if (ICAS(x, 0, 1)){if (2){x:=2}}} || y:=1; if (1#CAS(x,0,3)){z:=1}

(LDRF-PF-FAIL)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:60 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

To disallow this, we need to retain the dependency (Rx2) — (Wz1). For this, we need to avoid
the substitution for x. This is why we use READ’ instead of READ in the independent case for
RMWS.

It is not possible for two RMWSs to see the same write.

x:=0; (FADD™™ (x, 1) || FADD™™ (x, 1))

(RMWO)

The gray arrow is required the RMw atomicity axioms.

Lee et al. [2020] introduce Ps2.0 to refine the treatment of RMws in the promising semantics (ps).
Their examples have the expected results here, with far less work. First they recall that ps requires
quantification over multiple futures in order to disallow executions such as cprr. (We showed the
relaxed variant (CDRF-RLX) in §8.2.)

r:=FADD%™® (x,1); if (r=0){y :=13} || r:=FADD***"® (x, 1) ; 1f (r=0){if (y){x :=0}}

rmw rmw

(corr)
— "

This execution is clearly impossible, due to the cycle above. In this diagram, we have not drawn
order adjacent to the writes of the RMws, since this is not necessary to produce the cycle. If cDrRF
is allowed then DRF-RA fails.

ps does not support global value range analysis, as modeled by ca+t below. Our semantics
permits GA+E:

x:=0; (r:=CAS'lX"'X(x,O, 1); if(r<10){y:=13} || x:=42; x :=y)

ps also does not support register promotion, as modeled by rp below. Our semantics permits rp.
It is allowed by Arm8 and by WEAKESTMO.

ri=x;s:=FADD™™ (2 r); y:=s+l | x:=y

()

Example D.1. Recall m10c: if A(c) overlaps A(d) and d ™% e then (1) ¢ < e implies ¢ < d and
(2) d < cimpliese < c.
This definition ensures atomicity, disallowing executions such as [Podkopaev et al. 2019, Ex. 3.2]:

x:=0; INCTMX () || xX:=2;r:=x

DR G0 = (e (2

By 1, since (Wx2) — (Wx1), it must be that (Wx2) — (Rx0), creating a cycle.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:61

Example D.2. Two successful RMws cannot see the same write:

x:=0; (INCrIx,rIX(x) ” INCrIx,rIX(x))

The order from read-to-write is required by fulfillment. Apply 1 of the second RMwW to a — d, we
have that a — c. Subsequently applying 2 of the first Rmw, we have b — ¢, creating a cycle.

Example D.3. By using two actions rather than one, the definition allows examples such as the
following, which is allowed by Arm8 [Podkopaev et al. 2019, Ex. 3.10]:

ri=z; s:=INC™re (%) ; y:=s+l||r:=y;z:=r
A

A similar example, also allowed by Arm8 [Chakraborty and Vafeiadis 2019, Fig. 6]:

ri=z; s:=FADD™™ (x, r); y:=s+l || r:=y;z:=r
R A

This is allowed by wEAKESTMO, but not ps.
Example D.4. Consider the cDRF example from [Lee et al. 2020]:

ri= INC* e (x); if (r=0){y:=1}
| 7= INC®¥™® (x) 5 if (r=0){if (y){x :=0}}

GO D)

Example D.5. Consider this example from [Lee et al. 2020, §C]:

r:=CAS™™(x. 0,1); if (r<1){y:=1}
| r:=CAS™™(x,0,2); if (r=0){if (y){x:=0}}

The following examples are from [Cho et al. 2021].
cDRF shows that PwT semantics is not too permissive for rel/acq-Rmws. But what about rlx-
rMws. The following execution is allowed by Arm8, and ps2.0, but disallowed by ps2.1.

ri=FADD™™ (x,1); y:=1 | r:=y; s:= FADD™™ (x, r)

Rx1 Wy1 Rx0 (RMW-W)
rmw \ rmw

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:62 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

If this {z}-DRF-RA?

if(y){x:=z}Yelse{x:=1} || r:=x;z:=1;y:=r

(Rz1k (NAIVE-LDRF-RA-FAIL)

Interpreting {z} as rel/acq:

D.11 Fences

From [Jagadeesan et al. 2020]:

x:=0; x:=1; F'el;y:=1 | r:=y; F*9; s:=x

[Lahav et al. 2017, Fig. 5]:

(pUB2)

x:=1|r:i=x;F%ri=y ||y:=1; F; r:=x
(- Ea— @ ~(sc3)

[Lahav et al. 2017, Fig. 6]
x:=1; 2% :=1; || r:=229; F*; ri=ylly:=1;F; r:=x

2 W Tt ey G R D R TP S ()

Here are several examples mixing fencing with release/acquire:
x:=1; 4 =1] ri=g?9; si=x

Wwrely1 R2“9y1 b Rx0

x:=1;Fre';y::1||r:=ya°q;s:=x
ET(Wy——{Ruy)
x:=1;yrel:=1||r:=y;Fa°q;s:=x
(W JeWrely1) (F=)

x:=1; F® s yi=1 || rizy; F39; s:=x

(WD E (W) —HRu) (P

[Podkopaev et al. 2019, §D]:

The following execution graph is not consistent in the promise-free declarative model
of [Kang et al. 2017]. Nevertheless, its mapping to POWER (obtained by simply re-
placing Fsc with Fsync) is POWER-consistent and po U rf is acyclic (so it is Strong-
POWER-consistent). Note that, using promises, the promising semantics allows this
behavior.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:63

ri=z;F% x:=1|x:=2; F%; y:=1| r:=y; z:=1
N D e 1o 9 S LT S GO)

[Podkopaev et al. 2019, §38]:

To establish the correctness of compilation of the promising semantics to POWER,
Kang et al. [2017] followed the approach of Lahav and Vafeiadis [2016]. This approach
reduces compilation correctness to POWER to (i) the correctness of compilation to
the POWER model strengthened with po U rf acyclicity; and (ii) the soundness of
local reorderings of memory accesses. To establish (i), Kang et al. [2017] wrongly ar-
gued that the strengthened POWER-consistency of mapped promise-free execution
graphs imply the promise-free consistency of the source execution graphs. This is not
the case due to SC fences, which have relatively strong semantics in the promise-free
declarative model (see [Podkopaev et al. 2018, Appendix D] for a counter example).
Nevertheless, our proof shows that the compilation claim of Kang et al. [2017] is cor-
rect.

D.12 Fences and RMW

Aim: allow the splitting of release writes and RMWs into release fences followed by relaxed oper-
ations. [Podkopaev et al. 2019, Remark 2, After example 3.1]:

In RC11 [Lahav et al. 2017], as well as in C/C++11 [Batty et al. 2011], this rather intu-
itive transformation, as we found out, is actually unsound.

y:=1; x™ =1 || INC*9® (x); x:=3 || r:=x®9; 5:=y

(e) () W

(R)C11 disallows the annotated behavior, due in particular to the release sequence
formed from the release exclusive write to x in the second thread to its subsequent
relaxed write. However, if we split the increment to fencerel; a := FADDacq,rlx(x, 1)
(which intuitively may seem stronger), the release sequence will no longer exist, and
the annotated behavior will be allowed. IMM overcomes this problem by strengthening
sw in a way that ensures a synchronization edge for the transformed program as well

y:=1; x =1 || F INCO™ (x); x =3 || ri= 29, s:i=y

We seem to disallow both of these out of the box.
In the case of a relaxed read in the RMW, the outcome is allowed in both cases:

y:=1; x =1 | INC™® ()5 x =3 || ri= X9 si=y

y:=1; x =1 || F® INC™™ (x); x:=3 || ri=x®9; 5=y

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:64 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

D.13 SC Access and Volatiles
[Dolan et al. 2018, §8.2]:

ri=y;x>:=1;s:=x || x*:=2; y:=1

ok ey
Watt et al. [2020, §3.1]:

xX*¢:=1;r=y% | Y= =2 x =25 s :=x5C

Y == i) T M Ty (2)

Violation of SC-DRF from [Watt et al. 2020, Fig. 9]. The following program is DRF. It should not
be possible for the second thread to read 1 then 2

(sc2)

x*:=1 || x%:=2; r:=xC; if (r=1){s:=x}
W)

(Additionally, fulfillment of the read of 1 requires that W*x2 — W*¢x 1, which we have elided.)

The following example is from https://bugs.openjdk.java.net/browse/JDK-8262877: One imple-
mentation strategy for volatiles maps a volatile read to a full fence followed by acquire and a
volatile write to a release followed by full fence. On power, this is not enough to guarantee that
all-volatile programs only have SC executions. This implementation strategy on Power allows the
following execution, which is disallowed by our semantics.

X =2, r=y || Y= | ri=y® %=1 | ri=xC 5= x5

(Weex2}»(R yo) N Weyt))[Iiyl]—» Weex1 Rscx1)R x2
E PROOF SKETCH: LDRF-SC FOR PwT-MCA

In this appendix, we sketch a proof of DrRr-sc for PwT-Mca;. We prove an external result, where
the notion of data-race is independent of the semantics itself. Since every PwT-mcA; is also a PwT-
MCA1, the result also applies there. Our result is also local. Using Dolan et al.’s [2018] notion of
Local Data Race Freedom (LDRF).

We do not address PwT-C11. The internal DRF-sc result for C11 [Batty 2015] does not rely on
dependencies and thus applies to PWT-C11. In internal DRF-sc, data-races are defined using the
semantics of the language itself. Using the notion of dependency defined here, it should be possible
to prove an stronger external result for C11, similar to that of [Lahav et al. 2017]—we leave this as
future work.

Jagadeesan et al. [2020] prove LDRF-sc for Pomsets with Preconditions (PwP). PwT-mcA gener-
alizes PWP to account for sequential composition. Most of the machinery of LDRF-sc, however, has
little to do with sequential semantics. Thus, we have borrowed heavily from the text of [Jagadeesan
et al. 2020]; indeed, we have copied directly from the KIEX source, which is publicly available. We
indicate substantial changes or additions using a change-bar on the right.

There are several changes:

e PwP imposes several conditions that we have dropped: consistency, causal strengthening,
downset closure (see §C.3).

e PwP allows preconditions that are stronger than the weakest precondition.

e PwP imposes m7c (rf implies <) and thus is similar to PwT-mca;. PwT-Mca; is a weaker
model that is new to this paper.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://bugs.openjdk.java.net/browse/JDK-8262877

The Leaky Semicolon 54:65

e PwP did not provide an accurate account of program order for merged actions. We use
Lemma 6.2 to correct this deficiency.

The first two items require us to define gen differently, below.

The result requires that locations are properly initialized. We assume a sufficient condition: that
programs have the form “x; :=vy; -+ x,:=0v,; S” where every location mentioned in S is some x;.
To simplify the definition of happens-before, we ban fences and RMWs.

To state the theorem, we require several technical definitions. The reader unfamiliar with [Dolan
et al. 2018] may prefer to skip to the examples in the proof sketch, referring back as needed.

E.1 Definitions
Program Order. Let [-]°°_, be defined by applying the construction of Lemma 6.2 to [-]mcaz-

We consider only comple?:aci)zomsets. For these, we derive program order on compound events as
follows. By Lemma 6.4, if there is a compound event e, then there is a phantom event ¢ € 77! (e)
such that x(c) is a tautology. If there is exactly one tautology, we identify e with ¢ in program order.
If there is more than one tautology, Lemma E.1, below, shows that it suffices to pick an arbitrary
one—we identify e with the ¢ € 77 !(e) that is minimal in program order. For example, consider

JMM causality test case 2, with an added write to z:
ri=x;z:=1;s:=x; if(r=s){y:=1} || x:=y

Rx1

N Dy
Data Race. Data races are defined using program order (po), not pomset order (<).
Because we ban fences and RMws, we can adopt the simplest definition of synchronizes-with (sw):
Let d =% e exactly when d fulfills e, d is a release, e is an acquire, and —(d Ro e).
Let hb = (po U sw)™* be the happens-before relation.
Let L C X be a set of locations. We say that d has an L-race with e (notation d ~*~ e) when (1) at
least one is relaxed, (2) at least one is a write, (3) they access the same location in L, and (4) they

are unordered by hb: neither d 3 ¢ nor e 1% 4.

()

Generators. We say that P’ € V() if there is some P € P such that P is complete (Def. 4.1) and
P’ is a downset of P (Def. C.3).

Let P be augmentation-minimal in P if P € P and there is no P#P’€®P such that P augments P’.

Let gen[[S] = {P € V[S]P°_, | P is augmentation-minimal in V[S]P°

mca2 mcaz’*
Extensions. We say that P’ S-extends P if P # P’ € gen[S] and P is a downset of P’.
Similarity. We say that P’ is e-similar to P if they differ at most in (1) pomset order adjacent to e,

(2) the value associated with event e, if it is a read, and (3) the addition and removal of read events
po-after e.

Stability. We say that P is L-stable in S if (1) P € gen[S], (2) P is po-convex (nothing missing in
program order), (3) there is no S-extension of P with a crossing L-race: that is, there isno d € E,
no P’ S-extending P, and no e € E’ \ E such that d ~k~ e. The empty pomset is L-stable.

Sequentiality. Let <; = <1 U po, where <y, is the restriction of < to events that access locations
in L. We say that P’ is L-sequential after P if (1) P’ is po-convex, (2) <y, is acyclic in E’ \ E.

Simplicity. We say that P’ is L-simple after P if all of the events in E’ \ E that access locations in
L are simple (Def. 6.1).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:66 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

LemMA E.1. Suppose P’ € gen[[S] and P is L-sequential after P. Let P" be the restriction of P’ that
is L-simple after P (throwing out compound L-events after P). Then P”" € gen[S].

As a negative example, note that (%) is not L-sequential—in fact there is no execution of the
program that results in the simple events of (ii): without merging the reads, there would be a
dependency (Rx1) — (Wy1). L-sequential executions of this code must read 0 for x:

ri=x;z:=1;s:=x; if(r=s){y:=1} || x:=y
Rx0

A4

Rx0L,(Wat) , Rx0,(WyT)—(Ry1}(Wx1)

E.2 Theorem and Proof Sketch

THEOREM E.2. Let P be L-stable in S. Let P’ be a S-extension of P that is L-sequential after P. Let
P” be a S-extension of P’ that is po-convex, such that no subset of E”’ satisfies these criteria. Then
either (1) P is L-sequential and L-simple after P or (2) there is some S-extension P”"" of P’ and some
e € (E” \ E’) such that (a) P’ is e-similar to P”, (b) P""" is L-sequential and L-simple after P, and
(c)d ~k~ e, for somed € (E” \ E).

The theorem provides an inductive characterization of Sequential Consistency for Local Data-
Race Freedom (SC-LDRF): Any extension of a L-stable pomset is either L-sequential, or is e-similar
to a L-sequential extension that includes a race involving e.

ProoF SKETCH. We show L-sequentiality. L-simplicity then follows from Lemma E.1.

In order to develop a technique to find P’ from P”’, we analyze pomset order in generation-
minimal top-level pomsets. First, we note that <, (the transitive reduction <) can be decomposed
into three disjoint relations. Let ppo = (<. N po) denote preserved program order, as required by
sequential composition and conditional. The other two relations are cross-thread subsets of (<. \
po): rfe (reads-from-external) orders writes before reads, satisfying p6a and p6b; cae (coherence-
after-external) orders read and write accesses before writes, satisfying m7b. (Within a thread, s6a’
induces order that is included in ppo.)

Using this decomposition, we can show the following.

LemMA E.3. Suppose P”' € gen[[S] has an external read d s e that is maximal in (ppo U rfe).
Further suppose that there another write d’ that could fulfill e. Then there exists an e-similar P""" with
d’ s e such that P € gen][S].

The proof of the lemma follows an inductive construction of gen[S], starting from a large set
with little order, and pruning the set as order is added: We begin with all pomsets generated by the
semantics without imposing the requirements of fulfillment (including only ppo). We then prune
reads which cannot be fulfilled, starting with those that are minimally ordered.

We can prove a similar result for (po U rfe)-maximal read and write accesses.

Turning to the proof of the theorem, if P’ is L-sequential after P, then the result follows from
(1). Otherwise, there must be a <y, cycle in P involving all of the actions in (E” \ E’): If there were
no such cycle, then P”” would be L-sequential; if there were elements outside the cycle, then there
would be a subset of E” that satisfies these criteria.

If there is a (po U rfe)-maximal access, we select one of these as e. If e is a write, we reverse
the outgoing order in cae; the ability to reverse this order witnesses the race. If e is a read, we
switch its fulfilling write to a “newer” one, updating cae; the ability to switch witnesses the race.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:67

For example, for P”” on the left below, we choose the P’ on the right; e is the read of x, which
races with (Wx1).

x:=0;y:=0; (x:=1;y:=1 || if(y){r:=x3)
P,\P P”\P/ p P’\P PN/\P/

/\ /\
> >(Wy1)))
_/r

It is important that e be (po U rfe)-maximal, not just (ppo U rfe)-maximal. The latter criterion
would allow us to choose e to be the read of y, but then there would be no e-similar pomset: if an
execution reads 0 for y then there is no read of x, due to the conditional.

In the above argument, it is unimportant whether e reads-from an internal or an external write;
thus the argument applies to PwT-Mca; and PwT-mca; as it does for PwT-mca;.

If there is no (poUrfe)-maximal access, then all cross-thread order must be from rfe. In this case,
we select a (ppo U rfe)-maximal read, switching its fulfilling write to an “older” one. If there are
several of these, we choose one that is po-minimal. As an example, consider the following; once
again, e is the read of x, which races with (Wx1).

P

x:=0;y:=0; (r:=x;y:=1|s:=y; x:=s)
P/ \P P// \P/ PI \P P/’I \PI
p
/\ /\
....... N W y0 ------->---->Wy1
W) (Rl

This example requires (WxO). Proper initialization ensures the existence of such “older” writes. O

E.3 A Note on Prior Work

In preparing this paper, we came across the following example, which appears to invalidate Theo-
rem 4.1 of [Dongol et al. 2019].

x:=1; 9 =15 ri=x%9 || if (P {x"® =2}
e ————
[Wrel ylj [Racqxlj [Racq yl]_>[wreIX2j (11)
(-) (), ()

The program is data-race free. The two executions shown are the only top-level executions that
include (W™'x2).

Theorem 4.1 of [Dongol et al. 2019] is stated by extending execution sequences. In the termi-
nology of [Dongol et al. 2019], a read is L-weak if it is sequentially stale. Let p = (Wx1)(W"™'y1)
(R*9y1)(W''x2) be a sequence and & = (R*x1). p is L-sequential and « is L-weak in pe. But
there is no execution of this program that includes a data race, contradicting the theorem. The
error seems to be in Lemma A.4 of [Dongol et al. 2019], which states that if « is L-weak after an
L-sequential p, then a must be in a data race. That is clearly false here, since (R*9x1) is stale, but
the program is data race free.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:68 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, llya Kaysin, and Anton Podkopaev

In proving the SC-LDRF result in [Jagadeesan et al. 2020, §8], we noted that our proof tech-
nique is more robust than that of [Dongol et al. 2019], because it limits the prefixes that must be
considered. In (1), the induction hypothesis requires that we add (R*9x1) before (W''x2) since
(R*9x1) — (W'x2). In particular,

is not a downset of (), because (R*9x1) — (W''x2). As noted in [Jagadeesan et al. 2020, §8],
this affects the inductive order in which we move across pomsets, but does not affect the set of
pomsets that are considered. In particular,

Wx1 wrely1 Racd 1

is a downset of ().

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Overview
	2.1 Sequential Composition
	2.2 Memory Models
	2.3 Predicate Transformers For Relaxed Memory

	3 Sequential Semantics
	3.1 Preliminaries
	3.2 Actions in This Paper
	3.3 PwT: Pomsets with Predicate Transformers
	3.4 Pomsets and Complete Pomsets: Termination
	PwT Semantics

	3.5 Preconditions, Predicate Transformers, and Data Dependencies
	3.6 Control Dependencies
	3.7 A Refinement: No Dependencies into Reads
	3.8 Local State
	3.9 The Burdens of Associativity

	4 PwT-MCA: Pomsets with Predicate Transformers for MCA
	4.1 PwT-MCA1
	4.2 PwT-MCA2

	5 PwT-MCA Results
	6 PwT-C11: Pomsets with Predicate Transformers for C11
	7 PwTer: automatic litmus test evaluator
	8 Refinements and Additional Features
	8.1 Register Recycling and Redundant Read Elimination
	8.2 Read-Modify-Write Operations
	8.3 If-Introduction (aka Case Analysis)
	8.4 Address Calculation
	8.5 Combining Address Calculation and If-Introduction

	9 Related Work
	10 Limitations and Future Work
	References
	A Complete Semantics for PwT-MCA1
	B Lowering PwT-MCA to Arm
	B.1 Arm executions
	B.2 Lowering PwT-MCA1 to Arm
	B.3 Lowering PwT-MCA2 to Arm

	C Discussion
	C.1 Read-Read Dependencies, If-Introduction, and Java Final Field Semantics
	C.2 Further Comparison to ``Promising Semantics'' [POPL 2017]
	C.3 Further Comparison to ``Pomsets with Preconditions'' [OOPSLA 2020]
	C.4 Further Comparison with Sequential Predicate Transformers
	C.5 Register Consistency
	C.6 The Need for Respect
	C.7 Write Substitutions
	C.8 Read Substitutions
	C.9 Downset Closure
	C.10 Logical Encoding of Delay for PwT-MCA
	C.11 Optimizations Not Considered
	C.12 The State of the Art Circa 2021

	D Additional Examples (PwT-MCA)
	D.1 Buffering
	D.2 Thin-Air
	D.3 Coherence
	D.4 RA
	D.5 MCA
	D.6 Detour
	D.7 Local Invariant Reasoning and Value Range Analysis
	D.8 Release/Acquire and Internal Reads
	D.9 Roach Motel: Commuting Release and Acquire
	D.10 RMWs
	D.11 Fences
	D.12 Fences and RMW
	D.13 SC Access and Volatiles

	E Proof Sketch: LDRF-SC for PwT-MCA
	E.1 Definitions
	E.2 Theorem and Proof Sketch
	E.3 A Note on Prior Work

